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RESUMEN:  
Uno de los problemas más importantes en los Algoritmos Genéticos, es la selección correcta de los operadores de  cruza 
y mutación. Los operadores genéticos son más importantes para los cromosomas no binarios debido a su impacto en los 
resultados. Este trabajo presenta un análisis comparativo de diferentes operadores de cruza y mutación aplicados a un 
algoritmo genético para el problema multiobjetivo de calendarización de procesos con  transferencia cero. El algoritmo 
utilizado está adaptado de un método de partición propuesto por Tagami et al [7] y construye una frontera de Pareto, 

minimizando la duración y el tiempo promedio de proceso. 
 

ABSTRACT: One of the must important issues in Genetic Algorithms is the right selection of crossover and mutation 
operators. Genetic Operators are even more important for non binary chromosomes due to their high impact on the 
results. This work presents a comparative analysis of different crossover and mutation operators applied to a genetic 
algorithm for the multiobjective flowshop problem. The algorithm used is adapted from the partition method proposed by 
Tagami et al[8] and builds a Pareto’s frontier. We minimize the makespan and the mean flowtime.  
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1. INTRODUCTION 

 
In the flowshop problem, we have a set of tasks that must be processed in several machines. Not all the 
tasks have to use all the machines, each task is processed in a subset of stages. It can be assumed 
transference with zero time or a continuous flow between the stages in the process. The flowshop 
sequencing is characterized by unidirectional flow and is NP-hard. 
 
The flowshop consist of m machines and n different jobs to be optimally sequenced through these 
machines. The common assumptions used in modeling the flowshop problem are: 

 
• All n jobs are available for processing at time zero and each job follows identical routing 

through the machines. 
• Jobs are independent and available in time 0. 
• Unlimited storage exists between the machines. Each job requires m operations and each 

operation requires a different machine. 
• Every machine processes only one job at one time and every job is processed on one 

machine at one time. 
• Setup times for the operations are sequence-independent and are included in processing 

times. 
• The machines are continuously available. 
• Individual operations cannot be pre-empted. 
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In theory, integer programming and the branch and bound technique can be used to solve the flowshop 
problem optimally. However, these methods are not viable on large problems. Most scheduling problems 
including flowshop problems belong to the NP-hard class for which the computational effort increases 
exponentially with problem size. To remedy this, researchers have continually focused on developing 
heuristic and other methods. Heuristics methods typically do not guarantee optimality of the final solution, 
but a final solution is reached quickly ad is acceptable for practical use. 
 
Several good heuristic methods have appeared in the past three decades to help minimize makespans 
for flowshops. Recent advances in meta-heuristic search methods that help conduct directed “intelligent” 
search of the solution space have brought yet new possibilities to rapidly find good schedules, even if 
they are not optimal.  

 
2. MIP FORMULATION 

 
The Mixed Integer Formulation (MIP) for the flowshop problem considers a set of constraints that avoid 
collisions in every stage in the process. The mono objective problem only addresses the minimization of 
total time in the process, the makespan while the multiobjective may consider the flowtime and the 
tardiness.  
 
2.1. Constraints 

 
The model has two types of constraints. The first set guarantees that the total time, named makespan (T) 
exceeds the total time of every job in the system. The second type, avoid collisions between each pair of 
the jobs in the first stage, that coincides in the system. 
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Where tij is the time that job i stays in stage j and ti is the initial time for job i.  
 
2.2. Objectives 
 
The objective is to find a stages’ sequence according to an optimal criteria. The classical three scheduling 
objectives are (1) makespan, (2) mean flowtime and (3) mean tardiness. In this research, we only worked 
with makespan and flowtime. 
 
2.1.1. Makespan.  
 
In scheduling literature, makespan is defined as the maximum completion time of all jobs, or the time 
taken to complete the last job on the last machine in the schedule –assuming that the processing of the 
first job began at time 0. Makespan is denoted by T and computed as: 

T = max {Fj} 
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i ≤  j ≤ n 

 
Where Fj is the flowtime for job j, i.e., the total time taken by job j from the instant of its release to the 
shop to the time it is processed by the last machine. 

