
      REVISTA INVESTIGACIÓN OPERACIONAL                                                                                 Vol., 28 No2, 131, 142,, , 2007 

 
 
 
 
 

ITERATIVE MULTIPLE COMPONENT ANALYSIS 
WITH AN ENTROPY-BASED DISSIMILARITY 
MEASURE                                                                             
Vincent Vigneron                                                                                                                                                         
Equipe MATISSE-SAMOS  CES CNRS-UMR 8173 , Université Paris 1                                                                            
IBISC CNRS FRE 2494 , Université d'Evry, 91020 Courcouronnes, France                                                                     
,                                                                                                                                                                 .      

ABSTRACT                                                                                                                                                                                                                         
In this paper we study the notion of entropy for a set of attributes of a table and propose a novel method to measure the 
dissimilarity of categorical data. Experiments show that our estimation method improves the accuracy if the popular 
unsupervised Self Organized Map (SOM), in comparison to Euclidean or Mahalanobis distance. The distance comparison is 
applied for clustering of multidimensional contingency tables. Two factors make our distance function attractive: first, the 
general framework which can be extended to other class of problems; second, we may normalize this measure in order to 
obtain a coefficient similar for instance to the Pearson’s coefficient of contingency.                                                                                               
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RESUMEN                                                                                                                                                                                                                
En este trabajo estudiamos  la noción de entropía para un conjunto de atributos de una  tabla y  proponemos un  novedoso 
método para medir la disimilitud de datos categóricos. Experimentos muestran que nuestro método de estimación mejora la 
acuracidad si el popular  Self Organized Map (SOM) no supervisado, en comparación al las distancias Euclidiana o de 
Mahalanobis. La comparación de las  distancias es aplicado para el clustering de tablas multidimensionales de contingencia. 
Dos factores hacen de nuestra función de distancia  atractiva: primero, el marco de trabajo  general el que puede ser 
extendido a otras clases de problemas; segundo, puede normalizar esta medida para obtener un coeficiente similar por 
ejemplo para el coeficiente de Pearson de contingencia            

1. MOTIVATIONS 

Clustering is the problem of partioning a finite set of points in a multidimensional space into classes 
(called clusters) so that points belonging to the same class are similar. Measuring the (dis)similarity 
between data objects is one of the primary tasks for distance-based techniques in data mining and 
machine learning, in particular in the case of categorical data. If the data vectors contain categorical 
variables, geometric approaches are inappropriate and other strategies have to be found [Andersen, E. B. 
(1989).]. This is often the case in applications where the data are described by binary attributes [Gowda 
and .Diday,  1992,  Gower and Legendre, 1986]. These methods transform each data object into a binary 
data vector, at which each bit (0 or 1) indicates the presence/absence of a positive attribute value. 

 
Many algorithms have been designed for clustering analysis of categorical data [Huang.(1998), Guha, 
Rastogi and Shim (2000), .Vigneron, Maaref,  Lelandais and   Leitao  ( 2003), Cottrell,  Letremy, Roy 
(1993)]. For instance, entropy-type metrics for similarity among objects have been developed from early 
on. SOM is a well known and quite widely used model that belongs to the unsupervised neural network 
category concerned with classification pro-cesses. In this paper, we focus on the metric choice for the 
prototype to observation distance estimation during the self-organization and exploration phases. The 
distance most widely used in SOM is the Euclidean distance that considers each observation dimension 
with the same significance whatever the observation distribution inside classes. Obviously, if the data set 
variances are not uniformly shared out among the input dimensions, classification performances 
decrease. We address here the following questions: (i) what class of discrepancy functions admit efficient 
clustering algorithms? (ii) how to visualize the classes and the explanatory variables ? For answers to (ii), 
see e.g. Blayo [Blayo. F.; and P. Demartines (2000), ], Kohonen [1999] or Kruskal and Wish [1978]. The 

 131



problem cor-responding to the question (i) becomes more challenging when the data is categorical, that is 
when there is no inherent distance measure between data objects.  As a concrete example, consider a 
database that stores informations about physical characteristics. A sample is a tuple expressed over the 
attributes 'Age',' Sex', 'Height' and 'Hair'. An instance of this database is shown in Table 1. In this setting it 
is not immediately obvious how to define a quality measure for the clustering. On the other hand, for 
humans, a good clustering is one where the clusters are informative about the tuples they contain, i.e. we 
require that the clusters be informative about the attribute values of the tuples they hold. In this case, the 
quality of measure of the clustering is the information that the clusters hold about the attributes. Our main 
contribution lies in the use of a non-Euclidean metric in the learning or the exploration phase. 

