
REVISTA INVESTIGACI ÓN OPERACIONAL Vol. 29, No. 3, 253-273, 2008

FUZZY OPTIMIZATION MODELS BASED
METAHEURISTICS
J.M. Cadenas*, J.L. Verdegay*
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ABSTRACT
Fuzzy Linear Programming models and methods has been one of the most and well studied topics inside the
broad area of Soft Computing. Its applications as well as practical realizations can be found in all the real world
areas. In this paper a basic introduction to the main models and methods in fuzzy mathematical programming,
with special emphasis on those developed by the authors, is presented. As a whole, Linear Programming
problems with fuzzy costs, fuzzy constraints and fuzzy coefficients in the technological matrix are analyzed.
Finally, future research and development lines are also pointed out by focusing on fuzzy sets based heuristic
algorithms.
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RESUMEN
Los modelos y ḿetodos de la Programación Lineal Borrosa han sido uno de los tópicos ḿas estudiados dentro
de la ampliáarea de la llamada Soft Computing. Sus aplicaciones ası́ como sus realizacioens prácticas pueden
hallarse en todas lasáreas del mundo real. En este trabajo se desarrolla una introducción b́asica de los principales
modelos y ḿetodos de la programación mateḿatica borrosa, haciendo especialénfasis en aquellos desarrollados
por los autores. Como un todo, los problemas de la Programación Lineal con costos borrosos, restricciones
borrosas y coeficientes borrosos en la matriz de tecnologı́a son analizados. Finalmente, futuras investigaciones
y lı́neas de desarrollo son apuntados enfocandose algoritmos heurı́sticos basados en conjuntos borrosos.

)

1. Introduction

It was in 1965, [32], that authors, is presented. As a whole, Linear Programming problems Professor Lofti A. Zadeh
first put forward the idea of the fuzzy with fuzzy costs, fuzzy constraints and fuzzy coefficients in the set. This enabled
a member to belong to a set in a gradual way, technological matrix are analyzed. Finally, future research and as
opposed to absolutely, as stated by classical set theory. In development lines are also pointed out by focusing on fuzzy
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sets other words, membership could be could be ascribed a value within tbased heuristic algorithms in[0, 1] interval
instead of the{0, 1} set. The applications in Linear Programming, Fuzzy Optimization, Heuristics Algorithms, d
developments that have arisen from this simple concept have been Intelligent Systems, Decision Support Systems.
such that it is nigh on impossible to calculate the volume of business they generate in today’s world. The functioning
of a whole range of products depends directly on the concept, from everyday appliances like the washing machine, the
microwave oven, the camera to highly sophisticated systems like braking systems in trains, control of furnaces, etc.
The need for an optimal solution, or the best solution among those available, in a properly proposed problem is
the rationale behind studying the theories and proposing methodologies appropriate to the scientific field in which
the problem arises. More specifically, although still a very broad area, is an important type of problems, known
as optimization problems, which are generally associated to finding the maximum or minimum value that a specific
function can attain within a previously defined set. Everything that is relative to these problems can be classified within
the doctrinal field of Mathematical Programming, which covers a huge range of situations, be these linear cases, non
linear cases, randomness, single decision maker, several decision makers etc.
Of all the models included in Mathematical Programming, the most and best studied is the single objective linear case
(dealt with under Linear Programming), which has also turned out to have the most practical benefits. The methods
and models of Linear Programming have useful applications in the areas of Engineering, Economics, Mathematics,
Operative Research and Artificial Intelligence as well as in other disciplines related to optimization to a greater or
lesser degree. They constitute a more than suitable theoretical basis on which to tackle highly complex situations in
an elegant and efficient manner.
Although, as mentioned above, Linear Programming models and techniques have received the most attention, it is for
this very reason - together with their elegance and efficiency, which make them so adaptable to new technological
contexts - that they are key elements in the latest scientific developments, e.g. their incorporation and implementation
in systems generating models of Decision Support Systems. Linear Programming is, therefore, firmly embedded in
one of the most promising lines of development in Artificial Intelligence and even after more than half a century of
use it remains at the leading edge of scientific progress.
Within the context of Decision Support Systems, and within the framework of Artificial Intelligence, the main aim is
to obtain automatic systems which, starting from implementations which allow near human intelligence actions, are
capable of acting as would a person on each occasion. This means that whatever the Linear Programming models we
use under these conditions, will not in general be well known, established ones, since they will need to be redefined to
meet the new context.
It is very well known that a real problem is usually approached that, while perfectly comprehensible, are difficult to
represent effectively: “transport costs will be about 750 euros”, “profit will be 30%”, etc. When dealing with such
figures, which clearly do not have to be of a probabilistic nature, we generally force the figures to take on values which
we understand as being most representative of the real figures, e.g. 750 and 30%. Hence, we deal with what can
be described as deformed problems, which can give solutions which may be optimal for the problem considered but
which differ greatly from the true solution to the original problem, whose real values might have been 742 and 28.5%.
A correct representation of the information is, therefore, essential Decision Support Systems and Artificial Intelligence,
as well as in other disciplines, since it is a guarantee for obtaining correct solutions and also because, depending on
the fuzzy version we use, we may be dealing with different optimum concepts, and hence different optimizations.
Hereinafter, when we refer to imprecision we understand what is generally known as fuzziness, i.e. that linguistic
vagueness that makes perfect sense to human beings despite a lack of any exact information (“I don’t know how old
he is, but he’s young.”) We choose this version of fuzziness since we understand that it is, in general, the closest
and most suitable for the developments in Artificial Intelligence which concern us. What we normally do when
defining something is take objects from the real world as linguistically labelled concepts in the referential domain
under consideration. The imprecision of any linguistic label reflects the distance between the objects labelled and
a referential point, which in each case will depend on the context. Hence, we can model human reasoning and
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communication in quite a suitable way.
In such a context, a Linear Programming (LP) problem can often be formulated much more specifically as:

