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ABSTRACT 
Traditionally we have used the simple random sampling to select samples. Most of the models of the 
statistic are supported by the use of samples selected by means of this design. During the last decade  
it has been begun to be used an alternative design that shows an improvement, in some cases, with 
respect to the sampling error and the accuracy. It is called Ranked Set Sampling. A random selection is 
made with the replacement of samples, which are ordered (ranked). Each order statistic is observed 
once. This process can be repeated or not. In this paper a review of the most significant results in this 
theme is made and some open problems related with this sampling design that should be studied are 
settled down.  
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RESUMEN 
Tradicionalmente hemos utilizado el muestreo simple aleatorio para seleccionar muestras. La mayor 
parte de los modelos de la estadística se soportan por el uso de muestras seleccionadas mediante este 
diseño. En la última década se ha comenzado a utilizar un diseño alternativo que muestra una mejoría 
en algunos casos respecto al error de muestreo y a las precisiones. Este es llamado Muestreo de 
Conjuntos Ordenados (Ranked Set Sampling). En este se hace una selección aleatoria con reemplazo 
de muestras las que son ordenadas (rankeadas). Cada estadígrafo de rango es observado una vez. 
Este proceso puede ser repetido o no. En este trabajo se hace una revisión de los resultados más 
significativos en este tema y se establecen algunos problemas en los que se abre un campo de 
investigación utilizando este diseño muestral. 

1.  INTRODUCTION 
 
 Ranked set sampling (rss) was first proposed by McIntire (1952). He used this model for estimating the 
mean of pasture yields. This design appeared as a useful technique for improving the accuracy of the 
estimation of means. This fact was affirmed by McIntire but a mathematical prove of it was settled by 
Takahashi-Wakimoto (1968). In many situations the statistician deals with the need of combining some 
control and the implementation of some flexibility with the use of a random based sample. This is a common 
problem in the study of environmental and medical studies. In these cases the researcher generally has 
abundant and accurate information on the population units. It is related with the variable of interest Y and to 
rank the units using this information is cheap. The rss procedure is based on the selection of m independent 
samples, not necessarily of the same size, by using simple random sampling (srs). The sampled units are 
ranked and the selection of the units evaluated takes into account the order of them in the combined m 
samples. The proposal of McIntire (1952) was to use a prediction of Y. After some experiences with its 
application the lack of a coherent statistical theory appeared as an interesting theme of study to theoretical 
statisticians. An important role was played by Halls-Dell (1966) who established that rss was more efficient 
than srs for estimating the population mean from a large study of sampling forage yields. The interest for rss 
in applications is reflected not only in the initial papers but in the orientation of a series of papers to practice. 
See for example Chen (1999), Demir-Singh (2000), Kour et al. (1997) and Hall-Dell (1996) for examples.  
The interest in the development of a new statistical theory  using rss can be illustrated by the contributions of 
Atalia (2000), Abu-Dayyeh and Muttlak (1996), Al-Saleh and Al-Khadari (1996), Barabasi and El-Shamawi 
(2001), Bouza (2002b), Chen (2001 a , 2001b), Kour et al. (2002), Kim-Barry (2000) Yu-Lam (1997).  
 
 The volume 12 of Handbook of Statistics dedicated a section to rss, see Patil et al. (1994). It reviewed the 
main results and provided an account of the contemporaneous main results. In that moment was established 
that to use an auxiliary variable for ranking allowed using rss. The efficiency of the rss estimator of the mean 
was not affected by the existence of errors in the ranking. A huge amount of papers is dedicated to the study 
of rss as an alternative to the use of srs. Different papers present a discussion of the State of the Art in rss. 
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Some of them are Bohn (1996) and Muttlak and Al-Saleh (2000). This paper has a similar aim and is based on 
the lecture given  at the Applied Statistical Unit of  the Indian Statistical Institute-Kolkata during a visit in 2002. 
We review some key results in estimation based on rss specially when the population is finite. Some areas  
open to research are pointed out using the trends of the recent contributions. The first section provides the  
basic ideas and procedures of the 'rss thinking' and the implementation of different selection algorithms is 
presented. The estimation theory is presented using a Horvitz-Thompson approach, see Hedayat-Sinha (1992),  
Cochran (1977), because the srs is a particular case of the corresponding estimator. Section 3 provides some 
variations to the most popular rss sampling designs and the following section plays a similar role by 
discussing the use of alternative estimators. Their efficiency with respect to the srs and the basic rss 
estimator of the mean is studied. The next section analyzes how rss is being used in classic statistical 
procedures. The study of parametric problems (behavior under distributions, Maximum Likelihood Estimation 
rss procedures, etc) and the robust and non-parametric approach (estimation of a distribution function, Sign 
Test, Mann-Whitney-Wilcoxon Tests, etc). is developed in the sequel. To follow the ideas and proofs involved 
in rss a knowledge of non parametric statistics and sampling is needed at a level which is covered by 
advanced text books as Arnold et al. (1992) and Hedayat-Sinha (1992). 

