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ABSTRACT 
The paper presents a new decision support system (DSS) for solving multicriteria ranking problems: 
how to rank a set of alternatives - having evaluations in terms of several criteria - in decreasing order of 
preference. It uses the ELECTRE III methodology to construct a fuzzy outranking relation, and then  
a genetic algorithm to exploit it and to obtain a recommendation. The genetic algorithm approach rests 
on the main idea of reducing differences between the global model of preferences and the final ranking. 
The system operation is showed within an empirical study of a real student selection problem in the 
Universidad de Occidente in Mexico. 
 
RESUMEN 
En este artículo presentamos un nuevo sistema de apoyo a la decisión para resolver el problema del 
ordenamiento multicriterio. Cómo ordenar un conjunto finito de alternativas, valoradas por un conjunto 
de criterios, en orden de preferencia decreciente. Utilizamos el enfoque de sobreclasificación del 
análisis multicriterio de ayuda en la decisión para resolver el problema. Por medio del método 
ELECTRE III construimos una relación de sobreclasificación borrosa. Para la fase de explotación 
aplicamos un algoritmo genético y obtenemos una recomendación del sistema. La operación del 
sistema se ilustra en medio de una aplicación real del problema de selección de estudiantes de 
posgrado de la Universidad de Occidente de México.  
 
Key words: Multicriteria Decision Analysis, Ranking problem, Genetic algorithms, Decision Support  
                      System. 

 
1. INTRODUCTION 
 
 Multicriteria Decision Analysis (MCDA) is widely used for selecting, sorting or ranking alternatives in relation 
to multiple criteria Roy (1996), Vanderpooten (1990). It provides an effective framework for solving this kind of 
problems and, particularly, the approach of the fuzzy outranking relations has been adequate for dealing with 
situations in which imprecision and subjective ness is present Roy (1977), Rogers et al. (2000). 
 
 In outranking methods, we can distinguish two phases: aggregation and exploitation. The aggregation 
process corresponds to the operation, which transforms the marginal evaluations of separate criteria into a 
global outranking relation between every pair of alternatives, which is generally neither transitive nor 
complete. The exploitation process deals with the outranking relation in order to clarify the decision through a 
partial or total preordering reflecting some of the irreducible indifferences and incomparabilities Fodor and 
Roubens (1994), Bouyssou and Vincke (1997). 
 
 Let A be the set of alternatives or potential actions and let us consider a fuzzy outranking relation σ

AS  defined 
on A×A; this means that we associate with each ordered pair (a,b) a real number σ(a,b) (0 ≤ σ(a,b) ≤ 1) 
reflecting the degree of strength of the arguments favoring the crisp outranking aSb. The exploitation phase 
transforms the global information included in σ

AS  into a global ranking of the elements of A. In this phase, the 
classic procedures like ELECTRE III Roy (1990) or PROMETHEE II Brans et al. (1986), use a ranking 
method to obtain a score function. But the main difficult consists in finding reasonable ways of dealing with 
the intransitivities without losing too much of the contents of the original outranking relation. The methods 
based on score functions do not perform well in presence of irrelevant alternatives or in case of complex 
graphs with several circuits. Non-rational situations could happen when the prescription is constructed. Most 
significant is the following: Suppose that a and b are two actions such that σ (a,b) ≥ λ and σ(b,a) ≤ λ-β (β>0); 
if λ ≥ c and β ≥ t (c and t representing consensus and threshold levels respectively), we should accept that “a 
outranks b” (aSλb) and “b does not outrank a” (bnSλa); in this case the global preference model captured in 
outranking relation is giving a presumed preference favoring a. However, a score function or other similar 
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method (based on flow of outranking or  "distillation " process) could lead to a final ordering in which b is 
ranked before a. ELECTRE and PROMETHEE methods do not have a way to minimize this kind of 
irregularity. In Leyva and Fernandez (1999) and Fernández and Leyva (2004) a method based on genetic 
algorithms and multiobjective optimization, which allows to exploit a known fuzzy outranking relation is 
introduced, with the purpose of constructing a recommendation for ranking problems. The problem of 
obtaining the final ranking is modeled with multiobjective combinatorial optimization; the solution method, 
based on the genetic algorithm approach, rests on the main idea of reducing differences between the global 
model of preferences and final ranking.  
 