2.1.2 Mean Flowtime.  
 

The mean flowtime measures the average response of the schedule to individual demands of jobs for 
service. Mathematically, mean flow time is the average of the flow times of all jobs. It is usually 
represented by F and expressed as: 

∑
n

=j
jf=(x)F

1
2 /JOBS 

 
3. MULTIOBJECTIVE FLOWSHOP  

 
In sequencing jobs in a flowshop we are likely to confront several different (and often conflicting) 
management objectives. Consequently, a schedule may have to be evaluated by different types of 
performance measures. Some of these measures may give importance to completion time (e.g. 
makespan), some to due date (e.g. mean tardiness, maximum tardiness), and some others to speed with 
which the jobs flow (e.g. mean flow time). The simultaneous consideration of these objectives is a 
multiobjective optimization problem. But, even for a single objective, flowshop sequencing is NP-hard. 

 
3.1 Pareto Optimality  

 
A common difficulty with multiobjective optimization is the appearance of “objective conflict” (Hans, 1988): 
none of the feasible solutions achieves simultaneous optimization of makespan, mean flow time, mean 
tardiness, machine utilization, etc. in a flowshop, for example. In other words, the individual optimal 
solutions of each objective are usually different. Thus a “most favored” solution would be one that would 
cause minimum objective conflict. Such solutions may be viewed as points in a solution space.  

 
The general multiobjective optimization problem contains a number of objectives while the solution (2) 
must also satisfy a number of inequality and equality constraints. Mathematically, the problem may be 
stated as follows. 

 
Minimize     (x))F(x),(F=F(x) 21

                       T (Makespan) =(x)F1

                      / JOBS (Flowtime) ∑
n

=j
jf=(x)F

1
2

Here the decision parameter x is a p-dimensional vector made up of p decision variables. Solutions to a 
multiobjective optimization problem are mathematically expressed in terms of nondominated points. 

 
The nondomination property of solutions may be explained as follows. In a minimization problem, a 
solution vector x(1) is partially dominated by another vector x(2) (written as x(1) x(2)), when no 
component value of x(2) is less than x(1) and at least one component of x(2) is strictly greater than x(1). 
In a minimization problem if x(1) is partially less than x(2), we say that the solution x(1) dominates x(2) or 
the solution x(2) is inferior to x(1). Any ember of such vectors that is not dominated by any other member 
is said to be nondominated or noninferior.  This research gets the Pareto’s frontier for solutions that 
minimize the makespan and the mean flowtime. 
 
3.3 Multiobjective Genetic Algorithms 
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There are two types of evolutive algorithms for mulitobjective optimization. Algorithms that do not 
incorporate the Pareto’s optimality concepts for the selection process and algorithms that hierarchize the 
population according to Pareto’s domination.  
 
For the algorithms that consider Pareto optimization there are two generations. The first generation of 
algorithms utilizes a ranking for the best individuals. The second generation uses the concept of elitism 
for the individuals’ selection and for the selection of secondary populations of individuals. 
 

 

 
Figure. 1 A Pareto’s Frontier 
 

4. GENETIC OPERATORS 

4.1 Crossover 
 

The genetic algorithm was implemented in C. The individuals use a non binary representation for the 
chromosomes using the jobs sequence as in Kobayashi et al [1995]. 
 
The selection of chromosomes for crossover is made by the creation of an elite subset. From the original 
population, the algorithm selects the individuals with better qualifications (  8) and then randomly 

selects the individuals that will perform the crossover. The selected individuals can have different  
.This type of selection does not use the crossover probability because the elements in the elite subset will 
perform the crossover with the other elements in the subset until the population generated reaches the 
same size than the original population. 

≥if

if

 
Due to the nonbinary chromosomes, we used two crossover: 1) a one point crossover with a reparation 
algorithm proposed by Jayaram [16], that forces solutions to be feasible, and 2) the subsequence 
exchange crossover presented by Kobayashi et al [1995]. 
 
4.1.1 One Point Crossover 
 
It randomly choices a point in the chromosomes chosen to be the parents and from this point, it 
interchanges the information from both chromosomes to generate new individuals. This crossover 
method can generate invalid chromosomes and requires a reparation method that restores feasibility in 
the chromosome. The algorithm has the following steps: 

 
1. It randomly selects a cutting point in the parent chromosomes.  
2. It copies in the new individuals, the chain  before the cutting point, in the chromosomes 

parents 
3. In the first individual generated, the empty positions will be filled with elements from the 

second parent that do not exist in the first individual, in the same order that they appear 
in the second father.   
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4. In the second individual generated, the empty positions will be filled with elements from 
the first parent that do not exist in the second individual, in the same order that they 
appear in the first father. 