Max {z = cx / Ax ≤ b, x ≥ 0}

whereA is a matrix of real numbers with a dimensionm× n, b is a vector inRm andc is a costs vector inRn.
From the earlier considerations, we can now suppose that the decider expresses, knows or formulates the data of the
problem in a fuzzy way which is nevertheless perfectly clear to the decision taker: “performance this year will be
better than last year”; “there will be a high number of man hours”; “gross salary stands at around 20,000 euros” etc. It
is in such an environment of optimization that Fuzzy Linear Programming (FLP) is born.
While FLP has its theoretical precedents in 1970 in the great work on Decision Theory by R. Bellman and L.A. Zadeh
[1], FLP problems were formally born in 1974, the year in which two separate papers [25] and [36] propose the same
model to deal with LP problems, i.e. that the set of constraints be given by a fuzzy set. Despite the coincidence,
the works approached the solution from different points of view, and, thus, employed different methods, which led
to a solution constituted by a single point, which can, therefore, be considered as outside the fuzzy context of the
calculation. Later on, it was demonstrated that these methods were particular cases of a more general method which
allowed a context-dependent fuzzy solution, and which encompassed the solutions put forward in the studies cited
[27].
Specifically, the central problem in FLP lies in solving an LP problem within the set of fuzzy constraints.

Max z = cx
s.t. :

Ax ≤f b
x ≥ 0

where it is supposed that the decision maker can accept moderate violations in the fulfilment of the constraints, with
these violations being measured through certain membership functions

µi : R → [0, 1], i = 1, . . . ,m

which the decision maker himself establishes.
The lines of research which have been followed from this initial approach are numerous but they can be grouped under
the following sections:

a) Extensions of the previous model for more complex problems. This has been the case particularly in multi-
objective problems, although also worthy of mention are the studies in other areas like Stochastic or Fractional
Programming.

b) Methods for solving different problems.

c) Applications within specific domains (transport, games, hydraulic policies, agriculture, reasoning from propo-
sitional knowledge, etc.).

Initially, we will tackle the basic theoretical elements necessary to this article. While not descending to the trivial level,
we present the most elementary ideas on fuzzy sets and numbers. Below, we put forward (within the fuzzy context) the
most typical problems and methods in FLP. In order to finalize we propose an important and very promising research
line, as it is that of Fuzzy Sets based Heuristic Algorithms to solve optimization problems.
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2. Basic Concepts

One basic concept is that of the fuzzy number. From the point of view of a fuzzy number’s being a fuzzy set in RR,
it can be stated that the notion of a fuzzy number appears in 1965 with the appearance of L.A. Zadeh’s famous paper
[32].
Nevertheless, fuzzy numbers really appear on the scene around 1978, with the papers by S. Nahmias on fuzzy variables,
and D. Dubois and H. Prade on handling imprecise quantities. Since then, the study of possible definitions of fuzzy
numbers and, in particular, how to manage and compare them, has aroused a lot of interest within the field of fuzzy
sets, [31].
This section introduces the elementary notions and operations of fuzzy sets leading to the concept of fuzzy number.
Once these have been established, the remaining part of this section is devoted to the comparison of two fuzzy numbers.
This is a complex problem since, given the imprecise nature of the quantities considered, e.g.A andB, it cannot be
guaranteed a priori thatA ≤ B or thatB ≤ A. Instead, these properties will be verified simultaneously and with
certain degrees of fulfilment. This means that there are many ways of comparing two fuzzy numbers, which in the
specialist literature has been developed through the so-called comparison indices.

2..1. Introduction to the Fuzzy Set Concept

LetX be a set, whose elements are we will denote byx, andA a subset ofX. The membership of one elementx of
X to the subsetA is given by the characteristic function:

µA(x) =
{

1 iff x ∈ A
0 iff x /∈ A

where{0, 1} is the so-called valuation set.
If the valuation set is the real interval[0, 1], A is called a fuzzy set ([32]) andµA measures the degree of membership
of elementx in A. A is characterized by the the set of pairs{(x, µA(x)), x ∈ X}.
Two fuzzy sets,A andB are considered equal iff:∀x ∈ X, µA(x) = µB(x).

Definition 2.1 ([32]) Given a fuzzy setA = {(x, µA(x))}, its support is defined as the ordinary setSop(A) = {x ∈
X / µA(x) > 0}.

Definition 2.2 ([32]) Given a fuzzy setA, we give the nameα-cut of that set to the ordinary setAα = {x ∈
X / µA(x) ≥ α} conα ∈ [0, 1].

