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ABSTRACT 
In the harvesting technique prevailing in Scandinavia, tree stems are converted into smaller logs 
immediately at harvest. Modern sawmills attempt to operate according to customers' special needs rather 
than only minimize the production costs. Since the annual production of saw timber in Scandinavia is in 
tens of millions of cubic meters, proper measuring of the goodness of the bucking outcome is of crucial 
importance. The outcome of the bucking operation can be considered as a multidimensional table of tree 
species, quality grades, prices and length and diameters classes. The prevailing method to measure the 
outcome is the so-called apportionment degree, which is calculated from the relative portions of the 
observed and target tables. However, this measure has severe drawbacks. E.g. it gives the same weight 
for each log class. Therefore, for example, the effect of the shape of the distributions is completely ignored. 
In this study we present some basic results of the statistical properties of the apportionment degree and 
present some alternative means to measure the bucking outcome. Also a simulation study is carried out to 
illustrate the relative performance of the measures presented.  
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RESUMEN 
El propósito de este trabajo es comenzar el análisis estadístico del índice del prorrateo, esta es una 
medida usada en el contexto de la tala en bosques para evaluar el ajuste entre la demanda y distribución 
del suministro de la leña. Ha habido algunos esfuerzos por entender este índice, pero una base teórica 
seria todavía falta. Nosotros discutimos brevemente la literatura existente y procedemos a investigar las 
propiedades del índice desde un punto de vista distribucional. Este es fundamentalmente un artículo 
exploratorio y nosotros sólo enfocamos los casos de dos y tres clases de leña, es decir, locaciones. En el 
caso de dos clases usamos la distribución beta para las variables aleatorias relativas a la salida (output) 
del rendimiento; en tres locaciones al azar se asume que los rendimientos relativos siguen la distribución 
de Dirichlet singular. Usando esta formulación es posible entender las propiedades estadísticas del índice 
del prorrateo. 
 

1. INTRODUCTION 
 
 The general objective in harvesting is to maximize the value of the timber obtained for further processing. 
Optimization of harvesting requires that several phases in a production chain are successfully combined. In 
the harvesting technique prevailing, in Scandinavia, tree stems are converted into smaller logs immediately at 
harvest. High-class measuring and computing equipment have been developed, making possible computer-
based optimization of crosscutting in harvesters. In modern harvesters tree stems are run in sequence 
through the measuring equipment and simultaneously the harvester's computer receives the length and 
diameter data from sensors. If the whole stem is measured before crosscutting we may apply the techniques 
discussed e.g. in Näsberg (1985) to find the optimal cutting patterns on the stem. However, in practice the 
first cutting decisions have to be made under incomplete stem information and we must compensate the 
unknown part of the stem by predictions (see e.g Liski and Nummi (1995)). 
 
 An admissible cutting pattern is a set of cutting points 0 = x1 < x2 < … < xR such that the length of the rth log  
 

lr = xr - xr-1 ∈ [lmin, lmax] and d(xr) ≥ dT > 0 
 
for r = 2, 3,  R, where x1 = 0 is at the butt of a tree, lmin is the minimum and lmax the maximum length of a log 
and dT is the minimum acceptable log diameter. Marking for bucking is the problem of converting a single tree 
stem into logs in such a way that the total stem value (price, volume etc.) for logs is maximized (see Näsberg 
1985, Chapter 3). 
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 We can classify a log with a small end diameter d(x) and length l (index r dropped) to one of the m × n 
classes according to the  following classification 

di ≤ d(x) < di+1     and    lj ≤ l < lj+1, 

where di, i = 1,…,n and lj, j = 1,…,m are given diameter and length limits. Then we may for example specify 
the price of each diameter and length combination di, lj of logs. Denote these as the m × n price matrix P, 
where the element pij  of  P is the price of the log at log class di, lj. However, it is well known that optimization of 
price only may yield very undesiderable log distributions from the sawmills point of view. Nowadays sawmills 
aim to operate more on customers special needs rather than maximizing price or minimizing the production 
costs only. In fact we may have simultaneously many targets. Especially we may have a matrix of frequencies 
jointly with a matrix of prices. We may define the target amount of logs for each diameter and length 
combinations. Denote these as the m × n target matrix T. Similarily we can classify the outcome of the actual 
bucking operation to elements of the m × n frequency matrix O. Then the measures studied here are simple 
functions of the actual output O, the target T and the log prices  P. 
 