5.  
 

FIRST 
GENERATION 

Author Characteristics Year

VEGA Schaffer Divides population according to the number of  
objectives, gives priority to only one.  198

4 
MOGA 

 
Fonseca and  

Fleming, 
Hierarchize the population according to Pareto
dominance with niches. 

  
199
3 

NSGA 
 

Srinivas  y  Deb Hierarchize the population by slides. Keeps 
diversity.  

 
199
4 

NPGA 
 

Horn, Nafpliotis and  
Goldberg 

Make tournaments between individuals. 
Hierarchize the population according to the
tournament. 

 199
4 

 

SECOND  
GENERATION 

Elitism + Niches 

Author Characteristics Year

SPEA Zitzler  and  Thiele Uses a population to help nondominated
individuals. Hierarchize the external population. 

  
199
9 

PAES Knowlesand and  
Corne 

Uses an auxiliar population for the 
nondominated individuals. 
Divides the objective spaces in grids. Make
selection by elitism and Pareto.  

 
199
9 

 

NSGA II 
 

Deb, Agrawal, Pratap 
and  Meyarivan 

 Hierarchize population according to NSGA:.   
200
0 

PESA 
 

Corne, Knowles and 
Oates 

Uses auxiliary population for the nondominated
individuals.. 

  

Divides the objective space in grids and uses a
selection criterion based on elitism and Pareto. 

 
200
0 

NSGA-II  Ded and Goel Controls elitism. 200
1 

SPEA2  
 

Zitzler,  Laumanns 
and  Thiele 

Based on Pareto’s dominance. 
Keeps diversity. 

 
200
1 

Figure. 2 Multiobjective algorithms’ evolution 
 

4.1.2 Subsequence Exchange Crossover 
 

This method interchanges subsequences that have the same elements in each chromosome parent an 
interchange the chains. It originates valid chromosomes and does not need a reparation algorithm. 
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Figure. 3 Subsequence Exchange Crossover   
 

4.2 Mutation 
 

Mutation is made by interchanging adjacent jobs in the chromosome. The jobs used for mutation are 
chosen randomly. 
 
During all experiments, the population size is set is set as 25, the mutation rate as 0.1 with only one 
interchange in the chromosomes. In the Pareto partitioning method, the number of partitioning region is 
set as the 502.  

 
5. GENETIC ALGORITHM UTILIZED 

 
The genetic algorithm proposed is based in the Pareto partitioning algorithm proposed by Takanori 
Tagami and Tohru Kawabe [1998].       

 
The Pareto partitioning algorithm consists in dividing the solution space in specific regions, as a grid 
where every objective function has a certain number of specific regions and the objective is to put 
solutions in the Pareto’s frontier. The evaluation function (fitness) for each individual pi is defined as fi = 
1/ni. The values of ni denote the number of solutions nondominated in the region pi. 

 
There are algorithms that work with a very similar method and divide the solution space in cubic 
subspaces that constitutes a grid where the objective is to locate individuals that are nondominated in an 
uniform and distributed way in the Pareto’s frontier. Those algorithms are: PAES (Pareto Archived 
Evolution Strategy), Knowles and Corne, (1999), PESA (Pareto Envelope-based Selection Algorithm),  
Knowles and Corne, (2000), PESA II  Corne, Jerram, Knowles and Oates (2001).  

      
The Pareto partitioning algorithm partition can be stated as follows:   

 
Algorithm 
 

  Step 1    Generate a random initial population 
with M individuals. 

  Step 2  Calculate the makespan and the 
flowtime for each individual in the 
initial population. 

  Step 3 Calculate the fitness of each 
solution in the current population 
according to the multobjective 
ranking.  
i) Assign a rank Ri to every 
individual in the population. The 
rank will correspond to the number 
of members in the population that 
dominate the individual.  
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ii) Assign the fitness fi to all the 
nondominated individuals. The 
evaluation function fi of every 
individual pi is defined as follows:   

))(Rf(f=f isi 1max −∗−  

)f(f
M

=fs minmax1
1

−
−

   

 
where M denotes the population 
size, fmax and fmin denote the 
maximun and the minimum fitness 
values.  

  Step 4 Generate a new population from 
the initial population, using the 
crossover operator  

  Step 5   Apply mutation to the new 
population. 