It is clearly seen that the setsAα, α ∈ [0, 1] constitute a decreasing succession. Ifα1 ≥ α2 ⇔ Aα1 ⊆ Aα2 , α1, α2 ∈
[0, 1].

Theorem 1 (Representation Theorem)If A is a fuzzy set andAα its α-cuts,α ∈ [0, 1], it is verified that

A =
⋃

α∈[0,1]

αAα

taking this formal notational as the equality between the membership functions of both sets. IfµAα
(x) denote the

characteristic function ofA, a particular case of the membership function:

µAα
(x) =

{
1 iff x ∈ Aα

0 otherwise
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membership function of the fuzzy setA can be expressed in terms of the characteristic functions of itsα-cuts, according
to the formula

µA(x) = sup
α∈[0,1]

min(α, µAα
(x))

Definition 2.3 ([32]) A fuzzy set is convex iff itsα-cuts are convex.

A definition equivalent to convexity is thatA is convex iff ∀x1, x2 ∈ X, ∀λ ∈ [0, 1], µA(λx1 + (1 − λ)x2) ≥
min(µA(x1), µA(x2)).

Definition 2.4 The height of a fuzzy sethgt(A) = supx∈X µA(x).

Definition 2.5 n A fuzzy set is said to be normalized iff∃x ∈ X in whichµA(x) = 1.

2..2. Fuzzy numbers

Definition 2.6 [12] A fuzzy numberA is aµA set of the real straight, it is convex and normalized such that

a) ∃x0 ∈ R / µA(x0) = 1, which is generally called mode, and

b) µA is in parts continuous.

Any fuzzy number is therefore characterized by a membership functionµA : R → [0, 1] and any function like the
above gives a fuzzy number where∀x ∈ R, µA(x) is the degree of membership ofx to the fuzzy numberA.
We will denote byF (R) the set of membership functions onR. Thus, when talking about the fuzzy number we can
refer both to the elementA ∈ F (R) and toµA ∈ F (R).
A fuzzy numberA is said to be of the typeL −R, if and only if its membership functionµA is of the form

µA(x) =


L

[
(m−x)

α

]
for x ≤ m, α > 0

R
[

(x−m)
β

]
for x ≥ m, β > 0

wherem is the mode ofA andα (β) is the width on the left (right),L andR represent a function on the left or right of
m,L is non decreasing andR is not increasing. We will abbreviate the fuzzy numberA byA = (m−α,m,m+β)LR.

Definition 2.7 [13] A plane fuzzy number is anA fuzzy number such that

∃(m1,m2) ∈ R, m1 < m2 andµA(x) = 1, ∀x ∈ [m1,m2]

A plane fuzzy number can model a fuzzy interval. AnA plane fuzzy number of typeL −R is defined as

µA(x) =



L
[

(m1−x)
α

]
for ≤ m1, α > 0

R
[

(x−m2)
β

]
for x ≥ m2, β > 0

1 for m1 ≤ x ≤ m2

0 otherwise

(2..1)
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This will be more briefly denoted by(m1 − α,m1,m2,m2 + β)LR.
It is clear that depending on theL andR functions, we will obtain different types of fuzzy numbers.
We will consider numbers as fuzzy, plane, linear and normalised, those whose analytical membership function is as
follows.
A plane fuzzy number, which we will denote byuf

j = (rj , uj , uj , Rj) will have the membership function

∀v ∈ R, µuf
j
(v) =



(v−rj)
(uj−rj)

if rj ≤ v ≤ uj

(Rj−v)
(Rj−uj)

if uj ≤ v ≤ Rj

1 if uj ≤ v ≤ uj

0 otherwise

(2..2)

From now on we will frequently use fuzzy numbers expressed as linear combinationsyf =
∑

j u
f
j xj with xj ∈

R, j = 1, . . . , n.
In [26] we find the membership function of those numbers, which we express below.

Proposition 1 If yf =
∑

j u
f
j xj = ufx is a linear expression in which theuf

j , j = 1, . . . , n, are fuzzy numbers linear

membership functions given byuf
j = (rj , uj , uj , Rj) andxj ≥ 0, j = 1, . . . , n, then the membership function ofyf

is

µ(z) =



(z−rx)
(ux−rx) if x > 0 andrx ≤ z ≤ ux

(Rx−z)
(Rx−ux) if x > 0 andux ≤ z ≤ Rx

1 if ux ≤ z ≤ ux
0 otherwise

wherer = (r1, . . . , rn), u = (u1, . . . , un), u = (u1, . . . , un) andR = (R1, . . . , Rn).

