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ABSTRACT.  
A new variant of Local Linearization (LL) method is proposed for the numerical (strong) solution of 
differential equations driven by (additive) alpha-stable Lévy motions. This is studied through 
simulations making emphasis in comparison with the Euler method from the viewpoint of numerical 
stability. In particular, a number of examples of stiff equations are shown in which the Euler method 
has explosive behavior while the LL method correctly reproduces the dynamics of the exact 
trajectories. 
 
RESUMEN.   
Se propone una nueva variante del método de Linealización Local (LL) para la solución (fuerte) de 
ecuaciones diferenciales con respecto a procesos de Lévy alfa-estables (aditivo). A través de 
simulaciones se estudia el método comparación con el método de Euler desde el punto de vista de 
la estabilidad numérica. En particular, a partir de un número de ecuaciones rígidas (“stiff”), se 
muestra que el método de Euler  tiene un comportamiento explosivo mientras que el método LL 
reproduce correctamente la dinámica de las trayectorias exactas. 
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1 INTRODUCTION 

 
There exist a wide range of methods for computing approximate solutions of stochastic 
differential equations (SDEs) driven by Brownian motions (see e.g. Kloeden and Platen, 
1995). In contrast, up to now the only approach that has been followed for the numerical 
(strong) solution of stochastic differential equations driven by Lévy processes and 
semimartingales is the Euler method (see Protter, 1985; Karandikar, 1991; Kohatsu-
Higa and Protter, 1991; Kurtz and Protter, P. 1991; Janicki et al., 1993; Protter, 1995, 
Section V.4, and references therein). 
 
In the present paper we carry out a simulation study on a version of the Local 
Linearization (LL) method for the numerical (strong) solution of stochastic differential 
equations driven by alpha-stable Lévy motions. In recent years, the LL approach has 
been developed for a variety of differential equations; e.g., ordinary differential 
equations (Jiménez et al., 2002), Ito stochastic differential equations (Ozaki, 1992 and 
Biscay et al., 1996) and random differential equations (Carbonell et al., 2005). The 
underlying idea of LL method for SDEs driven by Lévy motions is basically that followed 
for these other types of equations. 
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 The organization of the paper is as follows. In Section 2 the Local Linearization method 
for SDEs driven by Lévy motions is presented. Algorithmic aspects of the method are 
discussed in Section 3. Finally, a comparative study between the LL and Euler methods 
is carried out through simulations in Section 4. Numerical stability of the approximate 
solutions is emphasized. In particular, two examples of stiff equations are shown in 
which the Euler method has an explosive behavior for moderate step sizes while the LL 
method reproduces correctly the underlying dynamics. 

 
2 THE LOCAL LINEARIZATION METHOD 

 
The Local Linearization (LL) method for Ito's SDEs with additive noise is derived from 
the following steps: (1) the local linearization of the drift coefficient of the SDE over each 
time interval of the discretization by means of its first order deterministic Taylor 
expansion or a truncated Ito-Taylor expansion, (2) the analytic computation of the 
solution of the resulting linear SDE, and (3) the approximation of the Ito's integral 
involved in the solution obtained in step (2). There are some variations of the LL method 
that can be seen in Jiménez et al., 1999. 
 
A similar approach will be followed to obtain a version of the LL method for SDEs driven 
by (additive) Lévy noise. Specifically, we consider the following d-dimensional non-
autonomous differential equation with additive noise: 
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where , and  a standard m-dimensional alpha-stable Lévy motion. 

That is,  is an adapted stochastic process 
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distributions (see Samorodnitsky, 1994 and Protter, 1995 for more details on standard 
definitions and notations concerning stable distributions and Lévy processes).  In this 
work we set 0=μ=β , i.e.,  is a symmetric alpha-stable Lévy motion. tL
 
It is also assumed that  is a differentiable function and 

satisfies a Lipschitz-type condition, and  is a matrix function with values in . 

dd
tt ℜ→ℜ×ℜ+:),( Xf

)(tG md×ℜ
 
The SDEs (1) can also be written in integral form: 
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Let { }Ttttkit

NkNi =<<<===π LL 100:,2,1,  be a sequence of non-random 
numbers; i.e., a non-random partition of the interval [0, T] or time discretization. The LL 
approximation will be derived on the basis of the first-order Taylor expansion of the drift 
coefficient  over each time interval  around the point ),( tt Xf ] 1, +nn tt ] ] ]ntnt X, .  For 
this, write the equation (2) as 
 

                                                                                             (3) ∫ −+=
t

t
t

n

dss ,XJHX nn.t

where 

 52



( ) ( )

( )∫ ∫+−+=

∂
∂

==

−−

t

t

t

t

tntn

n

n

nn

sss dsdss

t
x

t

,)(),(

,,

0

LGXJXfXH

XfXJJ

nn.t

n

 

Then, by the variation of constants formula (see, e. g., Theorem 56 in Protter, 1995) the 
solution of (3) can be expressed as 
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From this, several variants of the LL method are obtained by means of suitable 
approximations of the integrals in (4). One of them is the following. Fix  and 

suppose that the approximation Y has been defined on  starting at 

. For  . Consider the linear approximation 
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From this linearization and (4) one obtains the approximation 
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In turns, a simple approximation to the second integral in this expression leads to 
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allows one to write the LL approximation Y in the equivalent form: 
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A major advantage of this variant is that it can be easily computed for any alpha stable 
Lévy process. 