2. THE BASICS OF RSS 

2.1. The basic ideas 
 
 We consider a population and a variable of interest Y. A sampling design d(s) is used for selecting a 
sample s. The inclusion probabilities πi = Prob (ui ∈ s) and πij = Prob (ui ∧ uj ∈ s) are perfectly calculable. 
Once s is selected we evaluate Y on the sampled units and y1,...,yn are obtained. A well-known estimator of 
the population mean µ is 
 

µHT = ∑
∈

π
Si

ii N/Y  

 
if simple random sampling (srs) is used πi = n/N and µHT is the sample mean µs. Note that if we rank the 
observation and define the order statistics (os) Y(i), i = 1,..,n we have that  
 

µs = ∑
=

n

1i
)i( n/Y = µ(s) 

 
 Hence  
 

E(µ(s) ) = ∑
=

n

1i
)i( n/)Y(E  = ∑

=

µ
n

1i
)i( n/)  = µ 

  
 If srs with replacement (srswr) is used the usual estimator of the population mean based on the observations is: 
 

µs = ∑
=

n

1i
)i( n/Y  

 
has variance 
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 Note that the ranks do not intervene in the selection of the sample. We can define a map g(ui) such that it 
assigns to each sampled unit ui a rank and only one. Each sampled unit may be ranked using g without 
measuring Y using some judgements. Say that the rank represents certain judgment on the value of Y. For 
example if we plan to study the stature of children we are able to rank them visually before selecting the 
sample. Similarly occurs when we use satellite information on the biomass for ecological studies. The first 
arising question is whether this ranking affects the behavior of a statistical procedure based in it. The first 
results in this theme considered that the rank was perfect, see McIntire (1952), Takahasi-Wakimoto (1968). 
Dell-Clutter (1972) studied this problem considering a cumulative distribution function (cdf) P(y) in each sample 
unit were measured Yi  and Rank [Y(i)]. Taking Y(i) = i-th judgment rank of the order statistics and f(i)(y) as its 
probability density function (pdf) we have that, as g is a one-to-one map 
 

P(y) = ∑
=

n

1i
)i( n/)y(f  

 
and 

E[Y(i)] = ∑
=

n

1t
)y(t n/)y(fY  = µ(i) 

 
 Hence when we deal with µ(s) the unbiasedness property is maintained though judgements and not the 
values of Y makes the ranking. Therefore 
 

∑
=

µ−µ
n

1i
)i( )( = ∑

=

=∆
n

1i
)i( 0  

 
 The differences between the expected mean of the os’s and the population mean play and important role in 
rss because 2

)i(σ  = 2
)i(

2 ∆−σ . Then 
 

V[µ(s)] =∑
=

σ
n

1t

22
)i( n/ = V[µ(s)] -∑

=

∆
n

1t

22
)i( n/  

             
 Note that as: 
 

⏐∆(i)⏐/σ ≤ [β(2i - 1, 2n - 2i + 1) - (β(i, n – i + 1))2]½ / (β(i, n – i + 1)) 
 
see Hartley-Davies (1954) 
 

σ2 ≥ ∆(i)
2 (β(2i - 1, 2n - 2i + 1))2 / [β(2i - 1, 2n - 2i + 1) - (β(i, n – i + 1))2]. 

 
 An extreme case is that in which none of the ranks assigned by judgement coincide with the true ones. The 
orders are considered as assigned by a random mechanism. Then ∆(i) = 0 for any i = 1,…,n and the rss 
design is equivalent to the srs design. Patil et al. (1997a) discussed the notion of coherent sampling. Taking 
into account that we are sampling a set of units and that any sample s is a subset of the population U; we can 
establish the following definition. 
 
Definition 2.1. Define a protocol (a one-to-one map) g, which orders the units in a finite population  
U(g(ui) = rank(ui)) and induces an ordering on each s ⊂ U. It is called coherent if for any s and U the ranking 
induced on s is the same that the application of it directly in s[g(ui|U) <  g(uj|U) ⇒ g(ui|s)< g(uj|s), ∀s ⊂ U,∀i ≠ j]. 
 
 We consider the use of coherent ordering protocols. It allows using a global ranking of the units for ordering 
the observed sample without inconsistencies. Hence census information permits to establish an ordering in the 
sampled units. As pointed out by Patil et al. (1997 a) if we have a coherent rss design we are implementing an 
imperfect stratification. The knowledge of the true ranks of all the population units allows using them for 
stratifying. Some kind of optimal stratification can be implemented and it will provide more accurate estimates 
than rss. Therefore g permits to stratify in ‘small sets’ where each member have very similar values of Y. 
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2.2. Some different ranking procedures and models  
 
 As quoted before we may rank using judgements. |It can be characterized by an auxiliary variable X related 
with Y. David-Levine (1972) quoted this problem. Dell-Clutter (1972) analyzed the case in which the ranking is 
made with errors and established that the usual estimates from the computed os’s maintain the unbiasedness 
property. Stokes (1977) used this result by considering that X is known for any unit and is used for ranking. 
An apparent source of errors in rss is the use of X for ranking. A practical methodology is to consider that we 
select s and the sequence X(1),..,X(n) is obtained.  
 