2..3. Methods for comparing Fuzzy Numbers

A constant problem over the last 15 years has been that of the distribution of imprecise quantities, and hence the
comparison of fuzzy numbers. The many and varied approaches to the problem mean that a wide range of methods
exist to make the comparison in question. An excellent collection of techniques, methods and approaches can be found
in [39] and [31].
We will use the ways of comparing fuzzy numbers exclusively to analyse the repercussion of using various methods
of comparison in a Fuzzy Linear Programming problem. Thus, it is not our aim here to review all the possible ways
of comparing.
The solution to the problem can be shortened in either of the following ways, depending on whether the method used
is based on the definition of an ordering function or on the comparison of alternatives.
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2..3..1. Methods Based on the Definition of an Ordering Function

We will considerA,B ∈ F (R). A simple method to compare these lies in the definition of a functiong : F (R) → R.
If the functiong(·) is known, then

g(A) < g(B) ⇔ A is less than B
g(A) > g(B) ⇔ A is greater than B
g(A) = g(B) ⇔ A is equal to B

g is usually called a linear ordering function if

1) ∀A,B ∈ F (R), g(A+B) = g(A) + g(B)

2) ∀r ∈ R, r > 0, g(rA) = rg(A), ∀A ∈ F (R)

In this case, the indices can be classified according to whether the ordering function is linear or not.

2..3..2. Methods Based on the Comparison of Alternatives

These methods consist of obtaining the fuzzy set of the optimal alternatives:

Of = {i, µOf (i)}, µOf (i) = µOf (Ai), Ai ∈ F (R)

whereµOf (i) represents the degree to which the i-th alternative can be considered the best.
Finally, we underline in spite of the huge wealth of methods for comparing fuzzy numbers, as yet few indices have
been studied since it is perfectly justifiable for each human decision taker to use their own method of comparison
independently of any method described in the literature. A detailed study in this respect can be found in [22] where an
artificial neuronal network is used which learns the ordering criteria of each decision taker considered.

3. Fuzzy Linear Programming: methods and models.

An LP problem is generally set out as
Max {z = cx/Ax ≤ b, x ≥ 0}

whereA is matrixm× n of real numbers,b ∈ Rm andc ∈ Rn.
Obviously, it is assumed here that the decision taker has exact information on the elements intervening in the problem.
Even were this the case, the decision taker usually finds it more convenient to express his knowledge in linguistic
terms, i.e. through conventional linguistic labels [?], rather than by using high precision numerical data. Thus, it
makes perfect sense to talk about optimization problems from a vague predicate approach as it is understood that this
vagueness arises from the way we use to express the decision taker’s knowledge and not from any random event. In
short, it is supposed that the imprecision of the data defining the problem is fuzzy.
The first case of optimization problems with fuzzy approach appeared in the literature more than three decades ago
[1], in an article which put forward the now classical, key concepts of constraint, objective and fuzzy optimal decision.
As with LP in conventional optimization, so have FLP methods been the subject of most study in the fuzzy context.
While not exhaustive, there are three main types of FLP problem, depending on the imprecision established in the
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constraints, on the coefficients of the technological matrix or on the costs which define the objective function. The rest
of this section is devoted to each of these.
Models and methods to solve these problems abound in the literature, especially for the case in whichf andgi, i ∈M ,
are linear functions [9, 10, 16, 38]. In some cases precise solutions are obtained, while in others these are fuzzy and
more in line with the approach to the problem. The latter offer a set of good alternatives and encompass the more
precise solutions obtained using other methods. Finally though, it is the decision taker who must choose.
While we find many FLP models in the literature [14, 6, 8, 17, 9, 20, 19] ..., the majority only suppose vagueness for
some of the elements described in the model. At the end of this section, a general FLP model is presented in which all
the elements are fuzzy. To this end, the most important problems in fuzzy linear programming will be presented along
with the general FLP method, [5]. From the said model it is easy to derive each particular case of the FLP problem,
and these are in agreement with its characteristics.

3..1. Linear Programming with Fuzzy Constraints

We consider the case in which the decision taker assumes that there is a certain tolerance in the fulfilment of constraints
i.e. a certain degree of violation is allowed and this is established by the decision maker himself, [5]. This supposition
can be represented for each constraint as follows:

aix ≤f bi, i ∈M = {1, 2, . . . ,m}

and this can be modeled using a membership function

µi : R → [0, 1] / µi(aix) =


1 if aix ≤ bi

fi(aix) if bi ≤ aix ≤ bi + ti

0 if aix ≥ bi + ti

These functions express that the decision taker is tolerating violations in each constraint up to a value ofbi+ti, i ∈M .
Functionsfi are assumed to ne non decreasing and continuous for these constraints.
Functionµi is defined for eachx ∈ X and it gives the degree of fulfilment for each i-th constraint forx ∈ X.
The associated problem is represented as follows

Max z = cx
s.t. :

Ax ≤f b
x ≥ 0

(3..1)

wherec ∈ Rn, b ∈ Rm,A is a matrixm× n of real numbers.
Although the origin of (3..1) is found in [1], this problem was developed in [25] and [37], where additional hypotheses
on the nature of the objective function were considered, although these do not concern us here.
Three approaches - [25, 37, 27] - may be considered to solve (3..1). In particular, and using the Representation
Theorem for fuzzy sets, [27] shows how to find a fuzzy solution for (3..1) through the auxiliary parametric PL problem

Max z = cx
s.t. :

Ax ≤ g(α)
x ≥ 0, α ∈ [0, 1]
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whereg(α) ∈ Rm is a column vector defined by the inverse functions of thefi, i ∈ M . The linearity and dimension
of (3..1) are clearly maintained in the model.
The solutions proposed in [25] and [37] arise from the fuzzy solution proposed in [27] for particular values of the
parameterα ∈ [0, 1].
Supposing the linearity of thefi, we obtain that the auxiliary model which solves (3..1) is