 In this paper, is presented a new Decision Support System (DSS) called SADAGE (Sistema de Apoyo a la 
Decisión con Algoritmos Genéticos y Electre III) for rank a finite set of multicriteria alternatives based on the 
ELECTRE III – Genetic Algorithm approach. It uses the ELECTRE III methodology to construct a fuzzy 
outranking relation, and then a genetic algorithm to exploit it and to obtain a recommendation, which is a 
ranking of the alternatives in decreasing order of preferences.  SADAGE is a variant of the ELECTRE III-IV 
software developed by Vallée and Zielniewicz (1994). Both use the outranking approach to solve the 
multicriteria ranking problem. The difference is in the phase of exploitation. SADAGE uses a method based 
on a genetic algorithm and ELECTRE III-IV uses the “distillation” technique (Net Flow Rule). Even when the 
distillation technique carries out the exploitation process intuitively, quickly, easily and directly, it simplifies 
excessively the information implicitly contained in the fuzzy outranking relation, leaving out of the analysis 
important characteristics of the model, constructing sometimes, recommendations inconsistent with respect 
the aggregation model of preferences Leyva (2000).  
 
 The paper is organized as follows: the next section gives a brief methodological presentation of the 
ELECTRE III – Genetic algorithm method and, the functionalities of the software are presented through an 
illustrative example in Section 3. Finally, in Section 4 are presented the conclusions.  
 
2. THE (ELECTRE III – Genetic Algorithm) METHODOLOGY 
 
 ELECTRE III – Genetic algorithm is a multiple criteria ranking method, i.e. a method that ranks a finite set 
of alternatives A in decreasing order of preference. Each alternative is supposed perfectly identified but not 
necessarily exactly and completely known in all its quantitative and qualitative consequences. The 
consequences can be analyzed by means of a “consistent family” of criteria, g1, g2,..., gn where gj(a) will 
characterize the evaluation made of an alternative a ∈ A on the j-th criterion. 
 
2.1. The ELECTRE III method. Construction of the outranking relation 
 
 Assuming that there exist defined criteria, n,...2,1j,g j =  and a set of alternatives A, the ELECTRE methods 
introduce the concept of an indifference threshold, q, and preference threshold, p. The preference relations 
are defined as follows: 
 

aPb (a is strongly preferred to b) ⇔ g(a) – g(b) > p 
 

aQb (a is weakly preferred to b) ⇔ q < g(a) – g(b) ≤ p 
 
alb (a is indifferent to b; and b to a) ⇔ ⏐g(a) – g(b)⏐ ≤  q 

 
 The ELECTRE method seeks to build an outranking relation S. aSb means that according to the global 
model of DM’ preferences, there are good reasons to consider that “a is at least as good as b” or “a is not 
worse than b.” Each pair of alternatives a and b is then tested in order to check if the assertion aSb is valid or 
not. The test to accept the assertion aSb is implemented using two principles: 
 
 i) A concordance principle which requires that a majority of criteria, after considering their relative importance, is  

in favor of the assertion – the majority principle, and 
 
ii) A non-discordance principle, which requires that within the minority of criteria, which do not support the  

assertion, none of them is strongly against the assertion – the respect of minorities’ principle. 
 