  
            3 COMPUTATIONAL ASPECTS 
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Let , , be the (continuous-time) LL approximation defined by (5). The 

corresponding LL discretization is defined by evaluating at the discrete times , 

. In this Section we discussed a specific scheme for implementing the LL 
discretization. 
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For this, the LL discretization is decomposed into a recursive part  and a noisy term 
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We will set  nn tth −= +1 Nkn ,,2,1 L=∀ . Details on the evaluation of these two 
components are discussed below. 
 

a. Computation of the recursive term 
 

The integral  in (6) can be explicitly computed by means of just a matrix exponential 
(see Proposition 1 in Jiménez, 2002). Specifically, define 
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Then, (6) can be obtained as a block of the matrix exponential  according to 
the following identity: 
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here ,  and dd×ℜ∈F dℜ∈b ℜ∈c  are certain block matrices. 
 
A number of algorithms are available to evaluate the matrix exponentials involved in 
these expressions, e.g. those based on stable Padé approximations with the scaling 
and squaring method, Schur decomposition, or Krylov subspace methods. The choice 
of one of them should depend on the size and structure of the Jacobian matrix (see 
e.g., Higham, 2004 and references therein). 

nJ

 
b. Computation of the noisy term 

 
The evaluation of (7) only requires the simulation of the increments . This is 

specially feasible for any alpha-stable Lévy motion . In this case, said increments are 
independent random variables with alpha-stable distributions of type 

nn tt LL −
+1

tL

( )0,0,)( /1
1

α
α nn ttS −+ . Thus, the simulation of the increments reduces to the 

generation of independent alpha-stable random variables. For this, a number of 
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algorithms are available (see e. g.  Janicki, 1994 and Samorodnitsky, 1994, and 
references therein). 

 
             4 SIMULATION STUDY AND SOME EXAMPLES 

 
The implementation of the LL method for a stochastic differential equation driven by 
alpha stable Lévy motion was implemented in MATLAB following the algorithm 
described in the previous Section. The diagonal Padé approximation for the exponential 
matrix is computed by the MATLAB function expm. We generate the required alpha-
stable random variables by means of the algorithm described in Janicki et al., 1993. 
 
The LL method was introduced above for SDEs driven by additive Lévy motions, i.e., 

 in (1) is a function of only the time variable t. For equations with additive noise it 
can be extended the concept of A-stability of integrators borrowed from the numerical 
theory of ordinary differential equations (see, e.g., Section 8 of Chapter 9 in Kloeden 
and Platen, 1995). It can be directly demonstrated that, in contrast with the Euler 
method, the LL method introduced above is A-stable in this sense.  

)(tG

 
In the following two examples we study in practice through simulations the stable 
behavior of the LL method for SDEs with alpha-stable additive noise, and compare it 
with the Euler method. The first example is a non-autonomous stochastic differential 
equation with additive alpha-stable Lévy noise, which is defined by the following 
equation: 
 

( ){ } ( ) ttt dL tttdtXtdX 1/3/exp)2/3( 3
0

32 +−−+−=  
 
over [ ] [ ]9,0,0 =Tt  with initial value 1

0
=tX . This equation has trajectories that (a.s.) 

tend to zero as the time increases. However, Figure 1 shows that for a moderate step 
size ( ) the Euler discretization results in an explosive behavior. This is illustrated 
for two values of alpha: =1.5 and 

42−=h
α α=0.7. On the contrary, the LL method provides 

good approximations with the expected limit behavior. This illustrates that the LL 
method shows more numerical stability than the Euler method, a fact also confirmed by 
the other examples below.  
 
 

 
Figure 1. Approximate solutions obtained by the LL (solid line) and Euler (dash-dot line) 
methods, with α=1.5 (left panel) and α =0.7 (right panel). In both cases, the step size 
is . 42−=h
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Next, we present two classical examples of stiff equations: Van der Pol and Brusselator. 
The first one is the system of autonomous stochastic differential equations with additive 
noise: 
 

( )[ ] tdLdtXXXCdX

dtXdX
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21
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=
 

 
over [ ] [ 10,0,0 ]=Tt  with initial value ]0;2[

0
−=tX . It is well-known that the ordinary 

differential equation (ODE) defined by its drift part becomes more difficult to integrate 
numerically as the parameter C increases. Typically, such an ODE is used as a test 
equation with C around the values 10, 100 and 1000. In this work we take smaller 
values of C because of the addition of an alpha-stable Lévy motion makes more difficult 
the numerical integration. The real constant σ controls the amount of the noise. 
 