Max z = cx
s.t. :

Ax ≤ b+ t(1− α)
x ≥ 0, α ∈ [0, 1]

(3..2)

with t = (t1, . . . , tm) ∈ Rm.
If we denoteS(α) = {x ∈ Rn / z(x) = max cx, x ∈ X(α)} with X(α) = {x ∈ Rn / Ax ≤ b + t(1 − α),
α ∈ [0, 1]}, we define a fuzzy solution (3..1) as,

Definition 3.8 The fuzzy solution to (3..1) is a fuzzy set with the membership function

λ(x) =

 sup
x∈S(α)

α if x ∈
⋃
α

S(α)

0 otherwise

We consider (3..1) and the imprecision of the constraints represented by non lineal membership functions

µ
′

i(x) =

 1 if aix ≤ bi
f ′i(aix) if bi ≤ aix ≤ bi + ti
0 if aix ≥ bi + ti

where the functionf ′i(·) is supposed strictly decreasing and continuous,f ′i(bi) = 1 andf ′i(bi + ti) = 0.
If we use the approach proposed in [27] and we apply a similar discussion to the one above for the linear case, then
the optimal fuzzy solution for (3..1) can be obtained from the optimal parametric solution of the problem

Max z = cx
s.t. :

Ax ≤ g′(α)
x ≥ 0, α ∈ [0, 1]

whereg′(α) = f ′−1(α), ∀α ∈ [0, 1].
A relation between the solutions obtained in the linear and non linear case is shown in [11]. The subsequent results
are shown in [11].

Proposition 2 Let [a, b] be a real interval andf : [a, b] → [0, 1] is continuous, linear and strictly decreasing with
f(a) = 1 andf(b) = 0. For any other strictly decreasing continuous functionf ′ : [a, b] → [0, 1], such thatf ′(a) = 1
andf(b) = 0, there exists a functionr : [0, 1] → [0, 1] such thatr(·) ◦ f(·) = f ′(·).

Proposition 3 We consider the FLP problem (3..1). We denotex(·) andx′(·) to the optimal fuzzy solutions for this
problem using linear and non linear membership functions for the imprecision of the constraints. Thusx′(α) =
x(r−1(α)), wherer(·) is the solution obtained for the previous proposition.
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With these results, the value of the objective function will bez′(α) = cx′(α) = cx(r−1(α)).
This demonstrates that by solving an LP problem with fuzzy constraints modeled by linear membership functions, we
can obtain the fuzzy solution to the same problem modeled by non linear membership functions. For the case in which
the LP problem has fuzzy constraints modeled piecewise defined membership functions, we obtain a similar result,
[11]. Thus the generality is not lost if we always suppose the fuzzy constraint problem as having linear membership
functions.

3..2. Linear Programming with Fuzzy Costs

In this case, the decision taker does not know the exact values of the coefficientsc. The situation is represented by the
following FLP problem, [5].

Max z = cfx
s.t. :

Ax ≤ b
x ≥ 0

(3..3)

with cf ∈ (F (R))n and supposing membership functions of the following form

µj : R → [0, 1], j ∈ N = {1, . . . , n} / µj(v) =


0 if v ≤ rj or v ≥ Rj

hj(v) if rj ≤ v ≤ cj
gj(v) if cj ≤ v ≤ Rj

1 if cj ≤ v ≤ cj

(3..4)

wherehj(·) andgj(·) are strictly continuous increasing and decreasing functions, respectively, such thathj(cj) =
gj(cj) = 1, ∀j ∈ N .
Although there exists a wide range ofhj andgj functions (linear, exponential, logarithmic, parabolic, concave and
convex, etc.), fuzzy costs are usually considered as plane fuzzy numbers with linear functionshj(·) andgj(·). Hence,
for the number(rj , cj , cj , Rj), these functions will be given by:

hj(v) =

{
v−rj

cj−rj
rj ≤ v ≤ cj

0 otherwise
, gj(u) =

{
Rj−u
Rj−cj

cj ≤ u ≤ Rj

0 otherwise

There are various approaches [8, 23, 26] to solve (3..3). It is demonstrated in [10] that the method proposed in [8]
gives a formal context to find the solution of (3..3) and encompasses the methods proposed in [23, 26, 20].
The fuzzy solution to this problem proposed in [8] can be obtained from the solution to the following multiobjective
parametric problem

Max z = [c1x, c2x, . . . , c2
n

x]
s.t. :

Ax ≤ b, x ≤ 0
ckj ∈ {h

−1
j (1− α), g−1

j (1− α)}
α ∈ [0, 1], k = 1, . . . , 2n, j ∈ N
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3..3. Linear Programming with Fuzzy Numbers in the Technological Matrix

Now we consider that the coefficients in the technological matrix and the coefficients of the right hand size are repre-
sented by fuzzy numbers, with the costs that define the objective function being real, [5].
This type of FLP problem is set out in the following terms

