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ABSTRACT        
In this work we propose a new approach for estimating multilevel models in contingency tables. This approach is based 
mainly on the use of the linear model as fundamental base to elaborate inference methods and the application of 
algorithms of iterative generalized least squares for the estimation of the fixed and random parameters. As illustration it is 
considered a logistic regression model in two levels and the proposed procedure is applied to a real problem from the 
literature. Finally, we carried out a brief simulation study to examine the behaviour of the estimates. 
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RESUMEN 
En este trabajo se propone un nuevo enfoque para la estimación de modelos multinivel en tablas de contingencia. Este 
enfoque se basa principalmente en el uso del modelo lineal como base fundamental para elaborar métodos de inferencia 
y el empleo de algoritmos de mínimos cuadrados generalizados iterativos para la estimación de los parámetros fijos y 
aleatorios. Como ilustración se considera un modelo de regresión logística en 2 niveles y se aplica el procedimiento 
propuesto a un problema tomado de la literatura. Finalmente se realiza un breve estudio de simulación para examinar el 
comportamiento de las estimaciones. 

 
1. INTRODUCTION 
 
The analysis of a sample of contingency tables plays an important role in many fields of research. For 
example, samples of contingency tables are obtained in educational studies, where the students are 
grouped in schools; in genetic studies, where the individuals are grouped in families; or in meta-analysis, 
where the data give rise to correlated responses within each study reported. The similarity among the 
individuals within the same group establishes a structure of ‘intra-group’ correlation and hence the 
independence assumption underlying the use of many standard statistical methods is violated. An 
appropriate approach is to use multilevel analysis (Goldstein, 1995), which explicitly takes into account 
within and between variance. The multilevel models also are referred as random coefficient models 
(Longford, 1995) or hierarchical models (Bryk and Raudenbush, 2002). General ideas, methodological 
formulation and guidelines for implementing hierarchical linear modeling are available in Ojeda et al. 
(1999).    
 
The class of nonlinear multilevel models enables a more realistic process for modeling discrete data in 
many common situations, such as mentioned above. Various methods have been developed. Liang and 
Zeger (1986) propose the estimation of models with correlated binary responses using generalized 
estimating equations (GEE). Goldstein (1991) proposed a procedure for the analysis of multilevel 
nonlinear models using a linearization. Lee and Nelder (2001) introduced hierarchical generalized linear 
models which extend generalized linear models to include random components in the linear predictor with 
arbitrary distribution. There are several computational algorithms for fitting multilevel models. Longford 
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(1994) gives a brief summary of computational algorithms for binary data. In addition, there is a number of 
specialized software implements multilevel modeling (Raundenbush et al., 2000; Rasbash et al., 2000; 
Hox, 2002). 
 
The flexibility of multilevel models has resulted in an increasingly important role of this technique in both 
statistical theory and applications. However, some troubles are frequently encountered in the analysis of 
non-normal multilevel models. This class of models frequently leads to intractable likelihood functions 
(Breslow and Clayton, 1993). To avoid this, various approximated solutions have been proposed 
(Goldstein, 1991; Schall, 1991; Goldstein and Rasbash, 1996). In the binary case the applications of many 
approximated methods show occurrence of large biases in parameter estimates (Rodriguez and Goldman, 
1995). In the recent years, several alternatives methods to eliminate the biases have been applied 
(Rodriguez and Goldman, 2001; Yun and Lee, 2004). Some of them are computationally intensive and 
therefore are not appropriate for exploratory work. Of particular value will be to explore new methods for 
providing the researcher with adequate tools for the efficient estimation of multilevel models for binary 
data. 
 
In this work we propose a new estimation method based on the use of the Generalized Least Squares. Up 
to now the use of the Generalized Least Squares for analysis of categorical data has been restricted to the 
case where the model parameters are fixed (Grizzle, Starmer and Koch, 1969). In this paper we extend 
this strategy to the case of multilevel model for the analysis of a sample of contingency tables. 
 
In this class of analysis a large number of functions of the unknown true cell probabilities may be of 
interest. The values of these functions become realizations of the dependent variable in a multilevel linear 
model. Dependencies between the observations are modeled via random effects. Once the model is 
formulated, it is possible to apply the asymptotic theory of estimation in the framework of the general linear 
model. The estimation procedure is based on iterative Generalized Least Squares. 
 
