
 

 

 

268

REVISTA INVESTIGACIÓN OPERACIONAL                         Vol. 26, No. 3, 2005 
 
 

 
 
 
 

IDENTIFYING OUTLYING GROWTH PROFILES  
IN THE GROWTH OF CONIFERS 
Mario Miguel Ojeda1 and Sergio Francisco Juárez2 
Facultad de Estadística e Informática, Universidad Veracruzana, Xalapa, México 
  

ABSTRACT 
Our objective in this paper is the detection of atypical growth profiles, which is illustrated in a growth 
study from 74 families of conifers. Our approach starts by fitting a 2-level linear model where we assign 
the measurements made on time in each family to the first level of the model, and assign the families to 
the second level. In order to identify atypical growth profiles we analyze the (multivariate) residuals in 
the second level of the fitted model. Mahalanobis distances to the origin indicate potential atypical 
growth profiles, however, Hadi´s more sophisticated procedure concludes that there are no outlying 
residuals, thus avoiding the wrong conclusion that observations with high Mahalanobis distances to the 
origin are necessarily outliers.  
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RESUMEN 
Nuestro objetivo en este artículo es la detección de perfiles de crecimiento atípicos en 74 familias de 
coníferas. Nuestro enfoque empieza ajustando un modelo lineal de dos niveles en el cual asignamos 
las mediciones hechas en el tiempo en cada familia al primer nivel del modelo y asignamos las familias 
al segundo nivel. Para identificar los perfiles de crecimiento atípicos, analizamos los residuos 
(multivariados) en el segundo nivel del modelo ajustado. Las distancias de Mahalanobis al origen 
indican potenciales perfiles de crecimiento atípicos. Sin embargo, el procedimiento más sofisticado 
propuesto por  Hadi, concluye que no hay residuos atípicos, evitándose así la conclusión errónea  de 
que distancias de Mahalanobis al origen grandes son necesariamente outliers.  

 
1. INTRODUCTION 
 
 Multilevel linear models permit the analysis of complex nested data structures. Data structures with two 
levels are common in educational studies (students nested within schools), in survey data (two-stage 
samples), and in growth curves analysis (replications nested within individuals). These models take account 
of the fact that growth characteristics of individuals vary around an average trend, and that each 
measurement made in the individual vary around its growth trajectory. This approach permits considering two 
levels of variation simultaneously and also to use characteristics in both levels in order to explain the 
variation. Frequently, the time can be incorporated even if explanatory measurements in the level 1 are not 
available. One of the main advantages of these models is the possibility of considering explanatory variables 
associated with the second level units or group of units in order to explain the variability between the group 
model parameters. Moreover, the residual effects in the second level units permit to study the group 
distribution and to identify atypical groups. See Goldstein (1995) and Singer and Willet (2003) for references 
about this topic. 
 
 The rest of this article is organized as follows. In Section 2 we formulate a growth curve model for conifers 
using a 2-level regression model and identify outlying observations at level 1 by analyzing  the residuals in the 
second level of the model. In Section 3 we fit the model to the data and concentrate our attention to the 
identification of outlying growth profiles. This leads us to the exploration and detection of outlier residuals in 
the second level of the model. It should be mentioned that outlier detection in multilevel model has been 
studied, but several problems still remain open (Langford and Lewis, 1998). The 2-level residuals are 
multivariate, thus we use the approach proposed by Gnanadesikan and Kettenring (1972) for the detection of 
multivariate outliers. Their approach consists of considering the residuals as an unstructured multivariate data 
set and use techniques for detection of multiple multivariate outliers. In particular, we employ the procedure 
proposed by Hadi (1992, 1994). We make a few remarks in Section 4.  
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2. THE MODEL AND RESIDUALS 
 
 We consider the following 2-level linear model: In the level 1 for each unit i we have                                                       
 