 The operational implementation of these two principles is now discussed, assuming that all criteria are to be 
maximized. We first consider the outranking relation defined for each of the n criteria; that is, aSjb means that 
“a is at least as good as b with respect to the jth  criterion,” j = 1,2,…,n. 
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 The jth criterion is in concordance with the assertion aSb if and only if baSj . That is, if gj(a) ≥ gj(b) - qj. Thus, 
even if gj(a) is less than gj(b) by an amount up to qj, it does not contravene the assertion aSjb and therefore  
is in concordance. The jth criterion is in discordance with the assertion aSb if and only if bPja. That is, if  
gj(b) ≥ gj(a) + pj. That is, if b is strictly preferred to a for criterion j, then it is clearly not in concordance with the 
assertion that aSb. With these concepts it is now possible to measure the strength of the assertion aSb. The 
first step is to develop a measure of concordance; as contained in the concordance index C(a,b), for every 
pair of alternatives (a, b) ∈ A. Let kj be the importance coefficient or weight for criterion j. We define a fuzzy 
outranking relation as follows: 
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 The final step in the model building phase is to combine these two measures to produce a measure of the 
degree of outranking; that is, a credibility index which assesses the strength of the assertion that “a is at least 
as good as b.” The credibility degree for each pair A)b,a( ∈  is defined as: 
 

         

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

>•

−

−

∀≤

=

∏
∈

)b,a(C)b,a(dthatsuch)b,a(C

criteriaofsettheis)b,a(Jwhere
)b,a(C1
)b,a(d1

j)b,a(C)b,a(dif),b,a(C

)b,a(S

j
)b,a(Jj

j

j

                  (3) 

 
 This concludes the construction of the outranking model. The next step in the outranking approach is to 
exploit the model and produce a ranking of alternatives from the fuzzy outranking relation.  
 
2.4. The genetic algorithm for deriving final ranking. Exploitation procedure 
 
2.4.1.The exploitation of the fuzzy outranking relation as a multiobjective combinatorial optimization problem 
 
 Let A be a finite set of decision alternatives, which is the object of the decision process. This set is not the 
universe of the potentially feasible alternatives; it is only the set under consideration in a specific decision 
problem. Let σ(a,b) be a valued binary relation defined on A×A with image in [0,1]. σ(a,b) can be interpreted 
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as the credibility degree of the predicate “a is at least as good as b”. Let  λ be a cut level such that if  
σ(a,b) ≥ λ, we say that a outranks b with credibility λ, denoted by baSλ . Otherwise, the outranking is rejected 

banSλ . 
 
 We assume the existence of a threshold β > 0 such that if baSλ  and also σ (a,b) ≤ (λ-β), then there is an 
asymmetric preference relation favoring a that will be denoted by baP ,βλ . One can agree that for some 
values of λ and β, the conditions defining βλ,P  are good arguments for justifying a strict preference relation in 
the sense proposed by Roy (cf. Roy (1996)). 
 
 Let E be a way of exploiting σ and RA the complete ranking derived from applying E to σ.  E is a function 
assigning a ranking RA to each σ defined on A×A. RA defines a weak order R on A. ∀ (a,b) ∈ A×A, aRb if and 
only if b is not ranked before a in RA. We think that the quality of a final ranking should be judged according to 
the number of its discrepancies and concordances with σ and the crisp relations S1, and βλ,P . 
 
 Let V be the set of strong discrepancies (violations): 
 

V = {(a,b) ∈ A×A such that ,baP ,βλ  bRa} and  nv = card (V) 
 
 Note that nv is a function of R, λ, and β. 
 
 We propose to consider the best ordering as the best compromise solution of the following multiple 
objective optimization problem: 
 
      Min(nv), Min(f), Max(λ)                                                                       (4) 

 Subject to 

R ⊂ A×A, λ, β ∈ [0,1], λ  ≥ λ0 
 
(λ0 is a minimum level of credibility, usually greater than 0.5) where f is a measure counting the number of 
incomparable pairs i.e. counting all the pairs (a,b) ∈ A×A such that banSλ  and abnSλ . The structure of (4) 
strongly suggests the use of genetic algorithms to solve it. 
 
