
REVISTA INVESTIGACIÓN OPERACIONAL                                                                                            Vol. 28, No.1,  4-16, 2007 
 
 
 
 
 
ALGORITHMS FOR MEAN-RISK STOCHASTIC 
INTEGER PROGRAMS IN ENERGY 
Rüdiger Schultz, Frederike Neise 
Department of Mathematics 
University of Duisburg-Essen, Campus Duisburg 
Lotharstr. 65, D-47048 Duisburg, Germany 
schultz@math.uni-duisburg.de, neise@math.uni-duisburg.de
 

ABSTRACT –  
We introduce models and algorithms suitable for including risk aversion into stochastic programming problems in 
energy. For a system with dispersed generation of power and heat we present computational results showing the 
superiority of our decomposition algorithm over a standard mixed-integer linear programming solver. 
 
RESUMEN:  
Introducimos modelos y algoritmos adecuados para incluir la aversión al riesgo en problemas de programación 
estocástica en la energía. Para un sistema con una dispersión de la generación de potencia y calor  presentamos 
resultados computacionales que muestran la superioridad de cuatro algoritmos de descomposición sobre los típicos 
resolvedores de la programación lineal entera mixta. 
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1. INTRODUCTION 
 
Incomplete information is becoming a more and more prevailing issue in energy optimization 
problems. Power market liberalization and the impending decentralization of electricity supply, the 
latter with substantial infeed from renewable resources, are just two phenomena that have fostered 
this development. In addition, the appropriate handling of risk is of growing importance in the power 
industry.  
 
Stochastic programming is a proven tool for handling data uncertainty in optimization problems, [1]. 
The mentioned facts have motivated an extension of traditional stochastic programming methodology 
in various directions, of which, in the present paper, we address the inclusion of integer decision 
variables and the transition from risk neutral models to those incorporating risk aversion. 
 
Our paper is organized as follows: In Section 2 we introduce mean-risk extensions of risk neutral 
stochastic integer programs. In Section 3 we study the block structures that arise in the equivalent 
mixed-integer linear programs if the underlying probability distributions are discrete. Section 4 is 
devoted to decomposition and approximation algorithms exploiting these block structures. 
Computational tests for illustrative examples based on an energy system with dispersed generation of 
power and heat are reported in Section 5. Finally, we have a conclusions section. 
 
2. STOCHASTIC INTEGER PROGRAMS WITH RISK AVERSION 
 
To explain basic features of extending risk neutral into mean-risk stochastic integer programs let us 
start out from the following random optimization problem 
 

min cT x + q(ω)T y : T(ω)x + W (ω)y = z(ω), x ∈ X,y ∈ Y{ },    (1) 
 
together with the information constraint that x  must be selected without anticipation of the realization 
of the random data (q,T,W ,z)(ω) . This leads to a two-stage scheme of alternating decision and 
observation: The decision on x  is followed by observing (q,T,W ,z)(ω)  and then  is taken, thus y
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depending on x  and ω . Accordingly, x  and  are called first- and second-stage decisions, 
respectively. 

y

 
In energy optimization such a setting is plausible in many contexts. For example when planning a 
dispersed generation system the decisions on what types of and how many generators to install 
correspond to x , and operation decisions (under stochastic demand, power prices, or infeed from 
renewable resources) correspond to , [2]. Or, as another example, take day-ahead trading (with one 
round of bidding) for a utility. Here the first stage corresponds to the bids, and the second, e.g., to 
production on the next day. The random input stems from the bids of the foreign utilities, [3]. 

y

 
Coming back to (1) we assume that X  and Y  are polyhedra, possibly involving integer requirements 
to vector components, such that (1) is a mixed-integer linear program under uncertainty.  
The mentioned two-stage dynamics of (1) becomes more explicit by the following reformulation 
 

min
x

cT x + min
y

q(ω)T y :W (ω)y = z(ω) − T(ω)x,y ∈ Y{ }: x ∈ X{ }
= min

x
cT x + Φ(x,ω) : x ∈ X{ }.

 

 
The problem of finding a best nonanticipative decision x  in (1) thus turns into finding a best member 
in the indexed family of random variables 
 

cT x + Φ(x,ω)( )x ∈X
. 