  Step 6   Apply the evaluation function 
(Fitness) to both populations. 

  Step 7 Select M individuals from all 
population on the basis of their 
fitness.  

  Step 8   If a terminal condition is satisfied, 
stop and return the best individuals. 
Otherwise go to  Step 2. 
  

6. COMPUTATIONAL RESULTS 
 

We tested several sizes for the numerical examples presented by Bagchi in [1999]. The algorithm is 
implemented in C (gcc Linux/3.2.2) V 5.1 under Linux.  We tested problems that range from 15 to 25 jobs 
and from 10 to 15 machines. The parameters considered are: population size ( ),  mutation probability 

( ), number of regions in the Pareto’s partition  and maximum number of generations ( ).    
The values for the parameters are reported in Table 1. 

sp

mp 2)( sp maxt

 
 

Parameter Value 

sp         50, 70, 100 

2)( sp  2
50)( , ,  2

70)( 2
100)(

mp                0.1 

maxt     100, 300,400,500 

Table 1 
 

Figure 4 shows the graph obtained with the settings that yield the best results for an example with 20 jobs 
and 10 machines. Figure 5 corresponds to an example with 25 jobs and 15 machines. The Pareto’s 
frontier can be seen in both graphs. 
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Figure. 4 Example with 20 jobs and 10 machines 
 

Execution times in seconds of CPU, were obtained with the clock functions in language C for unix. We 
tested instances with 25 jobs and 15 machines and with 20 jobs and 10 machines and reported the 
execution times.   

 

 
 

Figure. 6 Example with 25 jobs and 15 machines 
 

Tables 2 and 3 show the execution average time in seconds for different population sizes ( ), and with 
generations ranging from 100 to 1000.  Table 4 shows that with a bigger of jobs and machines, the 
average execution time increases with the size of the population and the number of generations,   
although the time is less for =50 and =100. For our tests the best results were obtained with a 

size of =100 and   =500 with the same execution time for both examples.  

sp

sp maxt

sp maxt
 

Figure 7 shows the average computational time and the population size for different number of 
generations. It can be seen that the computational time increases for bigger instance 
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sp  maxt  
  (100 
,1000) 

Execution 
Average 

Time 

   50  (0.01 , 
0.02) 

    0.018 

   70   
(0.02,0.04) 

    0.029 

100 (0.04,0.05)     0.046 
 

Table 2  Execution Time (secs) for  n =20 and m =10 
 

5. CONCLUSIONS 
 
The implemented selection produces diversity in the population, because it does not reproduce 
children equal to their parents. In addition, 65% to 70% of the individuals are apt for crossover. 
From both crossover methods, the ‘subsequences interchange’ has more computational work, 
because the number of comparisons necessary to find the subsequences with equal elements. 
When the chains contain greater number of elements (20 to 25), the resultant chains do not 
present a great change among them and its corresponding parents. This situation limits the 
exploration, since it generates very similar or equal chains sometimes. 
 

      

sp  
maxt  

(100 , 
1000) 

Execution 
Average 

Time 

   50 (0.02 , 
0.03) 

    0.024 

   70 (0.03, 0.04) 0.035 
100 (0.04 , 

0.06) 
0.052 

 
Table 3  Execution Time (secs) for  n =25 and m =15   

 
It is difficult to find subsequences of more than 5 characters with significant changes. If the 

chains correspond to small subsequences, they may be different between them but very similar 
to their parents, and a mutation procedure is necessary. For this reason, the method of crossover 

with chromosome reparation is used. For more than 10 works, the method of crossover with 
chromosome reparation offers a good exploration in a smaller computational time. 

 
 
 
 

N 

 
 
 

m 

sp  =50 

mp =0.1 

maxt (100,1000) 

sp  =70 

mp =0.1 

maxt (100,1000) 
20 10           0.018            0.029 
25 15  0.024 0.035 

 
Table 4  Execution Time (secs) 

 
In the mutation case, tests were done interchanging adjacent and random works. Better chains are 
obtained with a randomly mutation. Best results are obtained with a population of 100 individuals and a 
probability of 0.1 in 500 generations, as shown in table 5. 
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Parámeter

s 
Best 
Value 

sp  100 

2)( sp  2
100)(  

mp  0.1 

maxt  500 

 
Table 5 Best Parameters       
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Figure 7 Time vs. Population size 
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