Max z = cx
s.t. :

af
i x ≤f b

f
i , i ∈M

x ≥ 0

(3..5)

where for eachi ∈ M , af
i = (af

i1, . . . , a
f
in), af

ij ∈ F (R), j ∈ N , bfi ∈ F (R), x ∈ X = {x ∈ Rn / af
i x ≤f bfi ,

i ∈M , x ≥ 0} andc ∈ Rn.
An almost identical version of (3..5) was the starting point for this type of models (a similar problem was put forward
in [26] but supposing imprecision in the objective as well). In order to solve (3..5) with a fuzzy solution rather than
a precise one, as in (3..1), we can suppose that violations in its constraint coupling are admitted up to a maximum
amplitude of a valuetfi , i ∈ M , [9]. Note that unlike (3..1),tfi has to be a fuzzy number on account of the nature of
the coefficients taking part in each constraint.
From this viewpoint a method is proposed in [9] to solve the general model (3..5). The approach is based on the
substitution of the set of constraints of (3..5) by the following convex, fuzzy set:

af
i x ≤g b

f
i + tfi (1− α), i ∈M, α ∈ [0, 1]

whereaf
i = (af

i1, . . . , a
f
in), tfi is a number fixed by the decision taker which sets the violation tolerance in the con-

straint, and≤g is a relation between these numbers.
Thus, problem (3..5) takes the following form

Max z = cx
s.t. :

af
i x ≤g b

f
i + tfi (1− α), i ∈M

x ≥ 0, α ∈ [0, 1]

The solution to the original problem is obtained in [7] by particularization (in the auxiliary problem) for each different
method of comparison of fuzzy numbers.

3..4. A General Model for Fuzzy Linear Programming

A general FLP model, [5], which encompasses all the above cases, is a problem of the type:

Max z =
n∑

j=1

cfj xj

s.t. :
n∑

j=1

af
ijxj ≤f b

f
i

xj ≥ 0, i ∈M, j ∈ N

(3..6)
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where the fuzzy elements considered are given by:

a) For each cost∃µj ∈ F (R) such thatµj : R → [0, 1], j ∈ N , which define the fuzzy costs vector.

b) For each row∃µi ∈ F (R) such thatµi : R → [0, 1], i ∈ M , which define the fuzzy number on the right hand
side.

c) For eachi ∈ M andj ∈ N ∃µij ∈ F (R) such thatµij : R → [0, 1], which define the fuzzy numbers in the
technological matrix.

d) For each row∃µi ∈ F [F (R)] such thatµi : F (R) → [0, 1], i ∈ M the degree of fulfilment for the fuzzy
numberaf

i1x1 + af
i2x2 + . . . af

inxn, i ∈ M with respect to the i-th constraint, i.e. the similarity of these
numbers and the correspondingbfi with respect to the i-th constraint.

One method, [4], for solving the general model (3..6) consists of substituting the constraints set of (3..6) by a convex
fuzzy set.
Let g be an ordering function of fuzzy numbers, and functionψ : F (R)× F (R) → F (R) such that

ψ(af
i x, b

f
i ) =


tfi if af

i x ≤g b
f
i

tfi 	 af
i x⊕ bfi if bfi ≤g a

f
i x ≤g b

f
i ⊕ tfi

0 if af
i x ≤g b

f
i ⊕ tfi

with tfi ∈ F (R) such that its support is included inR+ and≤g is a relation which measures the fact thatA ≤g B,
∀A,B ∈ F (R) and	 and⊕ are the most usual operations between fuzzy numbers.

Definition 3.9 The membership function associated to the fuzzy constraintaf
i x ≤f b

f
i , with tfi being a fuzzy number

which gives maximum violation in the verification of the i-th constraint, is the following

µi : F (R) → [0, 1] / µi(af
i x, b

f
i ) =

g(ψ(af
i x, b

f
i ))

g(tfi )
(3..7)

whereg is a fuzzy number ordering function.

If we consider problem (3..6),≤f with membership functions (3..7), then using the fuzzy number representation
theorem, we obtain that

µi(af
i x, b

f
i ) ≥ α⇔ g(f(af

i x, b
f
i ))

g(tfi )
≥ α⇔ g(tfi 	 af

i x⊕ bfi ))

g(tfi )
≥ α⇔

g(tfi )− g(af
i x) + g(bfi ) ≥ g(tfi )α⇔ g(af

i x) ≤ g(bfi ⊕ tfi (1− α)) ⇔

af
i x ≤g b

f
i + tfi (1− α)
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where≤g is the relation corresponding tog.
Hence, an auxiliary problem to solve (3..6) is the following:

Max
n∑

j=1

cfj xj

s.t. :
n∑

j=1

af
ijxj ≤g b

f
i + tfi (1− α), i ∈M

x ≥ 0, α ∈ [0, 1], j ∈ N

(3..8)

If in problem (3..6) there were no fuzzy numbers in its formulation, but only fuzzy constraints, this approach would
coincide with the corresponding model

Max z = cx
s.t. :

Ax ≤ b+ t(1− α)
x ≥ 0, α ∈ [0, 1]

In other words, in the case of a fuzzy constraintaix ≤f bi, the membership function associated to this constraint will
be of the form

µi : F (R) → [0, 1] / µi(aix, bi) =
g(f(aix, bi))

g(ti)

whereg is the classical order inR andti is the maximum violation in the fulfilment of the i-th constraint(ti ∈ R).