The validity of the procedure presented in this paper is explored by means of the logit function. Other 
functions of the unknown true cell probabilities (see, e.g., Wickens, 1989) could also be considered 
permitting a greater flexibility in the data modeling for a sample of contingency tables. We develop a 
multilevel model, in which the heterogeneous treatment effects as measured by the log-odds ratio are 
regarded as random effects from a population of contingency tables. We motivate the application of the 
proposed procedure with a published example. A brief simulation study has been carried out to examine 
the efficiency of the estimates.   
 
The use of the general linear model with categorical data permitted to unify the handling of an extensive 
range of problems that previously had been dealt by different techniques (see, eg., Forthofer and Lehnen, 
1981; Drew, 1985). In the same way, we feel that the procedure presented here can be utilized to develop 
a unified approach to modeling of a sample of contingency tables.  
 
2. A MULTILEVEL MODEL FOR PROPORTIONS    
 
Suppose a sample of m contingency tables where the rows, called subpopulations, represent s levels of 
an explanatory variable or combinations of levels of several explanatory variables. Independent random 
samples of size nij (i=1,...,s; j=1,...m )  are selected from the rows,. The responses are classified 
according to two categories. 
 
Let  

( )TT
js

T
j

T
jj ππππ L,, 21=  

be, where  
( )Tijijij ππ −= 1,π  

is a vector of probabilities for the j-th table.   
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In the analysis of categorical data it is interesting to examine the relationship between a function of the 
probabilities and certain explanatory variables. The function can be simple (e.g., the same probability) or 
complex (e.g., a rank correlation, any coefficient between two response variables, etc). A set of different 
types of functions of interest may be represented in a relatively simple manner using matrix notation 
(Forthofer and Koch, 1973). In this paper we will be mainly concerned with the logit function. Now we 
consider a 2-level hierarchical data structure assuming a set of level 1 units (subpopulations) nested 
within level 2 units (tables).  
 
Logit response models for the data of the jth table have response functions of the form  
 

( ) ( ) log jjjj ππ BF = ,  
 
where the elements of  are the coefficients of the natural logarithms of the vector jB jπ . In section 5 we 
will present discusses an application of the logit function. 
 
Once the function ( )jj πF  has been specified, it can be used as dependent variable in a multilevel linear 
model. In 2-level models, separate level 1 models are developed for each of the m tables. 
     
For the jth table the level 1 model can be expressed as:  
 
 ( ) jjjj βXF =π , j=1,2,...,m;                  (1) 

 
where  is a s x t design matrix with rank t and jX jβ  is a  t x 1 vector of unknown coefficients. 
 
The variability of the m coefficients  
 
( )mk,1k, ββ L   
 
pertaining to the kth variable (k=1, ... ,t) can be explained by an additional set of variables  
measured at level 2. It then follows that: 

qZ,,Z,Z L21

 

jkkjkjk
T uZ += Γβ ,  j=1,2,..., m;             (2) 

 
where  are the values of the  variables at level 2 in the jth table, jkZ kq kΓ  is the  vector of the 

coefficients associated with explanatory variables at level 2 and  are the non observable level 2 
random errors.  

1×kq

jku

 
The equation (2) can be more succinctly expressed as:  
 

 , j=1, 2,..., m;                               (3) jjj uZ += Γβ
 
where  
 

( )TT
jtj1j Z,ZZ Ldiag=   

 
is a  block-diagonal matrix, Q×t tqqq L++= 21Q ,  
 

 206



( )tΓΓΓΓ ,,, 21 L=   
 
is the  vector of coefficients and  is the 1Q× ju 1×t  vector of level 2 random errors. 
 
Substituting equation (3) into equation (1) we obtain a single expression for the model given by 
   

( ) jjjjF uXA += Γπ ,    j=1,2,..., m;                                
 

where . jjj ZXA =
 
3. THE ESTIMATION PROCEDURE 
 
Let  be the vector of observed proportions, given in the same way as jp jπ , associated with the sample 
from the jth table. 
 
The model for the observed proportions is: 
 

( ) jjjjj euXApF ++= Γ ,      j=1,2,..., m;                            (4) 

where   is a  vector of  level 1 random errors.   je 1×s
 
Now we assume that: 
 

( ) ( ) 00 == jj     ; ue EE , 

( ) ( ) jujjjj
TT E, ΩΩ == uuee jeE    and    ( ) 0=T

jjE ue . 
 