The behavior of Euler and LL methods it shown in Figure 2 for C=10, and several step 
sizes . The results for the smallest one, , can be regarded 

as the exact trajectory for visualization purposes. For the greatest step size , 
the Euler method has an explosive behavior. In contrast, the LL discretization 
reproduces correctly the dynamics of the system for all the step sizes regarded.  

1275 2 and 2,2 −−−=h 122−=h
52−=h

 
In order to also study the behavior of both discretizations when the parameter C 
changes we compute the discretizations for several values C=300, 100 and 10, fixing 

=1.75 and the noise level α σ =5. It is observed in Figure 3 that for a very small step 
size ( ) neither the LL nor Euler methods has an explosive behavior, no matter 
the value of C. However, Figure 4 shows that for a moderate step size  it 
appears an  explosive behavior in the Euler discretization for large values of C, namely, 
C=300 and C=100, while the LL approximation retains its good performance in the 
whole range of C for 

122 −=h
72 −=h

 

 
Figure 2. Approximate solutions by LL and Euler methods for the Van der Pol's equation 
with =1, α σ =1, C=10. Results for step sizes  are shown by 
columns from left to right. 

1275 2 and 2,2 −−−=h

  
the same step size.  
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Figure 3. Approximate solutions obtained by LL and Euler methods for the Van der Pol's 
equation with =1.75, =5, . Columns from left to right correspond to 
C=300, 100 and 10. 

 σ 122 −=hα

 
More generally, for SDEs with multiplicative noise (i.e., when  is a functionG  

of both t and ), a version of the LL method can be also defined simply by replacing 

 in (5) and (7) by G

G ),( tXt

tX

nG ),(
ntnn XtG= . Stability of integrators of SDEs in case of   

multiplicative noise is still a topic of current research. Several concepts of stability have 
been proposed for this case such as mean-squared stability, etc. (see, e.g., Shurz, 
2002). The LL method introduced in the present paper does not satisfy the conditions of 
such concepts. It theoretically guarantees numerical stability only for equations with 
additive noise. 
 
However, it is worth of noting that the LL method also shows a very stable performance 
in some examples of SDEs with multiplicative noise. Likely, this occurs when the linear 
drift part of the equation has a dominant role in the dynamics of the system. We will 
illustrate it through the following well known outstanding example: the Brusselator's 
equation with multiplicative noise (Arnold et al., 1999) 
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We consider this equation over [ ] [ ]20,0,0 =Tt  with initial value . Here, 

 is a vector of parameters. The system has a dynamics determined by : 

its random attractor is a stationary point for 

]0;5.0[
0

−=tX
];[ 21 cc=c 1c

21 <c , and a cycle for . The 

parameter controls the amount of noise. In the simulations shown in Figure 5 we set 

 and c .  Likewise in the previous examples, for a range of moderate to 
large step sizes it is observed an explosive behavior of Euler method while the LL 
approximation reproduces correctly the path of the SDE. 

21 >c

2c
5.21 =c 6.02 =
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 Figure 4.  Approximate solutions by means of the LL and Euler methods for the Van der 
Pol's equation with =1.75, α σ =5, . Columns from left to right correspond to 
C=300, 100 and 10. 

72 −=h

 
 
5 CONCLUSIONS 

 
We extended the LL method to cover SDEs driven by alpha-stables Lévy motion and 
proposed a numerical scheme for its implementation. 
  
The simulation study demonstrates that the LL method has considerably more 
numerical stability than the Euler method. In particular, for not small step sizes the latter 
has an explosive behaviour while the former reproduces correctly the dynamics of the 
exact trajectories. 
 
In spite of the fact that the LL scheme proposed is only for SDEs with additive Lévy 
noise, a simple variant of the method to cover multiplicative noise can also provides 
numerically stable results in some situations with multiplicative noise. This is illustrated 
through the Brusselator example. 
 
The theoretical development of other variants of the LL method, as well of its main 
theoretical properties, is the subject of ongoing work by the authors. The practical result 
discussed in the present paper greatly encourages this research. 
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Figure 5. Approximate trajectories computed by means of the LL and Euler methods for 
the Brusselator's equation with α =1, 5.21 =c  and 6.02 =c . Results for step sizes 

 are presented in the columns from left to right.  1274 2 and 2,2 −−−=h
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