 Take the location model 
 

Y(i) = X(i) + ei ,  i = 1,...,n. 
 
and consider that the random errors have null expectation [E(ei) = 0, i = 1,...,n]. A common assumption is that 
they are independently normal variables with variance 2

iσ . It is clear that the rss estimator is still unbiased. 
Another model is to consider that the regression 
  

Yi = a + bXi + ei ,  i = 1,...,n. 
 
characterizes the relationship between two equally distributed variables X and Y. The correct os is Y(i) but  the 
regression allows to fix that 
 

E[Y(i)|X(i)] = µY + ρσY[X(I )- µX] / σX ],    i = 1,...,n. 
 
and 
 

[E[Y(i)|X(i)] - µY] / σY = ρ[X(i) - µX] /σX],   i = 1,...,n. 
 
 Then if X and Y are positively correlated the os determined by X and by Y will be the same. 
If there is some clustering non-random selections should be made. Ribout-Cobby (1987) studied this problem. 
Assume that the effect of clustering is modeled by 
 

Y(i)k = Uk + V(i)k. 
 
 Where the two variables describing Y(i)k  are independent and identifies the cluster to which i belongs. A 
simple hypothesis is that the cluster has a null effect: 
 

E[Uk] = 0 
 
 But 
 

V[Uk] = 2
Uσ  

 
 The unit i of cluster k is expected to be identified by 
 

E[Y(i)k] = E[V(i)k] = µY, i = 1,...,n. 
 
and 
 

V[Y(i)k] = V[Uk] + V[V(i)k] = 2
Uσ + ,2

)i(σ i = 1,...,n. 
 
 When the cluster has a constant effect: 
 

n/Y
n

1i
k)i(∑

=

 = µU + µV[k]. 

 
 As a result to select purposively a member of the cluster do not affect the rss procedure because  
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 Then there is an increase in the variance due to the existence of clustering. Taking 2

)(.σ  = σ2 + 2
Uσ  we can 

evaluate the gain in accuracy with respect to srswr. 
 
 Muttlak-McDonald (1990) proposed to select a sample of size n* and to subsample. The assumptions used 
were that X and Y are non-negative with  joint density f(x,y) and a weight function w(x,y) = x with 
 

E[Y|X] = µY + ρσY (X - µX)/σX 
 

V[Y|X] = (1 - ρ2) 2
Yσ  

 
 The sampling design assigns a probability πi = Xi/M to each unit. The Horvitz-Thompson estimator of the 
population mean  using the first phase sample is 
  

∑
=

π
*n

1i
ii /Y = *

HTµ  

 
 If the use of double sampling with srs in the second phase is implemented an unbiased estimator of the 
population mean is: 
 

*
srs)HT(µ  = Mn* nX/Y

n

1i
ii∑

=

 

 
 If rss sub-sampling is made they proposed the unbiased estimator 
 

*
rss)HT(µ  = Mn* nX/Y

n

1i
ii∑

=

 

 
which is more efficient than its srs counterpart. 

2.3. The basic rss strategies 
 
 The theoretical frame that permits to use the rss model is based on the hypothesis 
 

1. We wish to enumerate the variable of interest Y. 

2. The units can be ordered linearly without ties. 

3. Any sample s ⊂ U of size m can be enumerated. 

4. To identify a unit, order the units in s and enumerate them is less costly than to evaluate {Yi, i ∈ s}  
or to order U. 

 
 The first hypothesis is common to the general sampling problem, the second fixes that the rank can be 
made without confusions and that any rank is assigned to only one of the sampled units. The third assumption 
is also common in the applications. The fourth has an economical and a statistical motivation: only if it is 
cheap to rank rss is a good alternative with respect to rank all the units of U and to stratify, which is more 
accurate. Some definitions are needed. 
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Definition 2.2. A statistical sampling unit (ssu) is  a set s with m units of U. 
 
 Usually m ssu’s are selected independently  
 
 The basic rss procedure is the following: 
 

Procedure RSS1 
 
While t < m do 
  Select a ssu independently from U using  srswr.  
          Each unit in s(t) is ranked and the os’s Y(1:t) ,...., Y(r(t):t) are determined. 
END 
 
 Then the procedure generates  the matrix 
 

Y(1:1) Y(2:1) •  •  • Y(t:1) •  •  • Y(m:1) 

Y(1:2) Y(2:2) •  •  • Y(t:2) •  •  • Y(m:2) 

• 

• 

• 

• 

• 

• 

•  •  • 

•  •  • 

•  •  • 

• 

• 

• 

•  •  • 

•  •  • 

•  •  • 

• 

• 

• 

Y(1:t) Y(2:t) •  •  • Y(t:t) •  •  • Y(m:t) 

• 

• 

• 

• 

• 

• 

•  •  • 

•  •  • 

•  •  • 

• 

• 

• 

•  •  • 

•  •  • 

•  •  • 

• 

• 

• 

Y(1:m) Y(2: m) •  •  • Y(t: m) •  •  • Y(m:m) 
 
 The ranked set sample is composed by the elements in the diagonal s(j) = {Y(i:i), i = 1,..,m}. 
 
 Once the sample size n is fixed and if the i-th os is observed r(i) times, then: 
 

∑
=

m

1j

)i(r = n 

 
 A particular case is r = r(i), for any i = 1,...,m, and then  mr = n. 
 