The model (4) can then be expressed more compactly as: 

 

( ) eXuApF ++= Γ ,                          (5) 
 
where  
 

( ) ( ) ( ) ( )( )TTTT
mpF,,pF,pFpF L21= ,  

 

( )TmmZX,,ZX,ZXA L2211=   
 
and  
 

( )jXX diag=   
 
is a diagonal block matrix with  in the jthjX  diagonal block. The index j (j=1,2,..., m) is some what 

redundant to , since such a variable is constant within tables. Here  jX
 

( )TTTT
me,e,ee L21=  

 
and  
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( )TT
m

T
2

T
1 u,u,uu L=  

 
We assume that 
 

( ) ( ) ,00 == ue EE         ;  

( ) ( ) u
T

e
T EE ΩΩ == uu,ee  and ( ) 0=TE eu , 

 
where 

 
[ ]

jj eee ΩΩ ⊗= Idiag  and [ ]
jj uuu ΩΩ ⊗= Idiag  , 

with  representing the Kronecker product. ⊗
 
Assuming independence, we then say that the corresponding variance-covariance matrix has the general 
form:  
 

( ) e
T

u ΩΩ += XXV pF .  
 

It should be noted now that the model (5) is a special case of the General Linear Model: 
 
( ) *eApF += Γ ,  

 
where  
 

eXue* += , ( ) 0E * =e   
 
and  
 

( )( )( ) F
TE Vee ** = .        (6) 

 
For brevity we write: . ( )pFF VV =
 
If the variance-covariance matrix is known, Γ  can be estimated by the Generalized Least Squares 
(GLS),  i.e.  
 

( ) ( )pFVAAVAˆ 111 −−−= FF
TTΓ                    (7)   

 
However,  is usually unknown and no reasonable structure can be postulated because of lack of any 

information about it. A common practice is to replace it in the expression (6) by an estimate . This is 
done iteratively.  

FV

FV̂

 
The procedure starts with initial values of the fixed parameters. We propose those obtained from 
Generalized Least Squares (GLS) for categorical data ignoring the random errors at level 2 (see, eg.  
Wickens, 1989).  A consistent estimator for the covariance matrix of ( ) (  ln pBpF )=  (Forthofer and 
Koch, 1973) is the  matrix:  smsm×
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( )[ ] T11 BDpV̂BDV̂F
−−= ,                

 
where  
 

( )mB,,BB L1diag= ,  
 
D  contains the elements of the vector  
 

( )Tmp,p,pp L21=  

 on the main diagonal, and  is an estimation of the covariance matrix  of pV̂ p .  
 
If we consider the s subpopulations of the jth table as being uncorrelated with one another and we assume 
that the observed data follow a binomial distribution; then, a consistent estimator for the covariance matrix 
of  is the matrix: jp
 

( ) ( ) ( ) ( )( )ijsjij2jij1jjj pV̂,,pV̂,pV̂pV̂ Ldiag= , 
 

with the matrices 
 

( ) ( ) ( )
( ) ( ⎥⎦

⎤
⎢⎣
⎡

−−−
−−−=

ijijijij

ijijjij

ij
ijij pp        pp

pp    pp 
n

ˆ
11
111 ipV )  ,              i=1,2,…,s.  

 
Then, under the assumed independence, the estimated covariance matrix of the vector p is: 
 

( ) ( ) ( ) ( )( )jmj2j1diag pV̂,,pV̂,pV̂pV̂ L= .          
 
Once obtained suitable starting value for the fixed parameters we carry out an iterative Generalized Least 
Squares analysis, analogous to the described in Goldstein (1995) to fit (5). In each iteration we use the 
current estimates of the fixed and random parameters until convergence.  
 
4. A MOTIVATING EXAMPLE 
 
At present, it is remarkable the use of complexes data structures in scientific researches of different 
branches of knowledge. This tendency has stimulated the interest of the scientific community for multilevel 
modelling and as a consequence the application areas of the multilevel models have become considerably 
multiplied in the last years. 
 
In the area of the analysis of contingency tables the theoretical contribution on the multilevel modelling is 
not very abundant; however, in the last years the use of multilevel logistic regression has been increased 
for the analysis of such data [Efron, 1996, Hatzel et al, 2001, Lee and Nelder, 2002].  An important area of 
application of these models is meta-analysis.  
 