 
Age Sex Height Hair 

Old Young Male Female Tall Short White Brown Blond 
0 1 0 1 0 1 0 1 0 
0 1 0 1 1 0 0 0 1 
1 0 1 0 0 1 0 0 1 
0 1 1 0 1 0 1 0 0 

 
Table 1. An instance of the physical characteristics 
 

This paper is not (dire1ctly) concerned in numerical estimates of multidimensional entropy such as  
sample-spacings, kernel density plug-in estimates, splitting data estimates, etc.  
The rest of the paper is organized as follows. Section 3 set down notations and shows the equivalence 
between the Rényi entropy-based dissimilarity measure and 2χ divergence. In section 4, we investigate 
the proposed measure properties and its computational complexity. Experiments with artificial data are 
presented in section 4. Conclusions, suggestions for drawbacks and further work are given lastly. 

    2. ENTROPY OF A TABLE OF CATEGORICAL DATA 

Let  and J I  two finite sets indexing two categorical variables and let M  be a table of frequencies 
(Table 2). Let ijf  be the frequency (usually a integer) in the cell corresponding to the th row and th 

column of an  contingency table and let 
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This shows that . The non-negative quantity 12 1 2D D D≤ + 12 1 2D D D− −  can therefore be considered as 
a measure of the dependence of the 2 attributes. Now,  
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Table 2. contingency tables. m n×
 
can also be interpreted in terms of Kullback-Leibler's measure of directed divergence (see section 3). Let 
us find its value for a small departure from independence . Let ije . .ij i j ijp p p e= + , then from (3), 
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Using Taylor's development of ln(1 )x+ in (4), we have: 
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In (6), as such upto a first approximation, 
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The above proof gives an interesting interpretation for the Chi-square which is now seen to represent 
twice the (approximated) difference between the observed and the maximum entropy. This shows that 
Chi-square is intimately connected with entropy maximization despite many lamentations of statisticians 
that Chi-square does not represent anything meaningful. Good [1965] gave a comprehensive discussion 
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of the use of maximum entropy principle in the case of multidimensional contingency tables. Tribus [1979] 
brought out the relationship between Chi-square test and maximization of entropy in contingency tables. 

 
A measure of divergence (or deviation to independence) can be derived from (5) [Stuart, Ord and  Arnold 
(1999)] if we observe that: 
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where C is the Euler constant2 and K  is the greatest value for . (9) is an other measure of divergence 
to independence in a contingency table but with a penalization term on the cells.  

k
C+ln K 

   3. MAXIMUM ENTROPY AND MINIMUM CHI-SQUARE 

As a whole, information theory (IT) provides the necessary foundations for the statistical analysis of 
categorical variables. It may be used to characterize single variables (entropy) as well as group of variables 
(joint entropy, mutual    information, conditional entropy). A major advantage of information theory is its 
nonparametric nature. Entropy does not require any assumptions about the distribution of variables. 

 
Consider the general class of measures of directed divergence 
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. This is the so-called Kullback-Leibler 

measure of divergence we use in (1). This measure is non-negative and vanishes iff  Table 3 , ,ij ijq p i= ∀

 
      2 Euler constant . C=0,577215
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shows several common discrepancy measures, in which f is twice differentiable and a strictly convex 
function. These functions also attain their global minimum when p q= .  

Some special cases can be derived from (11). For instance, when
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4. GENERALIZED CONTINGENCY TABLE 

4.1 Notations 

We consider the situation in which  individuals answer to Q questions (variables). Each question has 

possible answers (or modalities). The individuals answer each question 

N
qm (1 )q q Q≤ ≤  by choosing only 

one modality among the modalities. If we assume that qm 3Q =  and 1 2 33, 2, 3,m m m= = =  then an 

answer of an individual could be    (  where 1 corresponds to the chosen modality for each 

question. Let us denote by the total number of all the modalities:

0,1,0| 0,1| 1,0,0)

n
1

Q
qq

n
=

= m∑ . To simplify, we can 

enumerate all the modalities from 1 to n  and denote by (1 )iZ i n≤ ≤ the column vector constructed by the 

m answers to the i th modality. The th element of the vector k iZ  is 1 or 0, according to the choice of the 

individual . Let k { }( )m n ijK k× =  the complete disjonctive table where 1ijk = if the individual i  chooses the 

modality j and 0 otherwise (see Table 4). 
 