                                                            ,n,,1i   ,eΧY iiii K=+β=                                                        (1)  
 
where Yi is an mi vector of responses, Xi is an mi  × p matrix of observable non-random predictors at level 1, βi 
is a p vector of unknown level 1 coefficients and ei is the error vector normally distributed with E(ei) = 0 and 
var(ei) = 

im
2Iσ , where σ2  is an unknown parameter and 

imΙ  is the identity matrix of order mi. In the level 2 for 

each βi we have 
 
               βI = Wiγ + ui                                                                        (2) 
 
where Wi is a  p  × k matrix of  observable non-random level-2 predictors, γ is a vector of unknown fixed 
parameters, and uI is a vector of unknown normally distributed random errors with E(ui = 0) and var(ui) = Ω. 
Combining equations (1) and (2), we obtain the linear mixed model 
 

Yi = XiWiγ + Xiui + ei, 
 
with Yi ~ )σΩXX γ,WN(X

im
2

iiii Ι+ . Finally, we assume that the random elements from different units are 

uncorrelated, and therefore independent, that is cov(ui, uj) = 0, cov(ei, ej) = 0 and cov(ui, ej) = 0 for i ≠ j. 
 
 For detailed presentations of the statistical inference procedures for this model see Bryk and Raudenbush 
(1992), Goldstein (1995), and Searle et al. (1992). Some of the computer programs that implement  
these procedures are BMDP-5, GENMOD, HLM, ML3, and VARCL; for a review of these programs see  
Kreft et al. (1994). 
 
 To identify outlying units at level 1 we have to analyze the residuals in the second level. In  order to do this, 
recall that we have assumed that 2-level errors follow a multivariate normal distribution, so we can consider 
the residuals in level 2 as a multivariate set of data, and therefore, we need procedures to identify outliers in 
multivariate residuals. This is not an easy problem, and no straightforward approach exists to solve it. 
Informal techniques for the detection of multivariate outliers are reviewed and proposed by Gnanadesikan 
and Kettenring (1972). In fact, we will follow their idea of considering the residuals as an unstructured 
multivariate sample, and then, based on such a point of view, employ multivariate techniques to explore the 
residuals. Let us denote as Û  the matrix n×p whose rows are the residual vectors .ûi  This multivariate 
residual matrix will be our unstructured multivariate sample. One of the Gnanadesikan and Kettering (1972) 
suggestions is the use of distance measures in the class of quadratic forms 
 

)u(u)Su(u i
b

i −− , 
 
where u  and S are the mean vector and the covariance matrix of Û , respectively. Note that, for the 
residuals, 0u =  and 11 )ÛÛ(nS −−= . For b = 0, we obtain the Euclidean distance i

1/2
ii u)u(u = , and for  

b = -1 we have the Mahalanobis distance 2/1
i

1
i )uS(u − . These distances can be visualized in several forms, for 

example, a plot of the residuals projected onto their principal axis, a GH-biplot of the residuals, or an index 
plot of these distances, can be done. However, as Hadi (1992) points out, the Mahalanobis distance is not a 
robust measure due to fact that it depends on the mean vector and the covariance matrix, which are not 
robust. This causes two problems: “outliers do not necessarily have large values for Mahalanobis distance”, 
and “not all observations with large values of Mahalanobis distances are necessarily outliers”. These 
problems are known as masking and swamping, respectively. On the other hand, the classical methods for 
multivariate outlier detection (Barnett and Lewis, 1994, part III) are powerful when the data contains only one 
outlier observation, but, when several outliers are present, these methods do not work well anymore. This 
occurs because these methods loose power due to the problems of masking and swamping. Motivated for 
these problems, Hadi (1992) proposes a procedure for the detection of multiple outliers in multivariate data 
which avoids the problems of masking and swamping. Hadi (1994) presents a modification of the procedure 
in Hadi (1992), which is the one we use in this work. 
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 For reasons of space we do not present the details of Hadi´s procedure but refer the interested reader to  
Hadi (1992) and Hadi (1994). A simple sketch of Hadi’s procedure is the following: using robust estimates of 
the mean vector and covariance matrix, the entire data set is divided in two subsets, called “basic subset” and 
“non-basic subset”. The basic subset contains the observations considered as “good”. Then, the basic subset 
is incremented adequately with the observations on the non-basic subset. The augmentation of the basic 
subset is done until some well defined stop criterion is satisfied. Finally, the observations in the final non basic 
subset are declared outliers.  
 