Meta-analysis can be considered as a multilevel statistical problem, because information within the studies 
is combined in presence of a potential heterogeneity between studies. (Thompson et al, 2001). In this 
paper a problem of meta-analysis de clinical trials with binary outcomes is put into the proposed multilevel 
framework. The standard models for a set of tables with binary response suppose a common effect within 
or between tables, given, for example, by a certain type of odds ratio. However, in practice, there exists 
heterogeneity among such odds ratios. The multilevel models treat the true log odds ratios of the specific 
studies as a sample with any unknown mean and standard deviation.       
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As a numerical illustration we use the data from Sacks et al. (1990) of 41 randomized trials of a new 
surgical treatment for stomach ulcers. With binary outcomes, the data form several  contingency 
tables.  

22×

 
0
1 jn  and  are the respective numbers of non occurrence and occurrence of recurrent bleeding in the 

traditional surgery (treatment group) and  and  the non occurrences and occurrences for the new 
surgery (control group). 

1
1 jn

0
2 jn 1

2 jn

 
Let  be the specific log-odds ratio of the jthjθ

 trial: 
 

( ) ( )
( ) ( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=θ

controloccurrence nocontroloccurrence
treatmentoccurrence notreatmentoccurrence

jj

jj
j PP

PP
log  

 
where  represents the probability for the jthjP  trial. 
 
The estimated log- odds ratio for trial  j, 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=θ 1

2

0
2

1
1

0
1

j

j

j

j

n
n

n
n

logˆ
j  

 
measures the excess of occurrence of treatment over control. In the ulcer data, the estimated log-odds 
ratios vary from  to ∞ , indicating heterogeneities among trials. The potential heterogeneity can be 
explored by using models that include parameters describing the variability in odds ratios among trials. 
Standard models for a set of contingency tables assume a common effect within or between tables 
described by a certain type of odds ratio.  Other more realistic models (Hartzel et al., 2001; Lee and 
Nelder, 2001) as the multilevel model discussed in this paper, uses random effects terms to describe the 
variability in conditional associations. We consider a multilevel logistic regression model, in which the 
heterogeneous treatment effects as measured by the log-odds ratio are regarded as random effects from 
a population of contingency tables. 

∞−

  
For illustration we consider the following multilevel model: 
 

( ) ijjijij xux 11000logit +γ+γ=π                                     (8) 
 

where  is the expected proportion of occurrences for the patients exposed to the ith type of surgery 

(0=traditional surgery, 1=new surgery ) in the jth experimental population (level 2 unit),  is a binary 
variable describing the structure of the level-1 units or subpopulations (traditional surgery = 0, new surgery 
= 1).  

ijπ

ijx

00γ  and 10γ  are the overall mean intercept and the treatment effect, respectively. At level 2, the 

random errors represent the heterogeneity among the treatment effects of individual trials.   ju1

 
The log-odds ratio between the responses of the individuals of two subpopulations  and i  for a table i ′ j  
is: 

( ) ( )=π−π
jiij 'logitlogit ju110 +γ . 
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The fit of the multilevel model provides a single summary such as an estimated mean and standard 
deviation of log-odds ratios for the population of tables. That is, 10γ  is the expected trial-specific log-odds 
ratio between treatment and response and  
 

( ) 2
1var uju σ=   

 
describes the variability in these log-odd ratios.  So the odds ratio is a random variable rather than a fixed 
parameter, and this should be reflected when interpreting the model. However, in practice, it is not 
possible to condition on the random effects because these are unobservable. Larsen et al, (2000) 
proposed median-based interpretation for both fixed effects and random effects.  
 
In this paper the main focus is on the accuracy of the estimates of the parameters ( , and 

) following the proposed procedure
00γ 10γ

2
1 )var( uju σ= 1 rather that describing the heterogeneity of association. 

 
In the next section a brief simulation study has been carried out to examine the efficiency of the estimates 
of the fixed and random parameters.                           
 
5. ANALYSIS OF SIMULATED DATA 
 
Using the example described in Section 5 as a framework for the simulation we generated data for a 2-
level hierarchical structure and fit the model (8) by the proposed procedure:  
 

i) to compare  the parameter estimates to the true value. 
 
ii) to assess the effect of  two different values of  the variance  on parameter estimates. 
     