µi(aix, bi) =


1 aix ≤ bi
(1− aix−bi

ti
) bi ≤ aix ≤ bi + ti

0 aix ≥ bi + ti

To solve this problem we can use the different comparison relations of fuzzy numbers, both in the constraints and in
the objective, or we can use comparison relations in the constraints and a-cuts in the objective. This will lead to our
obtaining various conventional models, which will allow for a properly fuzzy solution.

4. Fuzzy Sets based Heuristic

Since the fuzzy boom of the 1990s, methodologies based on fuzzy sets (i.e. Soft Computing) have become a perma-
nent part of all areas of research, development and innovation, and their application has been extended to all areas
of our daily life: health, banking, home, and are also the object of study on different educational levels. Similarly,
there is no doubt that thanks to the technological potential that we currently have, computers can handle problems of
tremendous complexity (both in comprehension and dimension) in a wide variety of new fields.
Also since the mid 1990s, GA (or EA from a general point of view) have proved to be extremely valuable for finding
good solutions to specific problems in these fields, and thanks to their scientific attractiveness, the diversity of their ap-
plications and the considerable efficiency of their solutions in intelligent systems, they have been incorporated into the
second level of soft computing components. EA, however, are merely another class of heuristics, or metaheuristics, in
the same way as Taboo Search, Simulated Annealing, Hill Climbing, Variable Neighbourhood Search, Estimation Dis-
tribution Algorithms (EDA), Scatter Search, GRASP, Reactive Search and very many others are. Generally speaking,
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all these heuristic algorithms (metaheuristics) usually provide solutions which are not ideal, but which largely satisfy
the decision-maker or the user. When these act on the basis that satisfaction is better than optimization, they perfectly
illustrate Zadeh’s famous sentence: ”...in contrast to traditional hard computing, soft computing exploits the tolerance
for imprecision, uncertainty, and partial truth to achieve tractability, robustness, low solution-cost, and better rapport
with reality”. Consequently, among the soft computing components, instead of EA (which can represent only one part
of the search and optimization methods used), heuristic algorithms and even metaheuristics should be considered.
Consequently we could say that the most important second-level Soft Computing components are probabilistic rea-
soning, fuzzy logic and sets, neural networks and in view of what we have explained, metaheuristics (which would
typically encompass EA but would not be confined to these exclusively). As it is patent, all these four main compo-
nents have common factors as it is Data Mining, essential for learning process, as well as real applications.
As we explained before, rather than understanding soft computing methodologies in an isolated way, it is necessary
to understand them through the hybridization of their second-level components. Correspondingly, it is perfectly logi-
cal for us to explore the new theoretical-practical facets deriving from the appearance of metaheuristics among these
components.
There are so many and such a variety of metaheuristics available that it is practically impossible to agree on one
universally-accepted way of classifying them. Nevertheless, the hierarchy on which there is the most consensus con-
siders three (or four) foremost groups:
1) metaheuristics for evolutionary procedures based on sets of solutions which evolve according to natural evolution
principles
2) metaheuristics for relaxation methods, problem-solving methods using adaptations of the original model which are
easier to resolve
3) metaheuristics for neighborhood searches, which explore the solution space and exploit neighbourhood structures
associated to these solutions
4) other types of intermediate metaheuristics between the ones mentioned above or derived in some way from them,
but which we will not consider because of their great variability (and to avoid dispersion).
In order to demonstrate the range of study areas at our disposal when metaheuristics is taken as the base component,
in the following we will concentrate on describing the hybridizations which arise through the use of the previous
categorization. Hence, let us consider the three first previously mentioned groups of metaheuristics, and particularly
the second and third one. From these, we will then describe the new metaheuristics which have emerged, briefly
dwelling on the less developed or less popular ones because they are more recent.

4..1. Evolutionary Metaheuristics

. These metaheuristics are by far the most popular and define mechanisms for developing an evolution in the search
space of the sets of solutions in order to come close to the ideal solution with elements which will survive in successive
generations of populations. In the context of soft computing, the hybridizations which take these metaheuristics as a
reference are fundamental.
Although this is a very important and very wide area (covering everything from fuzzy genetic systems to the adjustment
of fuzzy controllers with evolutionary algorithms, to the evolution of Bayesian Belief Networks, to EDA, bioinspired
systems, etc.), it is beyond the scope of this article.