The marginals of the rows of  K  are constant and equal to the number of questions, i.e. 
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Q
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n
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=

=∑ K  is essential if we want to remember who answered what, but if we only have to study 

the relations between the $Q$ variables (or questions), we can sum up the data in a cross tabulations table, 
called Burt matrix, defined by TB K K= , where  is the transposed matrix of TK K (see Table 4). 
 
B  is a  symmetrical matrix, composed of n n× Q Q×  blocks, such th t the  block 

 contains the m answers to the question .  The block 

( q rm m× )

)Q(1 ,qrB q r< < r qqB is a diagonal matrix, whose 

diagonal entries are the numbers of individuals who have respectively chosen the modalities 1, for the 

question . The Burt table  has to be seen as a  generalized contingency table, when more than 2 
kinds of variables are to be studied simultaneously (see [Lebart,  Morineau and Piron (1995)])  In this case, 
we loose a part of the information about the individuals answers, but we keep the information    regarding 
the relations between the modalities of the qualitative variables.  Each row of the matrix 

, qmL

q ( )n nB ×

B  characterizes a 
modality of a question (or variable). Let us denote by the entries of the matrixijb B , then the total sum of all 
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4.2 Clustering row-profiles 

The classical multiple correspondence analysis (MCA) [Saporta (1992)] is a weighted principal component 
analysis (PCA) performed on the row profiles or column-profiles of the matrix R , each row being weighted 
by .ip . MCA would provide a simultaneous representation of the M  vectors on a low dimensional space 
which gives some information about the relations between the M variables and minimize Chi-square. In 
Cottrell, . Letremy Roy (1993) consider the Euclidean distance between rows, each being weighted by .ip , to 
analyse multidimensional data, involving qualitative variables and feed a Kohonen map with these row 
vectors. 
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1m  2m  3m  

0 1 0
0 1 0
0 0 1
1 0 0
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 1 0
0 0 1
1 0 0

 

0 1
1 0
1 0
0 1
0 1
0 1
1 0
1 0
1 0
0 1
0 1
1 0

 

0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 1
0 0 1 0
0 0 1 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 0 1

(9 9)B ×→ =  

4 0 0
0 5 0
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2 2
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2 2 2
2 3 1
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0 1 3 2

1 0 1
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2 0
2 1
1 3
1 2

2 0 0 0
0 3 0 0
0 0 4 0
0 0 0 3

Table 4. Upper: disjunctive table (12 9)K × . Lower: Burt table    from (9 9)B × (12 9)K × . 
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This gives a family of measures that may be called Hellinger’s generalized measures of divergence 

[Hellinger (1909]. This distance may be chosen so that 2 , 1, 2,k h h= = L  . So it is equivalent to compute a 

profile matrix C whose entry is    1
1 1/ 1 1/
. .1 . .
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L ⎟  and to consider the “distance” 

{ }( ), ( ')d c i c i between its rows. A remark has to be made at this stage: two modalities will be close if there 
are a large proportion of individuals that choose them    simultaneously.  We would like to get these 
individuals grouped in the same region. We choose the clusters centers that minimize (13). This can be 
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done in maximizing the likelihood function. We choose the cluster vector so as to minimize (13) so that the 
minimum divergence estimators ( )1, , nθ θL are obtained by solving the equations: 
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1 0
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with .jj

θ θ=∑ . These equations leads to Best Asymptotic Normal estimates forθ 's. However even in 

simple cases, these are not easy to solve. 
 

It is possible at this stage to use a Kohonen algorithm to get such a representation (for which there is no 
more constraint of linearity of the projection), as it has been already proposed by [Ibbou and Cottrell (1999)]. 
We propose to train a Kohonen network with {it row-profiles} from table C  as inputs and to study the 
resulting map to extract the relevant information about the relations between the Q rows.  
 
5. KOHONEN ALGORITHM 
 
Let us describe the delicate problem of learning the code vectors. The code vectors are initialized at 
random.  At each learning step : 

1 one row of the matrix C  is presented to the network, i.e.   