 
This leads to the topic of comparing or ranking random variables which is studied in stochastics, both 
conceptually and computationally, [4]. Ranking random variables according to statistical parameters 
reflecting mean values and/or dispersions is particularly attractive from the computational perspective. 
In the risk neutral case this parameter is the expectation ΙΕ , whereas in the risk averse case mean-
risk models come to the fore that are based on a weighted sum of ΙΕ  and a, later to be specified, 
parameter ℜ  reflecting risk. Denoting f (x,ω) := cT x + Φ(x,ω)  this paradigm leads to the following 
mean-risk stochastic integer program derived from (1) 
 

min QMR (x) : x ∈ X{ }         (2) 
 
where 
QMR (x) := ΙΕ + ρ ⋅ ℜ( ) f (x,ω)[ ] 

             
= ΙΕ f (x,ω)[ ]+ ρ ⋅ ℜ f (x,ω)[ ]
= QΙΕ (x) + ρ ⋅ Qℜ(x)

 

with some fixed weight ρ > 0. In two respects, this model goes beyond traditional linear stochastic 
programs: It allows for integer decision variables, and, by the term ρ ⋅ Qℜ(x)  it includes risk aversion 
into the objective. The fact that (2) is a nonlinear optimization problem carries only little weight 
algorithmically. Its objective is a multivariate integral whose integrand is the optimal value of another 
(namely the second-stage) optimization problem. This leads to insurmountable numerical difficulties 
when computing (with complicated probability distributions) function values or gradients of QMR . The 
latter, by the way, not even need to exist. Far worse, QMR  is discontinuous in general, and (2) may 
have a finite infimum that is not attained. This may happen when ℜ  is specified as variance, see [5] 
for an (academic) example. 

 
These observations indicate that the risk measure ℜ , beside being meaningful for the practitioner, 
should also fulfil requirements regarding the mathematical structure it induces in QMR  and the 
algorithmic possibilities for solving (2). Since the initial random optimization problem (1) is mixed-
integer and linear, our aim is to find risk measures that enable (for discrete probability distributions) 
the solution of (2) by mixed-integer linear programming methodology. We will see that, for 
dimensionality reasons, it will not be sufficient to formulate just some mixed-integer linear program 
(MILP). Rather it will be important that the MILP obeys block structure amenable to decomposition or 
approximation. Specifications of  fulfilling these requirements are:  ℜ
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- Excess Probability, 

which reflects the probability of exceeding a prescribed target level η ∈ IRs: 
 

Q
IPη (x) := IP ω : f (x,ω) > η{ }[ ]. 

 
- Conditional Value-at-Risk, 

which, for a given probability level α ∈ 0,1] [, reflects the expectation of the 
(1−α) ⋅100% worst outcomes. There are different ways to formalize this quantity, see for 
instance [6]. One possibility is 
 

 QαCVaR (x) := min
η ∈IR

g(η, x),       (3) 

       
      where  
  

 g(η,x) := η +
1

1−α
IE max f (x,ω) −η,0{ }[ ]. 

 
- Expected Excess, 

which reflects the expected value of the excess over a given target η ∈ IRs: 
 

 Q
Dη (x) := IE max f (x,ω) −η,0{ }[ ]. 

 
 

- Semideviation, 
which is similar in spirit to the Expected Excess, but with the pre-fixed target replaced by 
the mean: 
 
 Q

D + (x) := IE max f (x,ω) − QIE (x),0{ }[ ]. 
 
Detailed expositions of mathematical structures and algorithms associated with specifications of (2) 
using these risk measures can be found in [5,7,8]. 
 