2.4.2.The genetic algorithm 
 
 In this section are explained some elements of the genetic algorithm which allows us to exploit a known 
fuzzy outranking relation with the purpose of constructing a recommendation for the multi criteria ranking 
problem. A potential solution of a ranking problem is represented as an ordinal representation. In general,  
a potential solution is a ranking of the set of actions by decreasing order of preference. These actions  
(known as genes in Genetic Algorithms (GA's)) are joined together forming a string of values (known as 
chromosome). Any symbol in this string is refereed to as an allele Goldberg (1989), Michalewicz (1996). The 
chromosome is represented as the string of m-ary alphabet where m is the number of actions into the 
decision problem. In such representation, each action is coded into m-ary form. Actions are then linked 
together to produce one long m-ary string or chromosome. An action coded with aki value in the i-th entry of 
the string means that the action coded with aki value is ranking in the i-th place of the ordering and aki is 
preferred to akj if i < j, where aki ∈ A = {a1,a2,…,am}, i = 1, 2,…, m, and [k1, k2, …,km]  is a permutation of  
[1,2,…,m]. Each individual is associated with a number λ  (0 ≤ λ ≤ 1), which will be connected with the 
credibility level of a crisp outranking defined on the set of genes. The fitness of an individual with credibility 
level λ is calculated according to a given fitness function. The approach for defining individual’s  
fitness involves separating the single fitness measure into two, one is called fitness f and the other is called 
unfitness u. We define the fitness function f of an individual p with credibility level λ as follows: 
 
 Let p = ak1 ak2 … akm be the schematic representation of an individual’s chromosome and suppose that 
given aki and akj, two actions such that σ(aki, akj) ≥ λ and σ(akj ,aki) ≤ λ - β  (β > 0,  representing a threshold 
level), we accept that “aki outranks akj” (aki S

λ akj) and “akj does not outrank aki” (akj nSλ aki). In this case, 

into the crisp outranking relation generated by λ, ,SA
λ  a presumed preference favoring aki,holds. Then: 
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): aki
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, and akj
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  i = 1,2,..., m-1, j = 2,3,...,m,  i < j}⎜ 
 
where  [k1, k2,...,km] is a permutation of  [1,2,...,m]. f(p) is the number of incomparabilities between pairs of  

actions (aki ,akj) into the individual p = ak1ak2 … akm  in the sense of the crisp relation .SA
λ  Note that the 

quality of solution increases with decreasing fitness score.  
 
 
 The unfitness u of an individual p measures the amount of unfeasibility (in relative terms) and we chose to 
define it as: 
 

u(p) =  ⎜{(aki, akj) : aki S akj  and akj nS aki; i = 1,2,...,m ,  j = 1,2,...,m,  i > j} ⎜. 
 

u(p) is the number of preferences between actions into the individual p which are not "well-ordered" in the 
sense of  .SA

λ  We are interested in: 
 
  i) Individuals whose unfitness function value is equal to zero. This assures us that the ordering represented  

by the individual is transitive. 
 
 ii) Individuals whose fitness function value is equal (or near) to zero. This objective improves the comparability 

of S on A. 
 
iii) Individuals whose credibility level λ is near to 1. This indicates us that the ordering represented by the 

individual with credibility level λ is more trusty whenever the fitness and unfitness function values are zero 
or near to zero.  

 
 Then, we use a genetic search for solving the multiobjective problem: 
 
             Min u, Min f,  Max  λ                                                                  (5)                               
 

Rs, λ ∈ [0,1]    λ  ≥ λ0 
 
where Rs is a strict total order of A. 
 
 We can see that the “unfitness function” u coincides with nv, (see (4) of subsection 2.4.1). 
 