1
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3 we update the code vectors of the unit 0( )uω and its neighbours according to the formula  
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(16) 

where  is the neighbourhood function, which depends of the number of iterations and the winning 

unit.  More precisely, the neighbourhood function 
0( , )u tΛ

0( , )u tΛ  and the adaptation parameter ( )tε are 
decreasing-time functions: we begin with a large radius and we decrease it to zero. See [. Kohonen (1989)] 
or Cottrell, . Letremy Roy (1993) for the definitions and properties of this well-known and largely used 
algorithm.  The adaptative parameter ( )tε  verifies the Robbins-Monroe conditions: ( )

t
tε = ∞∑  

and .  2 ( )
t

tε < ∞∑
 
These steps are repeated about 4 or 5 times over the total number of input samples.  Generally, the number 
of modalities is not very large; the training of the network is consequently very fast. This method is very 
interesting from the computing time saving point of view. If we consider the case of very large data files (by 
examples in marketing or insurance companies), it happens that the complete disjunctive table has hundred 
of variables and hundred of thousands (sometimes more) individuals. The use of classical MCA can take 
several hours to classify the individuals into groups by a hierarchical classification. Using this method, it is 
sufficient to compute the Burt matrix and to train the Kohonen network with its rows.   
 

 138



To represent the individuals on the same Kohonen map, we proceed the following way: we use the rows of 
the matrix  K . For example, the individual j corresponding to the row-vector jk will be affected to the unit 

such that pu

(17) *( )arg minp j
u

u uω= − k  

where  is the final value of the weight-vector *( )uω ( )uω  after the training step. 

After training, each row profile can be represented by its corresponding winner unit. Because of the 
topology preserving property of the Kohonen algorithm, the representation of the  inputs on the grid 
emphasizes the proximity   between the modalities of the  questions (or variables). 

ic
n

Q

Example(Binary toy-problem) 
 
Let us give for instance a two colour image.  This can help to illustrates a problem of binary variables. The 
image I  as depicted in Fig. 1, is the image of rice grains. I  can be seen as a (  matrix 
containing only 0/1 (pixels) values.  

100 256)×

 

 
Figure 1. binarized image of rice grains   

To give a representation of the columns of I , we train a Kohonen network with the 256-dimensional rows of 
the matrix . After training, each row profile can be represented by its corresponding winner unit. The 
snapshot of Figure 2 confirms the effectiveness of the proposed method. Figure 2 reports the Kohonen grid 
state during the learning stage for  and 5000  iterations: '+' are the pixels columns and ‘•’ the 
units of the Kohonen grid, that appear linked in a 8 nodes neighborhood . We have a 256 variables problem.  

C

1,100,500t =

 
A comparative study of the metric is reported to this particular data set for which an expected property could 
be defined. We compute the Euclidean distance between pairs of row-profiles of data matrixC . There 
are different ways to compute such distance. Other distances are defined as follows: Euclidean distance 

, Mahalanobis distance ( ) , where V  is the 
sample covariance matrix. Figure 3.a plots the kernel-density estimation of the distributions of the distances 
between the variable row-profiles using Euclidean distance ('--'), Minkowski  (' ') in addition to our  
entropy-based metric with  ('_____'). Clearly, the latter is the most favourable metric because the 
support of the distribution is larger than the support of the other distribution, hence the metric is capable to 
take into account a larger spectrum of distances. 

n n×

( ) (( ) ( ') ( ) ( ')Tc i c i c i c i− − ) ( )1( ) ( ') ( ) ( ')Tc i c i V c i c i−− −

. .− −
10k =
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Figure  2. Snapshots of the learning stage with Kohonen algorithm and our proposed 
entropy-based metric. 
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Figure . 3.. Distributions of the inter row-profiles distances. a) comparison of  
Euclidean, Mahalanobis and entropy-based metric ($k=10$). b) comparison of 
distance distributions for . k=2,4,6,8,10

 Note that for the special case of k=2, the metric gives the Euclidean metric. 

6. CONCLUSION 

In categorical data analysis, a key role is played by the computation of divergence measures. Many 
measures have been proposed it the literature, although a comparison that investigate their applicability to 
real data have never been reported. The main difficulty is due to the lack of a standard in the representation 
of categorical objects and the necessity of implementing many measures. In this work, a entropy-based 
discrepancy measure is used as a metric with a Kohonen algorithm to learn a set of binary variables. 
Interestingly, such a property has been observed only for some dissimilarity measures, which actually show 
very different behaviours. There are a number of possible directions for future research. One is to 
experiment whether other data sets with fully understandable and explainable properties are related to the 
proximity concept. Another direction is to extend the empirical evaluation to dissimilarity measure defined on 
probabilistic categorical objects. A third direction is to develop new dissimilarity measure for categorical 
objects that removes the two basic assumptions, namely independence and equal attribute relevance 
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