Definition 2.3. The set of m samples s* = {s(1),...,s(m)} generated by the procedure: 
 

Procedure RSS for a ranked set sample of size n generation 
 
While j < m do 
  Procedure RSS1  
End is a rss sample 
 
 Denote by Y(i:i)j the observation j of the i-th os of the rss s*. We can compute 

∑
=

m

1j
j)i:i( )j,i(zY = t(i) 

where: 

z(i,j) = 
⎪
⎩

⎪
⎨

⎧ −

otherwise0

measuredis)j(sofosthitheif1
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 A rss estimator based in s* is: 
 

µrss = ∑
=

m

1j

)i(mr/)i(t  

 
 Note that µrss = µ(s) if m = 1 because we observe only a rss of size r = n.  
 
Definition 2.4. When r(i) = r the rss design is denominated balanced and unbalanced otherwise. 
 
 For balanced rss designs we have that each s(j) is a srswr of size r and 
 

µrss[r] =∑∑
= =

m

1j

r

1i
i)j:(i  /n.Y  

 
 Noting that for any j E[Y(i:i)j] = µ(i) 
 

E[µrss[r]] = m//r
m

1j

r

1i
(i)∑ ∑

= = ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
µ  = µ 

  
 The samples s(j) are independent , hence the variance of this unbiased estimator is: 
 

V[µrss[r]] = ∑
=

σ
m

1i

22
)i( mr/ = σ2/n - ∑

=

∆
m

1i

2
)i( nr/  

 
 In the unbalanced design we have that 
 

V[µrss] = )i(rm/ 2
m

1i

2
)i(∑

=

σ  

 
 Measures of the accuracy of the estimators are defined as follows: 
 
Definition 2.5. The relative precision of µrss with respect to  µs is: 
 

RP[µs, µrss] = V[µs ]/V[µrss] 
 
 And the relative saving due to rss is measured by  
 

RS[µs, µrss] = 1 - 1/RP 
 
 In the balanced case RP∈ [1, (m + 1)/2] and in the unbalanced RP ∈ [1,m]. The later depends on the 
allocation of the sample. Patil et al. (1997b) established that if we deal with a skew distribution or if an 
adequate stratification may be implemented the unbalanced design may not be so efficient. RS may be used 
with the purpose of evaluating the relative gain in accuracy due to the use of rss.  
 
 Kour et al. (1997) studied the allocation problem. When Neymann’s allocation principle is used for 
determining r(i)’s and n is fixed the optimal sample sizes are given by: 
 

r*(i) = ∑
=

σσ
m

1i

2
)i(

2
)i( /n  

 
 Another approach is based on the knowledge of the existence of a large tail pdf. In the case of a heavy  
right tail, a skewed distribution we have that the os’s variance are ordered and 2

)1(σ  ≤ 2
)2(σ  ≤••≤ 2

)m(σ . The 
statistician fixes a constant θ > 1 and  
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r* ≡ r(i) = r(m) / θ,  i =1,...,m - 1. 
 
 Then 
 

V[µrss|θ] = m-2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
θσ+σ∑

−

=

*r/(*)r/( 2
)m(

1m

1i

2
)i(  

 
 Hence using a larger number of replicas seriously reduces the summand with larger variance of the os. 
Usually srswr is used for selecting the samples independently but srs without replacement may used (srswor). 
This is more important when we study a finite population because a correction should be introduced for 
computing the sampling error. The problem is certainly very complicated when compared with the usual one. 
Patil et al. (1995) derived the expression of the corresponding variance. A gain in precision due to rss now 
depends heavily on the replication factor. The theoretical problems associated with the use of os in finite 
population sampling using rss are the kernel of the behavior of the wor procedure. Lehman (1966) 
established some properties of the random variables generated by an univariate distribution and their os’s. 
One of them is that any pair of os’s has a joint pdf, which is positively likelihood ratio dependent. Then, if we 
sample a finite population of os’s using srswor this property holds. Takasi-Fututsya (1998) used these results 
for deriving a method for computing the finite population correction factor 
 
 The existence of non responses was studied by Bouza (2002a). The existence of non responses (nr) 
establishes, see Cochran (1977) that the population is divided into two strata 
 
U1 = {u ∈ U|u responds at the first attempt} 
 
U2 = {u ∈ U|u does not respond at the first attempt} 
 
 Hence each sample si is divided into two subsamples si = si1 + si2 , |si| = m, where sit ⊂ Ut and for t = 1,2   
|sit| = m(i,t).  
 