3. IMPLEMENTATION IN THE DECISION AID PROCESS 
 
3.1 Structure of the decision aid process 
 
 In a systematic decision aid process; 
there is a continuous flow of activities 
between the different phases, but at any 
phase there may be a return to a previous 
phase (feedback). However, the general 
scheme of use of ELECTRE III – Genetic 
algorithm method can be schematically 
represented in Figure 1. It needs to be 
noticed that this procedure is iterative 
rather than simply sequential. If the 
Decision Maker is unsatisfied with the 
result at any stage, it may go back to any 
step and redo it. 
 

Figure 1.  
General scheme of the use of     

ELECTRE III – Genetic algorithm method. 
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3.2. Main functionalities of the software 
 
 The SADAGE software has been written in the Visual Basic programming language. The minimal hardware 
and software requirements are the following: 
 
 • IBM-PC compatible computer (Pentium II processor with 64 MB RAM), 

 • Microsoft Windows (98 or higher). 
 
 The structure of the options available in the software is described hereafter in Figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Description of the main options of the software. 
 
 To illustrate the main functionalities of the new software, we provide a short description of a real world 
application in the Mexican educational system where this software was used (the reader may found a detailed 
description in Leyva (2004)). 
 
3.3. Postgraduate student selection: A Mexican case 
 
 The next instance of the ranking problem discusses an empirical study of the following real selection problem.   
 
 The Universidad de Occidente will offer another 
generation of the Master of Science in Management 
Information Systems and a selection process of 
candidates will be held. The problem is to identify 
the best possible candidates. After that the DM saw 
many interested persons to enroll in the program, 
they finally accepted to competing by a place  
to 21 applicants labeled in this application as  
A1, A2,…,A21. The DM is a committee of posgrade’s 
academics, where one of them played the role of 
the decision analyst. The study was supported with 
a new decision aid system for rank a finite set of 
multicriteria alternatives, developed by our working 
group and whose main window is presented in 
Figure 3.  

Project        Edit         Calculate       Results        Format         Help 

Project information 
New Project 
Open Project 
Import Project 
Export Project 
Delete Project 
Print 
Print Setup 
Exit 

Project Reference 
Alternatives 
Criteria 
Performances 
Thresholds 
Credibility Matrix 
Genetic Algorithm 
Parameters 

Calculate 
Concordance and 
Credibility Matrix 
 
Execute Genetic 
Algorithm and 
calculate Ranking 

Concordance Matrix 
Credibility Matrix 
Table of number of 
times that an 
alternative is in each 
Ranking’s Position 
Ranking by SADAGE 
Ranking by DM 
 

Decimals 

Contents 
How to use Help? 
About 

 
 

Figure 3. Main window of the software SADAGE.
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 The DM has made an adequately comprehensive description of each applicant available. For this 
application, the 5 following criteria and its scale are formulated in the Table 1. 
 

Table 1. Criteria and its scale. 
 

Label 1 Label 2 Criterion Scale 

C1 INT Intelligence 0-10 

C2 AP Academic Performance 0-10 

C3 TSS Time spent in studying 0-50 

C4 EP English Proficiency 0-10 

C5 RP Responsibility Performance 0-10 

 
 As mentioned in Subsection 2.1, three are the main inputs of the ELECTRE method. 
 
3.3.1.The performance matrix 
 
 All applicants were evaluated using the criteria and scale showed in the Table 1. All criteria were treated as 
quantitative ones. A 21x5 matrix was produced. Table 2 provides the performance matrix, for twenty-one 
applicants and five criteria. Figure 4 illustrates part of the performance matrix. 
 
            Table 2. Performances of the alternatives. 
 