3. BLOCK STRUCTURES OF MEAN-RISK STOCHASTIC INTEGER PROGRAMS 
 
Assume that (q,T,W ,z)(ω)  is discretely distributed with finitely many scenarios (q j ,Tj ,W j ,z j )  and 

probabilities π j , j =1,...,J . It is well-known that the risk neutral model min QIE (x) : x ∈ X{ } then 
admits the following equivalent representation as a mixed-integer linear program 

 

 min cT x + π jq j
T y j : Tj x + W j y j = z j , x ∈ X, y j ∈ Y, j =1,...,J

j=1

J

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
.  (4) 

 
The constraint matrix of (4) has the block structure depicted in Figure 1. The essential feature of this 
structure is that there is no constraint with two second stage variables y j1

 and y j2
, for different 

scenarios , in common. j1, j2 ∈ 1,...J{ }
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     Figure 1: Block structure of constraint matrix 
 
Second-stage variables are coupled only implicitly via x . This fact is crucial in decomposition 
schemes for the solution of (4). Considering the mean-risk model (2) the question arises on how MILP 
equivalents for different specifications of ℜ  look like and whether the principal matrix structure of 
Figure 1 is preserved. 
 
Let ℜ := Q

IP η  (Excess Probability) and ρ ≥ 0. If  is bounded it can be shown, cf. [5], that there 
exists a constant 

X
M > 0  such that (2) is equivalent to 

 

min cT x + π jq j
T y j + ρ ⋅ π jθ j : Tj x + W j y j = z j

j=1

J

∑
j=1

J

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 
, 

            c  T x + q j
T y j −η ≤ M ⋅ θ j ,

            x ∈ X, y j ∈ Y,θ j ∈ 0,1{ }, j =1,...,J}. (5) 
 
So the structure of Figure 1 is maintained. The specific nature of the risk measure, however, has led to 
additional Boolean variables θ j  that can be seen as second-stage variables. 
 
Let ℜ := QαCVaR  (Conditional Value-at-Risk) and ρ ≥ 0. Then, cf. [8], (2) is equivalent to 
 

 min cT x + π jq j
T

j=1

J

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 
y j + ρ ⋅ η +

1
1−α

π jv j
j=1

J

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ : Tj x + W j y j = z j , 

          c  T x + q j
T y j −η ≤ v j ,

          x ∈ X,η ∈ IR,y j ∈ Y,v j ∈ IR+, 
          j =1,...,J}.   (6) 
 
Here the matrix structure of Figure 1 is also maintained, but a new continuous variable η appears that 
can be understood as a first-stage variable. Furthermore, there are additional continuous second-
stage variables  stemming from a resolution of a max-expression. v j

 
Let ℜ := Q

Dη  (Expected Excess) and ρ ≥ 0. Then, cf. [8], (2) is equivalent to 
 

 min cT x + π jq j
T y j + ρ ⋅ π jv j : Tj x + W j y j = z j

j=1

J

∑
j=1

J

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 
, 

            c  T x + q j
T y j −η ≤ v j ,

            x ∈ X   (7) ,y j ∈ Y,v j ∈ IR+, j =1,...,J}.
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This model is very similar to (4). The principal matrix structure is maintained, and only the resolution of 
a max-expression led to new constraints and new second-stage variables v j . 
 
Let ℜ := Q

D +  (Semideviation) and ρ ∈ 0,1[ ]. Then, cf. [7], (2) is equivalent to 
 

  min 1− ρ( ){ cT x + 1− ρ( ) π jq j
T y j + ρ π jv j :

j=1

J

∑
j=1

J

∑ Tj x + W j y j = z j ,

        c  T x + q j
T y j ≤ v j ,

        c  T x + π jq j
T y j ≤ v j

j=1

J

∑ ,

        x ∈ X,y j ∈ Y,v j ∈ IR, 
        j =1,...,J}.   (8) 
 
Here the principal structure of Figure 1 is not maintained. The constraints 
 

        (9) cT x + π jq j
T y j ≤ v j ,

j=1

J

∑ j =1,...,J

 
explicitly couple second-stage variables from different scenarios. Summing up, we see that the choice 
of the risk measure in (2) is a sensitive issue regarding the block structures in the arising MILP 
equivalents. Consequences may be mild as in (7), the risk measure may be the source of additional 
integrality requirements as in (5), or it even may generate additional coupling in the model as in (8). 
 