    
For the simulations we kept the number of tables and subpopulation sizes as in the example. According 
estimates produced by the procedure for the example data, we chose the magnitudes for the 
parameters, 00γ , 10γ  and . In data generating the values of fixed parameters 2

uσ 00γ  and 10γ  were set to 

0.5 and 1.0, respectively.  Small and large level 2 variances were assumed (  and ); 
therefore, there are two different designs in the study. 

5.02 =uσ 0.12 =uσ

 
The independent random effects  were generated from a normal distribution with mean 0 and the 
variances before specified. The explanatory variable is fixed following the requirements of the contingency 
tables. 

ju1

( )ijπlogit  is obtained by adding the fixed part and level 2 random effects. Finally, the values of the 

response  are generated from a binomial distribution with parameter ijp ijπ  and . For each condition 
100 simulated data sets were generated. The estimation procedure converged in all 200 simulated data 
sets. 

ijn

 
Table 1 displays for each parameter the true value and the values of the estimated fixed and random 
parameter averaged over the 100 simulations conducted for each of two designs. The mean of the 
correspondent mean squared errors (MSE), and standard deviations of the estimates are also given.   
 

                                                           
1 The analyses were carried out using Matlab [Math Works Inc 2000], MLwiN [Rassbash et al. 2000] and 
Statistica [StatSoft Inc 2001]. The interested ones can request the author (minerva@icmf.inf.cu) the 
executable code in Matlab specially made for this paper.     
 
 

 211



 
        Table 1: Mean values of estimates for 100 simulated data sets for model (8) assuming 

 and  5.02 =uσ 012 .u =σ
 
Parameters 

True = 0.5 2
uσ

Estimate (s.e) (MSE) 
True = 1.0 2

uσ
Estimate (s.e) (MSE) 

00γ  0.519 (0.064) (0.004) 0.519 (0.070) (0.005) 

10γ  1.046 (0.173) (0.032) 1.008 (0.203) (0.041) 
2
uσ  0.908 (0.198) (0.206) 1.301 (0.287) (0.173) 

 
As we can see from Table 1 the procedure produced reasonably unbiased estimates for the fixed 
parameters 00γ  and 10γ . It is clear that the fixed parameter estimates are close to their true value, that is, 
the bias of the estimates is small. Table 1 show that the estimation procedure results in very small MSE 
for the fixed parameters.  
 
Note, however, that biased estimates are expected for the random parameters. We found that, on the 
situations considered, the proposed approach behaves poorly in estimating random parameter, and this 
situation is particularly bad when the variance of the random effects is small, the random parameters 
estimates are subject to large biases. When the variance is large, the mean of the estimates improves, 
nearing to the true value.  The values of MSE reported show that behavior of the procedure is better for 
estimating the fixed parameters. We see that, in general sense, the procedure overestimate the random 
parameters. 
  
Theoretical reasons that justify the unbiased estimations for the random parameters must be analyzed. 
When we refer to contingency tables empty cells and sparse tables can cause problems with severe bias 
in estimation of descriptive measures such as odds ratios (Agresti, 2002) On the other hand we know in 
statistical procedure, the sample size can strongly influence the results.  Especially, when we use 
multilevel model, it is preferable to have large sample sizes (Hox and Mass, 2002).  These facts suggest 
some cautionary remarks and supplementary researches are necessary.  
 
6. CONCLUSIONS  
 
In this paper we consider the linear model as a tool to formulate multilevel models for analyses a sample 
of contingency tables and we introduce an estimation procedure that may be applied to fit these models.  
The proposed approach relegates the analysis of a sample of contingency tables to a class of problem 
that can be handled by Generalized Squared Least. One of the main advantages of this procedure is its 
similarity with the case of the multilevel linear model; hence it can be used in situations where other 
methods impose the solution of complicated mathematical expressions.   
 
 We focused on the application of the proposed procedure to logit response models but this approach is 
more general and can be used for handle other functions of the probabilities. However, a further analysis 
of more complex models and extreme data sets is necessary to recommend this approach as a unified 
approach of modeling of a sample of contingency tables.  
 
A Generalized Least Squares analysis for hierarchical categorical data is simple but practical 
considerations become this approach less appropriated for sparse data. The sample response functions 
may then be ill-defined or have a singular estimated covariance matrix. Of particular value will be do a 
further research in this area. An additional analysis concerned with the effects of the sample size and 
different variance distributions on the efficiency of estimates also is necessary. Moreover it is important to 
say that some numerical modifications can be analyzed for improve the estimates of the random 
parameters 
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