 Two subsample strategies were considered: 
 
1. Select a subsample 2is′  of size m(i,2) from each si2 , i = 1,..,r. 
 
2. Select a subsample )j(2s′ of size r(i,2)  from each si2 , j = 1,..,r.m 
 
 The estimator proposed when the sample is selected using the strategy 1 is: 
 

µrss(nr) = ∑
=

r

1k

r/)i(M  

 
where 
 

M(i) = w(i,2)
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′∑

=

)2,i(m

1u

)2,i(m/)u,i(Y  + w(i,1)
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑
=

m

1u

)1,i(m/)u,i(*Y  

 
 Defining w(i,t) = m(i,t)/m, Y´(i,u) as the value of Y in the u-th unit of 2is′  and Y*(i,u) = yu(u) if the unit with rank 
u in the u-ranked set responds and zero otherwise. The expected variance 
 

EV[µrss(nr)] = V + G 
 
 With  
 

V = [σ2 + W2(K - 1) 2
2σ ]/n 

 
G = ∆1 -∆2 
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∆1 = ∑
=

µµ
m

1j

2
)j( /m) - (  

 

∆2 = ∑ ∑
= = ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
µµ

r

1i

)2,i(m

1j

2
)j( /n) - (E  

 
 K is the sub-sample parameter of Hansen-Hurwitz rule. A gain in accuracy is present when compared with 
the srs alternative. 
 
 The second alternative seemed to be inefficient due to that to subsample the non respondent order 
statistics creates a dependence that increases the variance.  
 
 A Monte Carlo experiment was performed and RP[µs(nr), µrss(nr)] ∈ [0,69 0,93] while for the second strategy. 
The RP was always larger than one. 
 
3. SOME VARIATIONS IN THE SELECTION PROCEDURES 
 
 Some authors have changed the basic scheme seriously and other criteria are proposed for selecting the 
os. An improvement to the original rss design was developed by Li et al. (1999). They suggested selecting n 
independent samples of size n and ordering the observations within each sample. A sample of size n* < n is 
selected independently among the n ordered samples. For the j-th selected sample [s*(j)] the j-th os is 
measured. The new estimator of the population mean is: 
 

µrss[n*] = ∑
=

*n

1j
j)j:(j  */nY  

 
 It is unbiased and its sampling error is: 
 

V[µrss[n*]] = */mn
r

1i

2
(i)∑

=

σ + [n – n*] )1n(*/nn
m

1i

2
(i) −∆∑

=

 

 
 The new strategy is more efficient than the usual one if n* > n2/(2n - 1). The estimation of the variance was 
also studied as an alternative for estimating σ2. Their proposal  
  

2
rss(n*)σ = [n - 1]

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
µ−∑

=

2
*)n(rss

*n

1j

2
j):(j )Y( / (n* -1) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∑

=

n

1i
n):(i n/vn  

 
where v(i:n) is the variance of the i-th os of the standard normal distribution. 
 
 This estimator of the variance appears as a good alternative in the experiments developed under some 
friendly distributions. 
 
 The use of unequal probability in rss can be traced in the paper of Yanagawa-Shirahata (1976). The pdf of 
the variable F is sampled randomly and the mn observations are ranked. A matrix Kof mn elements is 
determined and a probability pij is assigned to each element of it. Then we have the matrix of selective 
probabilities 
 

P = [pij]m×n, pij ∈ [0,1] 
 
 For any i = 1,...,n 
 

∑
=

m

1j
ijp = 1 
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 The selection procedure works as follows. 
 
 Unequal selection procedure 
  
 Select an element u(i,ji) from the i-th row using (pi1 ,....,pim) 
 
 Measure Y in the selected unit 
 
 Compute 
 

µPrss = ∑
=

n

1i
i )/njY[u(i,  

 
 The unbiasedness of this estimator holds if and only if 
 

∑
=

n

1i
ijp = n/m, for any j = 1,..,m. 

 
 Again in precision is due to the use of rss under certain distributions. Muttlak (1997) proposed to select the 
median of s(j) in each ssu. The pdf of Y has finite µ and σ and we observe {Y(1:1),...,Y(1:n), Y(2:1),...,Y(n:n)}. They 
considered only the case n = m, (r = 1). If n is odd the os’s measured are  
 

{ *
)j:i(Y = Y([n+1]/2:j), j = 1,...,n} 

 
 If n is even is used  
 

*
)j:i(Y  = 

⎪
⎩

⎪
⎨

⎧ ≤

+ otherwiseY

measuredis2/njtheifY

)j:1n5,0(

)j:n5,0(

 

 
 The estimator is: 
 

µrss[med] =∑
=

n

1j

*
)j:j( n/Y  

 
 It is unbiased if the pdf is symmetric with respect to µ and V[µrss[med]] ≤ V[µrss] ≤ V[µs]. The RP of this estimator 
is increased n. For not symmetric pdf’s the estimator is still more precise then than µs but it is biased. The RP 
decreases if n ≥ 6. The errors in the ranking do not affect seriously these results. Hence the use of median rss 
provides a gain in accuracy. This estimator can be used as a good alternative for estimating the population size. 
 