 C1 
INT 

C2 
AP 

C3 
TSS 

C4 
EP 

C4 
RP 

A1 9.76 8.00 40 7 8.5 
A2 6.52 8.20 20 4 8.5 
A3 9.86 9.64 40 8 10         
A4 3.07 8.0 30 5 6 
A5 8.53 9.02 25 6 8 
A6 9.87 9.82 25 10 10 
A7 9.73 9.20 40 8 9.5 
A8 9.03 9.50 25 6 9.5 
A9 8.23 9.12 30 5 8 

A10 9.33 8.40 25 5 10 
A11 9.83 9.36 30 8 10 
A12 9.03 8.90 40 8 10 
A13 5.78 8.33 30 4 7 
A14 9.20 9.05 40 8 8 
A15 9.20 9.10 30 5 8.5 

 A16 9.00 8.20 30       6.5 9 
A17 9.90 9.5 30 8 10 
A18 9.53 8.96 25 4 9 
A19 9.63 8.4 25 6 9 
A20 000 9.34 50 4 5 
A21 9.33 8.55 30 6 8.5 

 
        Figure 4. Edit Performance matrix window. 

 
3.3.2. The thresholds 
 
 The DM was supported in the definition of its preferences and uncertainties through the indifference 
threshold (q), the preference threshold (p), and veto threshold (v) for all criteria. Agreeing with Rogers and 
Bruen (1998) we did not propose a specific relation between q and p values. As far as the veto threshold v is 
concerned, we suggested that veto should be the most important factor for the most important criteria. The 
threshold values are summarized in Table 3. Figure 5 shown the threshold values of a criterion. 
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Table 3. q, p, v threshold values. 
 

Criterion q P v 

C1. Intelligence 0.2 0.5   1.0

C2.  Academic Performance 0.2 0.5   1.0

C3. Time spent in studying 4 9 40 

C4. English Proficiency 1 1.5   6 

C5. Responsibility Performance 0.5 1.0   7.0

 
 

 
 

Figure 5. Edit threshold values window. 
 
3.3.3.The weights (Relative importance of the criteria) 
 
 The DM was supported in the definition of the 5 criteria weights, as shown in Table 4. Personal Construct 
Theory – PCT as suggested by Rogers et al. (2000) was used for the weight definition. 
 

Table 4. Criteria weights. 
 

 C1 C2 C3 C4 C5 RtC RtC+ 1 Weight Final 
weight 

C1 ---- X X X X 4 5 38.4 4 

C2  ---- X X X 3 4 30.7 2.5 

C3   ---- E X 1 2 15.3 1.5 

C4    ---- E 0 1   7.7 1.0 

C5     ---- 0 1   7.7 1.0 

                                                                                       Total      13          
 

Note: Final RtC =  RtC + 1 so as C4 and C5 to be taken into account. 
 
3.3.4. Calculations and the final ranking 
 
 According to the additional information pointed out before, we applied ELECTRE III to construct a fuzzy 
outranking relation. Tables 5 show the credibility matrix obtained. 
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Table 5. Credibility matrix. 
 
 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 

A1 1 1 0 1 0 0 0 0 0 0.73 0 0.37 0.89 0 0 1 0 0.24 0.83 0 0.75 

A2 0 1 0 0.85 0 0 0 0 0 0 0 0 0.85 0 0 0 0 0 0 0 0 

A3 1 1 1 1 1 0.9 1 1 1 1 1 1 1 1 1 1 1 1 1 0.85 1 

A4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A5 0 1 0 0.97 1 0 0 0.27 0.97 0.40 0 0.25 0.97 0.35 0.57 0.51 0 0 0 0.75 0.53 