3. THE APPLICATION TO GROWTH IN CONIFERS 
 
 The data set that we analyze consists of growth (height in centimeters) in 74 families of conifers with  
10 replications (1 replication = 1 plant) in each family, and under greenhouse conditions. The observations 
were made weekly during seven weeks for some families and eight weeks for other families (between plants 
from the same family). Therefore, we decided to study the variability between the families using the (average) 
profile of growth for each family. To model each profile growth curve we identified, after and exploratory 
analysis, the Hoerl’s function (Daniel and Wood, 1980; p. 22-23) as the best choice. Thus, for the first level 
we postulate the following model for each average profile growth curve: 
 

,m,1j ,74,,1i   ,etβtlnββ)y(ln iijiji2iji1i0ij KK ==+++=  
 
where yij is the average height of the family i at the week j and tij = j. For the second level we consider the 
model: 
 

β0i = γ00 + γ01wi + u0i 

 

β1i = γ10 + γ11wi + u1i 

 

β2i = γ20 + γ21wi + u2i 
 
where wi = 100(yi2 - yi1)/yi1 is an early growth ratio percentage. Combining equations (3) and (4) we obtain 
 

.eututlnutwt tlnw tln w)yln( iji2iji1ij01iji21ij20iji11ij10i0100ij ++++γ+γ+γ+γ+γ+γ=  
 
 For the random quantities we assume 
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and 0)e,u(cov)e,u(cov)e,u(cov iji2iji1iji0 === for i,j = 1,…,74. The s'βki  (k = 01,2), are the parameters, 
associated with the terms of the Hoerl’s function, of the log-growth trajectory of family i. Using ML3  
(see http://multilevel.ioe.ac.uk/index.html for information about ML3) we obtained the estimations in Table 1.  

 
Table 1. Estimated parameters and their standard errors in parenthesis. 

 

00γ̂  0.53 (0.0498) 

10γ̂  - 0.694 (0.0451) 

20γ̂  0.42 (0.0213) 

01γ̂  0.0056 (0.032) 

11γ̂  0.0112 (0.00289) 

21γ̂  - 0.000318 (0.00123) 
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 The estimated Variance-Covariance components are 2σ̂ = 0.000406 and 
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)000737.0( 00279.0)00156.0( 0037.0)00141.0( 00527.0

)00386.0( 00201.0)00305.0( 0121.0

)00439.0( 0232.0
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 We also obtained the second level residual ,)û,û,û(û i2i1i0i =  (i = 1,…,74) which we arranged in a 74×3 
multivariate residual matrix. Figure 1 shows the principal components scatter-plot of the residuals. With  
this plot, we can say that those points lying outside the confidence ellipse are potential outliers. Figure 2 is  
the index plot of the Mahalanobis distances .)ûSû( 2/1

i
1

i
−  At the 0.05 significance level, the critical value  

is 2/12
975.0,3 )(χ = 3.06. So the Mahalanobis distance identifies some observations as potential outliers. However, 

a more elaborated analysis using the method of Hadi concludes that there are no outlier residuals (Hadi’s 
procedure is implemented in STATA, STATA Reference Manual, vol. two, p. 432-437. We have to remark that 
STATA is the only software that implements Hadi’s procedure). This fact indicates the likely existence of 
swamping in the residual matrix, in other words, the presence of non outlying residuals with high Mahalanobis 
distances to the origin. 
 

 

 
Figure 1. First two principal components scatter-plot with a 95% confidence ellipse of the level 2 residual matrix 

obtained from the fit model. The proportion of explained variance is 0.97.  
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Figure 2. Index plot of the Mahalanobis distances for the level 2 residuals of the fit model. 
 
4. CONCLUSION 
 
 Multilevel linear models permit to approach very realistically the modeling process in several repeated 
measures situations. In growth curve analysis the type of models are for concrete applications (see Hand and 
Crowder, 1996; Vonesh, and Chinchilli, 1997), but the data analysis process in this context requires diagnostic 
tools for evaluating the atypical individuals, which could be a difficult problem (Shi and Ojeda, 2004). Exploratory 
and descriptive analysis of residuals in a 2-level regression model fit help in a preliminary identification of 
candidate outliers, but a formal testing of real outlying effect is necessary. Hadi´s test is a powerful technique for 
the identification of real multiple multivariate outliers, as we illustrated in the application.  
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