4. DECOMPOSITION AND APPROXIMATION ALGORITHMS 
 
The mean-risk models (2) for the different specifications of ℜ  all are non-convex non-linear 
optimization problems in general. Even when alleviating numerical integration problems by using 
discrete probability distributions the problem remains to find a global minimizer in a non-convex 
optimization problem. Analytical properties of QMR  are particularly poor when imposing a discrete μ, 
see [5,7,8]. For lack of smoothness (even lack of continuity), hence, local (sub-) gradient based 
descent approaches to minimizing QMR  are not promising. 
 
The equivalent problem formulations of the previous section provide an alternative. Although problem 
dimension was increased considerably, now there is the possibility of finally resorting to the well-
developed algorithmic methodology of mixed-integer linear programming. Direct solution of (5) - (8) 
with general-purpose mixed-integer linear programming software however is prohibitive due to 
dimensionality reasons. Rather, the mixed-integer linear programming techniques are imbedded into 
lower bounding procedures of a branch-and-bound scheme. 
 
4.1. Branch-and-Bound Framework 
 
To solve (2) by branch-and-bound the set X  is partitioned with increasing granularity. Linear 
inequalities are used for this partitioning to maintain the (mixed-integer) linear description. On the 
current elements of the partition upper and lower bounds for the optimal objective function value are 
sought. This is embedded into a coordination procedure to guide the partitioning and to prune 
elements due to infeasibility, optimality, or inferiority. 
 
For the following generic description of the branch-and-bound method let Ρ denote a list of problems 
and ϕLB (P)  be a lower bound for the optimal value of P ∈ Ρ. By ϕ  we denote the currently best 
upper bound to the optimal value of (2). 
 

- Step 1 (Initialization): 
Let  :  (2) and Ρ = ϕ := +∞. 

 
- Step 2 (Termination): 
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If  then the Ρ := ∅ x  that yielded ϕ = QMR (x ) is optimal. 
 

- Step 3 (Bounding): 
Select and delete a problem P  from Ρ. Compute a lower bound  
ϕLB (P)  and find a feasible point x  of P . 

 
- Step 4 (Pruning): 

If ϕLB (P) = +∞  (infeasibility of a subproblem)  
or 
ϕLB (P) = QMR (x )  (optimality of a subproblem) 
or 
ϕLB (P) > ϕ  (inferiority), then go to Step 2. 
If QMR (x ) < ϕ  then ϕ := QMR (x ). 

 
- Step 5 (Branching): 

Create two new subproblems by partitioning the feasible set of P . Add these 
subproblems to Ρ and go to Step 2. 
 

Step 4 is to be understood accordingly if no feasible point x  was found in Step 3: Then none of the 
criteria applies, and the algorithm goes to Step 5.  
 
The partitioning in Step 5, in principle, can be carried out by adding (in a proper way) arbitrary linear 
constraints. The most popular way though is to branch along coordinates. This means to pick a 
component x(k ) of x  and add the inequalities x(k ) ≤ a  and x(k ) ≥ a +1, with some integer , if a x(k ) is 
an integer component, or, otherwise, add x(k ) ≤ a −ε  and x(k ) ≥ a + ε , with some real number , 
where 

a
ε > 0  is some tolerance parameter to avoid endless branching. 

 
When passing the lower bound ϕLB (P)  of P  to its two “children” created in Step 5, the difference, or 
gap, ϕ − minP ∈Ρ ϕLB (P)  provides information of the quality of the currently best solution. Step 2 often 
is modified by terminating in case the relative size of this gap drops below some threshold expressed 
in per cent. 
 
4.2. Decomposition by Lagrangean Relaxation of Nonanticipativity 
 
Lower bounding is a critical part in the above branch-and-bound framework. This is the place where 
decomposition of the relevant stochastic programs into scenario-specific subproblems will become 
crucial. Assume the stochastic program has the block structure of Figure 2, introduce copies 
x j , j =1,...,J  of x , and reformulate the problem equivalently by adding the constraints x1 = ... = xJ . 
This is nothing but formulating explicitly the nonanticipativity (NA) of x , i.e., the requirement that x  
has to be independent of the scenarios. The constraint matrix of the reformulated problem has the 
principal structure shown in Figure 2. 
 