2. MEASURING THE BUCKING OUTCOME 
 
2.1. The Apportionment degree 
 
 The so-called apportionment degree widely used in harvesting is defined for a fixed quality class as follows 
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respectively. With this measure we can compare the relative proportions of the output and target tables. The 
apportionment degree A gives a value between 0 to 1, where the value A = 1 corresponds to perfect match of 
the tables. After some simple manipulations we can show that A can be rewritten as  
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where δij = min(oij*, tij*). This measure was first introduced by the swedish mathematician Bergstrand  in the 
mid 1980s, when first steps in developing automatic bucking systems were taken. However very little is 
known of the statistical properties of the apportionment degree A. 

 It is easy to give a price-weighted version of A. Then we compute  
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and, hence, 
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which is of the same magnitude as the original A. Note that our choise ρδp* = 1 generally  overestimates the 
true value of ρδ,p*. This may imply that on the average the scaled statistic As underestimates the true 
apportionment degree. 
 
 It is now easy to make some observations concerning As. First if δ and p* are independent we note that  
As= nmAp/A. Similarly if σδ ≈ 0 or σp* ≈ 0 we note that in both cases As = nmAp/A. These correspond to 
situations where price is approximatelly uniform or the disparity  between demand and supply is more or less 
uniform, respectively. 
 
2.2. Analysis with standard statistical measures 
 
 One of the most common measures to test the fit between two distributions is the χ2-test. By using our 
notations this statistic is defined as 
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which under certain conditions follows the χ2-distribution with nm - 1 degrees of freedom. Note that here we 
use nm instead of nm - 1 degrees of freedom as an approximation since nm is in practical situations 
appropriately large. A price-weighted version of the statistic can be written as 
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 It can be shown see e.g. Rao (1973) that the distributions of this statistic can be approximated by weighted 
χ2-distribution. 
 
2.2.1. Relation to the apportionment degree in the unweighted case 
 
 We first write A as in (1), and 
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oij = tij + εij,  ∀i,j 
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 By using these notations we write the χ2-statistic in (3) as 
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2.2.2. Distribution of the weighted χ2-statistic 

 The price-weighted χ2-statistic in (2) can be written as a sum 

χ2(p*) = ∑∑
= =

n

1i

m

1j

2
ij ,u  

where 

uij = 
ij

ijij*
ij t

to
p

−
. 

 It is easy to see that 

uij ~ N(0, )p*
ij  

and 

ij*
ij

u
p

1 = zij ~ N(0, 1). 

 Now χ2(p*) = ∑∑
= =

n

1i

m

1j

2
iju = ∑∑

= =

n

1i

m

1j

*
ij

2
ijpz  and hence the distribution of χ2(p*) is a weighted sum of independent 

.iablesvar2
1 −χ  The distribution of χ2(p*) can be approximated by  



 263

       χ2(p*) ≈ .a 2
bχ             (4) 

 Now a and b can be solved from the first two moments of χ2(p*). The expected value is  
 

E(χ2(p*)) = 1. 
 
 For the variance we first note that the weights lie between the values 
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 We can now solve for a and b by equating the mean and variance of both sides in (4): 
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 It follows that 

â  = T/2 

and 

b̂ = 2/t, 

where â  and b̂  are estimates of multiplier and degrees of freedom of the approximation (4), respectively. 

2.2.3. A computational example 

 Assume that the target matrix is given in the Table 1. Then, for example, the target of the length of 430 cm 
and the top diameter of 160 mm logs is 28 objects. Assume that the actual output matrix is given in the  
Table 2. In fact the output matrix is obtained from the target matrix by randomly dropping 15 percent of logs 
from the target table. 

Table 1. Target matrix. 

length (cm) Top diam 
(mm) 430 460 490 520 550 

Total 

160 28 16 58 45 45 192 

200 37 17 65 45 37 201 

240 17 49 37 44 55 202 

280 22 39 39 44 59 203 

340 19 30 47 54 52 202 

Total 123 151 246 232 248 1000 
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Table 2. Output matrix. 

length (cm) Top diam 
(mm) 430 460 490 520 550 

Total 

160 23 12 52 39 41 167 

200 33 11 61 39 27 171 

240 12 39 30 38 49 168 

280 14 34 33 36 56 173 

340 8 30 42 47 44 171 

Total 90 126 218 199 217 850 

Table 3. Price matrix 1. 

length (cm) Top diam 
(mm) 430 460 490 520 550 

Total 

160 100 103 105 108 109 525 

200 124 128 130 134 135 651 

240 144 148 151 156 157 756 

280 156 161 164 168 170 819 

340 160 165 168 173 174 840 

Total 684 705 718 739 745 3591 

 Next we investigate the fit between these two tables. The apportionment degree of these tables is A = 0.963. 
Since the value of the statistic is very close to 1 the fit between the two matrices is very good. The ordinary 
χ2-test statistic gives the associated p-value 0.176. This comparison also shows that the fit between the target 
and the observed matrices is very good. 