 Another procedure is to use the extreme os’ of the samples. That is, in each ssu we measure Y(1:j) and Y(n:j). 
Take n even and  
 

Y(j,e) = [Y(1:j)  +Y(n:j)]/2 
 
 The estimator proposed by Samawi et al. (1996) is: 
 

µrss[e] = ∑
=

n

1j
)e,j( n/Y  

 
as  
 

E[µrss[e]] = [µ(1) + µ(n)]/2 
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and 
 

V[µrss[e] ] = [ 2
)n(

2
)1( σ+σ ]/2n 

 
 For n odd we introduce the variable 
 

Y(i:j)e = 
⎪
⎩

⎪
⎨

⎧

=]+[
<
<

njif2/YY
evennandnjtheifY
oddnandnjtheifY

)n:n()n:1(

)j:n(

)j:1(

 

 
 They proposed the estimator 
 

*
rss[e]µ = ∑

=

n

1j
e)j:j( n/Y  

 
 Its expectation is equal to the expectation of µrss[e] but 
 

V ][ *
rss[e]µ = [2σ(1,n) + (2n - 1)( )2

)n(
2

)1( σ+σ ]/4n2 

 
 Where σ(1,n) = Cov [Y(1:n), Y(n:n)].  
 
 An alternative estimator analyzed for n odd was: 
 

**
rss[e]µ = 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+ +

−

=
∑ n):1]/2([n

1n

1j
e)j:j( YY / n 

 
which expectation and variance are: 
 

E[ **
rss[e]µ ] = (n + 1) [µ(1) + µ(n) ]/2n + µ([n+1]/2)/n 

 
V[ **

rss[e]µ ] = [(n - 1)( 2
(1)(σ + 2

(n)σ )]/2n2 + 2
1]/2)([n+σ /n2 

 
 If the pdf is symmetric with respect to µ=0 the median is equal to zero. From the results of Arnold et al. 
(1992) we have that: 
 

1. µ(1) = -µ(n) for n even and µ([n+1=/2) = 0 if n is odd. 
 

2. σ2
(1) =σ(n)

2 
 
 Therefore in this particular case: 
 

E[µrss[e] ]= E[ **
rss[e]µ ] = E[ **

rss[e]µ ] = 0 
 
 And 

V[µrss[e] ] = n/2
(1)σ  

 
V[ *

rss[e]µ ] = [(2n - 1) 2
(1)(σ  + σ(1:n))]/2n2 

 
V[ **

rss[e]µ ] = [(n - 1) 2
(1)(σ + 2

1]/2)([n+σ /n2 

 

 When the distribution is a uniform these estimators have a smaller variance than V[µs]. The preference of 
one or another estimator depends of the value of n including the usual µrss. 
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4. PARTICULAR ESTIMATORS 
 
 One of the most popular estimation problems is to estimate the ratio. It has received attention of different 
authors. 
 
 Bouza (2001b) used rss for selecting a sample using a third variable related with X and Y. Calculating  
 

µrss[m]Z = ∑∑
= =

m

1i

r

1t
t)j:j( ,rm/Z  Z = X,Y 

 
the ratio estimator for rss is 
 

µR(rss) = µX[µrss[m]Y/µrss[m]X] 
 
 Its comparison with the srs estimator  
 

µR(srs) = µX[µsrsY/µsrsX] 
 
leads that the variance 
 

V[µR(srs)] = 
⎢
⎢
⎣

⎡
µ−µ+ρ−+ ∑

=

m

1i

2
Y)i(

2/1
X

2/1
YXY )(]VVR2[ V  V + 

⎥
⎥
⎦

⎤
µ−µ∑

=

m

1i

2
XX)i( )( /mr 

 
 Is smaller than the srs estimator’s variance whenever the correlation coefficient between Y and X satisfies 
that: 
 

ρ ≥
⎢
⎢
⎣

⎡
µ−µ∑

=

m

1i

2
Y)i( )( + 

⎥
⎥
⎦
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µ−µ∑

=

m

1i

2
XX)i( )( / 2/1

Y
2/1

X
2/1

X V2/RVmRV2 −][  

 
  Samawi-Muttlak (2001) assumed that the variables are ranked. The auxiliary variable X is ranked without 
error. The observation (X(i:j)t, Y(i:j)t) is the pair of values in the i-th judgement os in the rss sample s(j)at cycle t. 
Their proposal was to use not the pairs in the diagonal but the medians 
                  

*
t)j:i(Z  = 

⎪
⎩

⎪
⎨

⎧

+ +

+

even is m if /2Z  [Z

odd is m if Z

] j)t:2]/2([mj)t:(m/2

j)t:1]/2([m

 

 
Z = X,Y. 

 
 The estimation of the mean is made by averaging the .s´Z*

t)j:i(  
 

µrss[m]Z* = ∑∑
= =

m

1i

r

1t

*
t)j:j( rm/Z . Z = X,Y 

 
  The estimator of the ratio based on these rss median based estimators of the mean is 
 

Rm= µrss[m]Y*/µrss[m]X*. 
 
 Taking 
 

VZ(h) = ,/ 2
z

2
)h(Z µσ  Z = X,Y 

 
C(h)= Cov[X(h) ,Y(Z)]/µXµY 
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 The variance of this estimator is: 
 

V[Rm]= R2[VX([m+1]/2) +VY([m+1]/2) - 2C([m+1]/2)]/n 
 
 If m is odd and for m even 
 

V[Rm] = R2[VX(m/2) + VY(m/2) – 2(C(m/2) + C([m+2]/2)]/n 
 
 The involved variances of the rss estimators are expressed as the difference between a function of the 
population variance of Z and a function of the sum of the .s´2

i∆  V[Rm] = R2[VX([m+1]/2) + VY([m+1]/2) - 2C([m+1]/2)]/n. 
 