 
 

Figure 2: Block structure of reformulation 
 

Relaxation of the NA-block, or in other words, of the nonanticipativity of the first-stage variables, 
hence, decomposes the constraints according to scenarios. In what follows we spell this out in detail in 
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terms of Lagrangean relaxation of NA for the Conditional-Value-at-Risk model (6). Recall that in  (6) 
additionally to the decision variable x  the auxiliary variable η is independent on  and, hence, can be 
understood as a first-stage variable that has to meet nonanticipativity. We express the 
nonanticipativity of 

j

x  and η by the equations 
 

 ,      ′ H j x j = 0
j=1

J

∑ ′ ′ H jη j = 0
j=1

J

∑
 
with suitable  matrices  and ′ l × m ′ H j ′ ′ l ×1 vectors ′ ′ H j , j =1,...,J . The following Lagrangean 
function results 
 

  L(x,y,v,η,λ) := L j (x j ,y j ,v j ,η j ,λ)
j=1

J

∑
 
where λ = ( ′ λ , ′ ′ λ )  and 
 

 L j (x j, y j ,v j ,η j , ′ λ , ′ ′ λ ) := π j (c
T x j + q j

T y j + ρη j + ρ 1
1−α

v j ) + ′ λ T ′ H j x j + ′ ′ λ T ′ ′ H jη j . 

 
The Lagrangean dual reads 
 
 max D(λ) : λ ∈ IR ′ l + ′ ′ l { }        (10) 
 
where 
 

 D(λ) = min L j (x j ,y j ,v j ,η j ,λ) :
j=1

J

∑ Tj x j + W j y j = z j ,
⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 

             c  T x j + q j
T y j −η j ≤ v j ,

              x j ∈ X,η j ∈ IR, y j ∈ Y,v j ∈ IR+, j =1,...,J}.
 
This optimization problem is separable with respect to the individual scenarios, i.e., 
 

  D(λ) = Dj (λ)
j=1

J

∑
 
where, for j =1,...,J , 
 
  Dj (λ) = min L j (x j , y j ,v j ,η j ,λ){ : Tj x j + W j y j = z j ,

           c  T x j + q j
T y j −η j ≤ v j ,

            x j ∈ X   (11) ,η j ∈ IR, y j ∈ Y,v j ∈ IR+}.
 
The Lagrangean dual (10) is a non-smooth concave maximization (or convex minimization) problem 
with piecewise linear objective for whose solution advanced bundle methods, see for instance [9,10], 
can be applied. In this way, solving the dual, or in other words, finding a desired lower bound, reduces 
to function value and subgradient computations for −D(λ) (when adopting a convex minimization 
setting in (10)). A subgradient of  at −D λ  is given by 
 

 − ′ H j x j
λ, ′ ′ H jη j

λ

j=1

J

∑
j=1

J

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  
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where x j
λ  and η j

λ  are the corresponding components in an optimal solution vector to the 
optimization problem defining Dj (λ) . As a consequence, the desired lower bound in Step 3 of the 
generic framework can be computed by solving the single-scenario mixed-integer linear programs in 
(11) instead of working with the full-size model (6). This decomposition is instrumental since (11) may 
be tractable for MILP solvers while  (6) may not. 
 
Results of the dual optimization also provide the basis for finding “promising” feasible points in Step 3  
of the generic framework.  Indeed, starting from an optimal or nearly optimal λ  the components 
x j

λ,η j
λ, j =1,...,J , of optimal solutions to (11) are seen as  proposals for a nonanticipative first-

stage solution 

J
x,η( ). A “promising” point then is selected, for instance, by deciding for the most 

frequent one or by averaging and rounding to integers if necessary. 
 
The specific nature of η as an auxiliary variable and argument in an optimization problem, see (3), 
allows to improve this heuristic. Instead of selecting right away a candidate for x,η( ), a candidate x  
for x  is fixed first, and then η is computed as the best possible value, namely as optimal solution to 
 
 min g(η,x ) :η ∈ IR{ } 
 
which is equivalent to 
 

min η +
1

1−α
⎧ 
⎨ 
⎩ 

π jv j : cT x 
j=1

J

∑ + Φ(x ,ω j ) −η ≤ v j , 

      η ∈ IR  ,v j ∈ IR+, j =1,..,J}.
 