A6 0.85 1 0.85 0.97 1 1 0.85 1 0.97 1 0.97 0.85 0.97 0.85 0.97 0.97 0.97 1 1 0.85 0.97 

A7 1 1 0.80 1 1 0.65 1 0.92 1 1 1 1 1 1 1 1 0.92 1 1 0.85 1 

A8 0.45 1 0.18 0.97 1 0.16 0.32 1 0.97 0.87 0.35 0.75 0.97 0.75 0.97 0.97 0.23 0.60 0.60 0.85 0.84 

A9 0 1 0 1 0.87 0 0 0.22 1 0 0 0.12 1 0.03 0.09 0.31 0 0 0 0.83 0 

A10 0.44 1 0 0.97 0.75 0 0.10 0 0.72 1 0.02 0.50 0.97 0.50 0.72 0.87 0 0.75 0.87 0.18 0.97 

A11 0.85 1 0.78 1 1 0.68 0.85 1 1 1 1 0.85 1 0.85 1 1 1 1 1 0.85 1 

A12 0.60 1 0.15 1 1 0.02 0.52 0.75 0.98 0.87 0.25 1 1 1 1 1 0.14 0.60 0.60 0.65 0.87 

A13 0 0.5 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

A14 0.60 1 0.23 1 1 0.06 0.50 0.69 1 0.90 0.41 0.90 1 1 1 0.90 0.25 0.73 0.59 0.78 1 

A15 0.35 1 0 1 1 0.02 0.22 0.73 1 0.90 0.35 0.65 1 0.75 1 0.90 0.16 0.83 0.69 0.82 1 

A16 0.39 1 0 1 0.75 0 0 0 0.48 0.73 0 0.40 1 0.30 0.60 1 0 0.26 0.60 0 0.70 

A17 0.85 1 0.85 1 1 0.80 0.85 1 1 1 1 0.85 1 0.85 1 1 1 1 1 0.85 1 

A18 0.71 1 0.11 0.97 0.9 0 0.72 0.65 0.97 0.90 0.39 0.65 0.97 0.75 0.97 0.87 0.18 1 0.90 0.70 0.87 

A19 0.85 1 0 0.97 0.75 0 0.40 0 0.72 0.90 0.09 0.40 0.97 0.50 0.72 0.97 0 0.75 1 0.18 0.97 

A20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

A21 0.54 1 0 1 0.78 0 0.10 0.19 0.75 0.90 0.07 0.53 1 0.50 0.75 1 0.02 0.83 0.87 0.60 1 

 
 After that, we used the GA, (see the Subsection 2.4) for exploiting the outranking relation and deriving a 
final ranking of the alternatives in decreasing order of preferences. The computation in the GA was realized 
with the following parameters: 100 trials of the GA heuristic (each one with a different random seed)  
were generated. We worked with groups of 25 trials, which finished when {400, 350, 300, 300} populations 
had been generated. The population size was set to {55, 50, 40, 60}. The crossover probability was chosen  
{0.85, 0.75, 0.75, 0.70} and the mutation probability was {0.50, 0.60, 0.65. 0.50} respectively in each case. 
Figure 6 illustrates the parameters values of the genetic algorithm. 
 

 
 
 The final ranking obtained using the genetic algorithm is shown in Figure 7. Figure 8 illustrates part of the 
final ranking window. 

A6 ≻ A17 ≻ A7 ≻ A3 ≻ A11 ≻ A1 ≻ A8 ≻ A18 ≻ A14 ≻ A19 ≻ A21 
≻ A12 ≻ A15 ≻ A16 ≻ A10 ≻ A9≻ A5 ≻ A2 ≻ A13 ≻ A20 ≻ A4 

 
The credibility level was λ = 0.7039. 

 
Figure 7. Final ranking. 

Figure 6. Edit parameters values screen 
of the genetic algorithm. 
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Figure 8. Final ranking window. 
 
4. CONCLUSIONS 
 
 An implementation of the ELECTRE III – Genetic algorithm method is presented. Our attention has been 
focused on the exploitation phase. Here, the problem of exploit a fuzzy outranking relation and obtain a final 
ranking is modeled with multiobjective combinatorial optimization. To solve this problem we used a genetic 
algorithm approach, which rests on the main idea of reducing differences between the global model of 
preferences and the final ranking. The final ranking proposed is obtained counting the number of times that 
an alternative is found at a certain place in the ranking when the genetic algorithm is run n times. This 
inference procedure to obtain the final ranking is integrated in a trial-and-error interactive process in which the 
DM can check what is the impact of modifications of the input on the result of the inference procedure. The 
software has been presented through an illustrative example. 
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