 The relative merit of this strategy is that the estimation is fitted in a non parametric sense and we  
need to rank only a part of the sample. Other intents in this line are presented in Patil et al. (1997a, 1998) 
Patil et al. (1993) studied the regression estimator when X is used for ranking. Different alternative strategies 
may be used. The rss alternatives appeared as more accurate than their srs counterparts. Another look to this 
problem is given by Yu-Lam (1997b) and Muttlak (2001). 
 
 Bouza-Prabhu Ajgaonkar (1993) studied the estimation of a difference within the frame proposed by Pi-Ehr 
(1971). The original sampling model considers the selection of  3 independent sub-samples from a srswr 
sample. The parameter to be estimated is D = µY - µX . The sub-samples are 
 

     S(1) = {j ∈ s|Y and X are measured}, |S(1)| = m(1) 

     S(2) = {j ∈ s| only Y is measured}, |S(2)| = m(2) 

     S(3) = {j ∈ s| only X is measured}, |S(3)| = m(3) 
 
 An unbiased estimator of D is 

Dsrs = aµYsrs(1) + (1 - a)µYsrs(2) + bµXsrs(1) + (1 - b)µXsrs(3)) 
 The use of 
 
  a = m(1)[[σY(m(1) + m(3))/m(2)] - ρσX][σY((m(1) + m(2))(m(1) + m(3))/m(2)m(3)) + ρ2]-1 

 

  b = m(1)[[σX(m(1)+m(2))/m(3)] - ρσY][σX((m(1) + m(3))(m(1) + m(2))/m(2)m(3)) + ρ2]-1 

 
grants that it is a Minimum Variance Unbiased Estimator. Taking  
 

V(µZsrs(t)) = )t(m/2
zσ  

and  

V(Dsrs ) = a2V(µYsrs(1)) + b2V(µXsrs(1)) + (1-a2)V(µYsrs(2)) + (1-b)2V(µXsrs(1)) - 2abρ[V(µYsrs(1))V(µXsrs(1))]-½ 

 
 Bouza (2001a) has studied the rss alternative using a third variable for ranking the units. The rss estimators 
were used and  
 

Drss = µYrss(1) - µXrss(1) + (µYrss(2) - µXrss(3)) 
 
 Its variance is 
 

V(Drss) = 2
X

2
Y BA σ+σ  - 2ρ[AB]-1/2σYσX - ∆ 

 
 Where 
 
      A = [m(1) + m(2)]/m(1)m(2) 
 
      B = [m(1) + m(3)]/m(1)m(3) 
 
      ∆ = A∆Y + B∆X 
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 It represents a better alternative than the srs estimator of the difference does. Other alternative were 
propose using ratio and regression criteria but Drss was the more precise estimator in a Monte Carlo 
experiments based analysis under Uniform, Exponential and Normal distributions of the variables. 
 
 The problem of non-responses has been studied in Bouza (2001c) using the usual frame. A srswr is 
selected and the non-response stratum is sub sampled using rss. Two strategies were proposed: 
 
1. Select a sub-sample among the non-respondents units. 
 
2. Select a sub-sample among the missing ranks. 
 
 The first strategy seemed to be the best in various applications. A theoretical analysis was developed by 
Bouza (2002a) and Monte Carlo experiments yielded similar results. 
The problem of the estimation of the difference was  
 
5. CLASSIC STATISTICAL APPROACHES 
 
5.1. Parametric inferences 
 
 Rss is a method of sampling therefore it is not surprising that the performance of estimations based on rss 
samples has been studied using the more important pdf’s. 
 
 The analysis of the Maximum Likelihood Estimation (MLE) when the sample is selected by rss is based on 
the likelihood function of the os’s which is derived from the pdf of the original variable. The Fisher information 
for µ can be deduced and the asymptotic RP is given by: 
 

ARP(θMLrss, θMLsrs) = 
∞→n

lim RP(θMLrss ,θMLsrs) = I(θMLrss )/I(θMLsrs) 

 
 A common hypothesis is that the pdf satisfies some mild regularity conditions. Stokes (1995) derived that 
ARP(µMLrss, µMLsrs ) ≈ 1 + 0,4805(m - 1) 
 
 When the pdf is a N(µ,1) and if it is a N(0, σ2) 
 

ARP(σMLrss, σMLsrs) ≈ 1 + 0,13525(m - 1) 
 
 For an Exponential (σ) it is 
 

ARP(σMLrss, σMLsrs) ≈ 1 + 0,404(m - 1) 
 
 In the case of a two parameter symmetric pdf the MLE derived from a srs design is better than the 
corresponding MLE counterpart obtained for rss. If the pdf is a non-symmetric it is not clear which should be 
preferred. 
 
 Barnett-Mendez Barreto (2001) developed a MLE estimator for the parameter of a Poisson pdf for rss.  
It appears as more efficient than the usual MLE and it is expected that the same property is valid for the usual 
rss estimator. A ML-estimator was also derived using rss values and optimization methods. 
 