The input quantities Φ(x ,ω j ), j =1,...,J  are readily computed as optimal values of 
 
 min q j

T y :W j y = z j − Tj x ,y ∈ Y{ }. 
 
If  Φ(x ,ω j ) = +∞ (infeasibility of a second-stage subproblem), then x  is discarded. 
This concludes the consideration of (6) as an illustration for how to achieve decomposition in the lower 
bounding of (5) - (7). 
 
4.3. Approximation by Decomposable Lower Bounds 
 
Lagrangean relaxation of nonanticipativity, of course, is possible for (8) too. However, the counterpart 
to (11) then is no longer separable in the scenarios due to the presence of the constraints (9). An 
alternative are approximate lower bounds to (8) that decompose into scenario specific subproblems 
after relaxation of nonanticipativity. The expectation problem min QIE (x) : x ∈ X{ } is an immediate 
such bound, although neglecting risk effects completely. An improvement is the following relation, 
established in [7]. For η ≤ QIE (x) and all ρ ∈ 0,1[ ] it holds that 
 
 QIE (x) ≤ (1− ρ)QIE (x) + ρQDη + ρη ≤ QIE (x) + ρQD + (x ).

 
 
A possible specification of η fulfilling η ≤ QIE (x) is given by the wait-and-see solution of the 
expectation model.  This is the expected value of 
 
 ΦWS (ω) := min cT x + q(ω)T y : T(ω)x + W (ω)y = z(ω),x ∈ X,y ∈ Y{ }. 
 
Clearly, ΦWS (ω) ≤ f (x,ω)  for all x ∈ X  and all ω , such that η = IEΦWS (ω) ≤ QIE (x)  for all 
x ∈ X . 
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When wishing to solve (8) the bounding steps in the generic branch-and-bound framework from 
Subsection 4.1 must be specified as follows. Lower bounds are obtained via Lagrangean relaxation of 
nonanticipativity applied to  
 
 min 1− ρ( )QIE (x) + ρQ

Dη (x) + ρη : x ∈ X{ }      (12) 
 
(with X , of course, replaced by partition elements at later stages of the algorithm). Since Q

Dη  leads 
to decoupled single-scenario models after relaxation of nonanticipativity, see (7), the counterpart to 
(11) enjoys decomposition in the scenarios. The results of the dual optimization again serve as inputs 
for the generation of upper bounds. Nonanticipative proposals, however, are not inserted into the 
objective of (12) but into the original objective QIE (x) + ρQ

D + (x) . 
 
5. DISPERSED GENERATION - NUMERICAL EXPERIMENTS 
 
To illustrate models and algorithms of the previous sections let us consider a system with dispersed 
generation (DG) of power and heat. The DG system, run by a German utility, consists of 5 engine-
based cogeneration stations, each equipped with a thermal storage and a cooling device, and 
altogether involving 8 gas boilers, 9 gas motors and one gas turbine. The latter are combined heat and 
power (CHP) units. The DG system is completed by 12 wind turbines and one hydroelectric power 
plant. Power is fed into a global grid, enabling electricity trade at energy markets. Heat is fed into local 
networks around each cogeneration station. 
 
Uncertainty is present both at the input and the output sides of the system. At the input side, this 
concerns the infeed from the wind turbines. At the output side, power and heat demand as well as 
power prices typically are prone to uncertainty. 
 
Taking into account all relevant operational constraints, such as minimum and maximum production 
levels for the DG units, bounds for the fill of the storage, demand fulfilment, fuel consumption and 
minimum up times of the units, the DG system is modeled as a mixed-integer linear program, with on-
off decisions of units as the major sources of integrality. The objective is to minimize fuel costs (minus 
revenues from trading). The planning horizon is  
24 hours, with a discretization into quarter-hourly subintervals. As a random optimization problem, or 
in other words, a specification of (1), the model has roughly 17.500 variables (9.000 Boolean, 8.500 
continuous) and 22.000 constraints. For a detailed description of the model see [11]. 
 