 We may also specify the price of each diameter and length combination of logs. Here we use two price 
tables denoted by P1 and P2. The price matrix 1 is given in the Table 3 and P2 is simply the matrix transpose 
of P1. The scaled price-weighted apportionment degrees are )p(A *

1s  = 0.947 and )p(A *
2s  = 0.982, respectively. 

It is easy to see that also in this case the fit is very good, however a slightly better fit is obtained when the 
price matrix P2 is used. 

 The price-weighted versions )p( *
1

2χ  and )p( *
2

2χ  gave the associated p-values 0.152 and 0.242, respectively. 
This also indicates a slightly better fit attained when using the price matrix P2. 
 
3. A SIMULATION STUDY 
 
 In this section we conduct a simulation study to investigate the performance of the apportionment degree, 
χ2-test statistic and their price-weighted versions to measure the fit between target and output matrices.  
We take the target matrix in the Table 1 as a starting point. Next we randomly deleted 1%, 5%, 10%, 15%, 
20%, 25% 30%  and 40% in turn of the logs in the target table and this experiment is repeated 100 times at 
each percentage point. At each point the values of the apportionment degree, the χ2-statistic and their price-
weighted versions were calculated. For χ2-statistics also the associated p-values were calculated. 
 
 Then mean curves of  A, )p(A *

1s  and )p(A *
2s  are given in Figure 1a and mean curves of the p-values of χ2, 

)p( *
1

2χ  and )p( *
2

2χ  are given in Figure 1b. From Figure 1a we observe that the average performance of the 

Apportionment degree A and its price-weighted versions )p(A *
1s  and )p(A *

2s  are approximately linear as a 
function of randomly generated missing values. The  average decrease is greatest for the Apportionment 
degree A. For price-weighted versions )p(A *

1s  and )p(A *
2s  the decrease is approximatelly the same, but the 

values computed for )p(A *
2s  are at somewhat higher level. It is remarkable that although the percentage of 

generated missing values is relatively high, the Apportionment degree indicates quite good fit. For example, if 
the percentage of generated missing values is as high as 40 % the average value of the Apportionment index 
is approximatelly 0.89 with very narrow range of values (see Figure 2 in the Appendix). Thus even large 
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(a) Mean curves of A, )p(A *

1s  and )p(A *
2s . 

 
(b) Mean curves of p-values of χ2, )p( *

1
2χ  and )p( *

2
2χ  

departures from the target table gave quite high values of the measure. This is not a very good property of a 
statistic, but it may make sense in practical applications where the values of the target table may not be 
possible to attain exactly. However, some kind of rough measure is needed to relate  the target table to the 
observed one. Note that this measure compares only the relative values of the observed and target tables. 
Therefore large departures in the absolute values may not be noticed. 
 

Figure 1. Mean curves of the simulation study. 
 

 Statistically the χ2-statistic and its price-weighted versions performed better. When the percentage of 
missing values is 20 % or more, these statistics clearly reject the null hypothesis of the fit of the observed and 
target tables (Figure 1b). The performance of each of the χ2-statistics follows approximately the similar 
pattern (see also Figure 3 in the Appendix). 
 
 The simulation in this section was carried out by using R computing environment (see e.g.  

http://www.r-project.org/). 
 
4. CONCLUDING REMARKS 
 
 In this paper we study the use of the apportionment degree and the χ2-statistic and their price-weighted 
versions when measuring the fit of the output and target tables. This comparison shows that the apportionment 
degree clearly measures the difference in relative values whereas the χ2-statistic also observes the differences 
in absolute values. The idea of using prices as weights leads us to the use of the theory of index numbers for 
measuring the goodness of the bucking outcome which is a topic for future research. 
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APPENDIX 
 
 
 

 
 

Figure 2. Results of the simulation study for Apportionment degree and its scaled price-weighted versions. 
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Figure 3. Results of the simulation study of ordinary χ2-test statistic and its price-weighted versions. 

 
 