 Stokes (1995) analyzed the behavior of the Maximum Likelihood Estimator (MLE) of µ and σ2 of the rss 
estimators versus the classic obtained in the literature for the same family of distributions that depends of 
these parameters: F = {F(x|µ,σ), µ ∈ ℜ and σ2 ∈ ℜ+}. The rss estimator of µ is more efficient but the estimator 
of the variance  
 

2
)95(sσ

 = rm/)Y( 2
rss

r

1t

m

1i
t)i:i( µ−∑∑

= =

 

 
is more efficient than the usual estimators only if rm = n is sufficiently large. A study of this estimator when the 
distribution is a N(µ,1) and N(0,σ) was developed for establishing what e “large m” means. The hypothesis  
m → ∞ is impractical. Previously Stokes (1980) has analyzed a variance estimator in a broader sense.  
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 Chen-Bai (1998) developed another strategy for deriving MLE and Best Linear Unbiased Estimator (BLUE) 
determining optimal unbalanced procedures. Assuming some regularity conditions the MLE estimator tends  
to have a normal distribution with null expectation and asymptotic variance covariance matrix I(θ,p)-1.  
An optimal unbiased rss scheme was developed. It grants strategies which minimizes |I(θ,p)-1| the asymptotic 
variance covariance matrix. The hypothesis used is that n → ∞. They were evaluated using two location-scale 
families: the normal and the extreme value pdf´s. They used also an unbalanced rss design for obtaining a 
BLUE with a larger RP for estimating parameters of the pdf´s belonging to location-scale families. 
 
 Bhoj (1997) developed an interesting rss protocol. The surveyor selects m samples of size and n = 2m and 
evaluates two os´s, say Y(i:j)  and Y(k:j) in the samples. Then the mean and variance are estimated unbiasedly 
by 
 

µrss(B) = ∑
=

+
m

1j
j):(kj):(i ]/nY [Y  

 
2

)B(rssσ = ∑j=1
m[Y(i:j) - Y(k:j)]2 (n + 1)/n[n(n - 1)]½ 

 
 Particular expressions are derived for the Rectangular and the Logistic pdf’s. A sequel is the paper of  
Bhoj (1999). 
 
5.2. Non Parametric and Robust Inference 
 
 The importance of rss has generated the study of the design effect in non parametric inference. Though it is 
not the objective of this paper to review of the contributions in this area. It is interesting to quote some lines 
that are being defined. The evident connections of rss and non parametric methods has stimulated the 
evaluation of new models.  
 
 Goodness of fit for testing normality has been studied by Shen( 1994). The derived tests appeared as 
better alternatives to the traditional ones. 
 
 One of them is the use of well known tests . The hypothesis are not much stronger than the usual in non 
parametric theory based on srs:  the distribution must be continuous, symmetric and unimodal. 
 
 Oztürk-Wolfe (2000) proposed a rss protocol which maximizes Pitman’s Asymptotic Relative Efficiency 
(ARE). The search for a non parametric MLE of the distribution was developed by Kvan-Samaniego (1994). 
The statistic can not be expressed in a closed form and algorithms should be used for obtaining approximate 
values are needed. The existence and unicity of the estimator was derived under the balanced and 
unbalanced rss.  
 
 Stokes-Sager (1988) estimated the empirical pdf using rss and a Kolmogorov-Smirnov type test was 
developed for establishing the parent pdf of the data. The estimation based on rss is more precise than the 
use of the srs estimator. Another result is the convergence in distribution of it to a standard normal random 
variable when n is sufficiently large. The rss estimator of the distribution function, Stokes –Sager (1988) is 
more efficient than the empirical distribution. 
 
 Bohn-Wolfe (1992) developed a 2-sample Mann-Whitney-Wilcoxon test for  rss sampling and its ARE was 
determined. The distribution of the test statistic is independent of the unknown pdf and if it is symmetric, with 
respect to its expectation and asymptotically normal. Unfortunately the asymptotic variance has a rather 
complicated expression, see Bohn-Wolfe (1994). Under some mild conditions the ARE is (m+1)/2. Similar 
results follow for the One-sample test statistic: the ARE is equal to the 2-sample statistic if the pdf is 
continuous and symmetric. Another look to this problem is given in Yu-Lam (1997a). 
 
 Hettmansperger (1995) and Kati-Babu (1996) made a serious study  of Bohn-Wolfe sign test. The 
experiments sustained that rss was a good alternative. The statistic was developed by Hettmansperger 
(1992)  the expectation and variance under the null hypothesis was derived. It has a smaller variance than the 
usual Sign Test statistic. Its distribution is a normal and the values of the ARE for different sample size values 
are tabulated. 
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 Barnett-Moore (1997) used the results of Sinha et al. (1996) and developed an L-estimator when the 
nuisance parameter is unknown. The optimal L-estimator is more efficient than the usual one without needing 
that the density function be symmetric. 
 
 Chen (2001) proposed an unbiased rss design. It is specially suited for estimating quantiles. It is in the saga 
of another paper of Chen (2000). He derived strong consistency, Bahadur representation asymptotic 
normality. When the ranking is perfect optimal procedures can be implemented and the ARE were computed. 
The optimal procedure is sensitive to errors in the ranks. 
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