With standard software for mixed-integer programs such as ILOG-CPLEX [12] instances of the 
random optimization problem with stochastic entities set to fixed values can be solved on a Linux-PC 
with a 3,0 GHz Pentium processor and 2,0 GB RAM in less then 20 seconds and with gaps of less 
than 0,1 %. 
 
As a next step we impose the information constraint that the random data of the model are known with 
certainty in the first four hours of the time horizon, and are uncertain from then on. This leads to a two-
stage planning problem under uncertainty where the first-stage variables are the decisions from the 
initial 16 quarter-hourly intervals, and the second-stage is given by the remaining variables. 
 

 
 

Table 1: Dimension of a risk neutral model 
 

The specification of the risk neutral expectation-based model (4) then no longer is tractable in 
acceptable time by ILOG-CPLEX. Table 1 shows problem dimensions, and Table 2 computational 
results. 
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The stopping criterion has been a gap of less than 0,01 %. While, for the 50-scenario instance, the 
decomposition method from Subsections 4.1 and 4.2 reaches this gap in roughly 10 minutes,  
ILOG-CPLEX did not succeed in 24 hours. 
 

 
 

Table 2: Solution times for the risk neutral model 
 

The difficulty of finding optimal nonanticipative decisions by means of scenario analysis is illustrated in 
Table 3. For the heat production of the boilers in one cogeneration station, we have listed an optimal 
nonanticipative solution (of a risk neutral stochastic program) against optimal solutions for different 
single-scenario models. Clearly, the optimal nonanticipative solution, displayed in the last row of the 
table, cannot simply be deduced from the collection of the anticipative first-stage decisions in the rows 
above. 
 

 
 

Table 3: Dispersion of first-stage decisions 
 

The following results for mean-risk models incorporating Expected Excess, Excess Probability, or 
Conditional Value-at-Risk show some effects of including risk aversion and confirm the superiority of 
decomposition over standard mixed-integer linear programming solvers. 
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Table 4 shows contributions to the optimal objective values of the individual scenarios, computed with 
a mean-risk model involving Expected Excess and varying risk weights ρ . The target value η was set 
to 6.807.892. It becomes apparent, that, with increasing weight, optimal values are getting above or 
near target for an increasing number of scenarios. 
 

 
 

Table 4: Optimal solutions for different risk weights 
 
Computations for a model using the Conditional Value-at-Risk as the objective are reported in Table 5. 
For instances with 20 and more scenarios the decomposition approach reaches the required gap of 
0,005 % in less computational time than ILOG-CPLEX does. Appropriate solutions are found up to 8 
times faster with the decomposition method. 
 

 
 

Table 5: Results for the Conditional Value-at-Risk 
 

Table 6 and Table 7 show results for a mean-risk model involving Excess Probability. Here, time limits 
increasing with the number of scenarios were used as stopping criteria. The tables illustrate, that for 
instances with more than 10 scenarios the decomposition method finds solutions with smaller gaps 
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than ILOG-CPLEX does. For instances with 20 and more scenarios ILOG-CPLEX fails to reach a 
feasible solution at all. 
 

 
 

Table 6: Results for the Excess Probability using the Decomposition 
 
 

 
 

Table 7: Results for the Excess Probability using ILOG-CPLEX 
 

6. CONCLUSION 
 
Traditional risk neutral stochastic integer programs can be extended into mean-risk models by the help 
of risk measures such as Excess Probability, Conditional Value-at-Risk, Expected Excess, or 
Semideviation.  
 
These risk measures induce sound mathematical structures and allow for numerical treatment of the 
resulting mean-risk models in the framework of mixed-integer linear programming.  
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For the latter, block structures arising within equivalent MILPs are essential. These structures depend 
on the risk measures selected and, either, enable a direct decomposition via Lagrangean relaxation of 
nonanticipativity, or, require approximation by decomposable models. 
 
The operation of energy systems with decentralized generation of power and heat and with infeed 
from renewable resources is an activity whose optimization is inherently infected by uncertainty. 
Mean-risk models of the mentioned types are proper tools for optimizing nonanticipative decisions in 
this context. The introduced decomposition algorithms are computationally promising and outperform 
general purpose mixed-integer linear programming solvers at this class of problems. 
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