4..2. Relaxation Metaheuristics

A real problem may be relaxed when it is simplified by eliminating, weakening or modifying one of its character-
istic elements. Relaxation metaheuristics are strategies for relaxing the problem in heuristic design, and which are
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able to find solutions for problems which would otherwise have been very difficult to solve without the use of this
methodology. Examples of these are rounding up or down or adjustments in nature, as occurs when an imprecisely
and linguistically-expressed quantity is associated to an exact numerical value. From this point of view, a real alterna-
tive is to flexible exact algorithms, introducing fuzzy stopping criteria, which eventually leads to rule-based relaxation
metaheuristics; admitting the vagueness of coefficients, justifying algorithms for resolving problems with fuzzy pa-
rameters, and relaxing the verification of restrictions, allowing certain violations in their fulfillment.
Therefore the key point here is that FLP methodologies may help to find solutions for problems in which to find an
optimum solution is not easy. As it is well known there are a lot of NP problems which cannot effectively be solved in
all cases. In these problems the decision-maker must usually accept approximate solutions instead of optimum ones.
The aim here is to show how FLP can help classical Mathematical Programming models by providing fuzzy solutions
that may be used by the decision-maker as help to quickly obtain a good enough solution for these problems.
Let’s justify this fact. An algorithm for solving a general optimisation problem is an iterative process that produces a
sequence of points according to a prescribed set of instructions, together with a termination criterion. Usually we are
interested in algorithms that generate a sequence that converges to an overall, optimum solution. However, because of
the difficulties in the problem, we may have to be satisfied with less favorable solutions. Then the iterative procedure
may stop either 1) if a point belonging to a prefixed set (the solution set) is reached, or 2) if some prefixed condition
for satisfaction is verified.
But, the conditions for satisfaction are not to be meant as universal ones. They depend on factors such as the decision-
maker, the features of the problem, the nature of the information available, ... In any case, assuming that a solution set
is prefixed, the algorithm will stop if a point in that solution set is reached. Frequently, however, the convergence to a
point in the solution set is not easy because, for example, of the existence of local optimum points, and hence we must
redefine some rules for terminating the iterative procedure.
Roughly speaking, the possible criteria to be taken into account for terminating the algorithms are nothing but control
rules. Thus these rules could be associated to the two above points: the solution set, and the criteria for terminating
the algorithm. As it is clear, fuzziness can be introduced in both points, not assuming it as inherent in the problem, but
as help for obtaining, in a more effective way, some solution for satisfying the decision-maker’s wishes. This is meant
so that the decision-maker might be more comfortable when obtaining a solution expressed in terms of satisfaction
instead of optimisation, as is the case when fuzzy control rules are applied to the control processes. Therefore, and in
the particular case of optimisation problems [24], it makes sense to consider fuzziness

a) In the Solution Set, i.e., there is a membership function giving the degree with which a point belongs to that set,
and

b) On the conditions for satisfaction, and hence Fuzzy Control rules on the criteria for terminating the algorithm.

Let consider, for the sake of illustration, a conventional LP problem

Min {cx / Ax = b , x ≥ 0}

the main step of the Simplex Algorithm, with the usual denotation, can be summarised as follows, Letx be an extreme
point with basisB, and letR be the matrix corresponding to the nonbasic variables. ComputecBB

−1R − cR. If this
vector is non positive then stop,x is an optimal extreme point. Else select the most positive componentcBB

−1aj − cj
and computeyj = B−1aj :

• If yj = B−1aj is less than or equal to0 then stop. Objective unbounded.

• If yj = B−1aj is neither less than nor equal to0 then go to next step
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Therefore, the termination criterion can be seen as a control rule, and then

- The non positivity of the vectorcBB−1R− cR could be meant in a soft sense,

- The positivity of the componentcBB−1aj − cj could be measured according to some membership function,
and

- The accomplishment ofyj = B−1aj ≤ 0, if this is viewed as a constraint, could be fuzzyfied.

If the first possibility is considered, a new main step can be formulated, Letx be an extreme point with basisB.
ComputecBB−1R − cR. If ∀j = 1, . . . , n, cByj − cj <f 0, cj ∈ cR, where<f stands for a fuzzy constraint. Thus
this condition would mean that the decision-maker can accept violations in the accomplishment of the control rules,
cByj − cj < 0, to obtain a near, and therefore approximate, optimal solution instead of a full optimal one. Results
obtained from the application of this heuristic to a number of NP-problems can be seen in [24, 28, 29].

4..3. Neighbourhood Search Metaheuristics

Generally speaking, these are probably the most important metaheuristics, and their basic operation consists in estab-
lishing strategies for exploring the solution space of the problem and iterating the starting-point solutions. Although
at first sight they might appear to be similar to evolutionary search methods, they are not since evolutionary searches
methods base their operation on the evolution of a population of individuals in the search space. These metaheuristics
are usually described by means of various metaphors, which classify them as bioinspired, sociological, based on na-
ture, etc. and this makes them extremely popular. However, outside this descriptive framework, given that a search can
be made by means of a single search procedure (or by more than one in which case the search methods could either
cooperate with each other or not) the search metaheuristic (without this classification being exclusive for this section)
can be considered as individual or multiple, allowing in this last case the possibility for different agents to cooperate
with each other. The Fuzzy Adaptive Neighborhood Search Method (FANS), [3], is a local search procedure which
differs from other local search methods in two aspects. The first one is how solutions are evaluated; within FANS a
fuzzy valuationµ() representing some (maybe fuzzy) propertyP is used together with the objective function to obtain
a “semantic evaluation” of the solution. In this way, we may talk about solutions satisfyingP in certain degree. Under
this view, we define the semantic neighborhood of a solutions as:

N(s) = {s/µ(s) > λ}

FANS moves between solutions satisfyingP with at least certain degreeλ, until it became trapped in a local optimum.
In this situation the second novel aspect arise: the operator used to construct solutions is changed, so solutions coming
from different neighborhoods are explored. This process is repeated once for each of a set of available operators
until some finalization criterion for the local search is met. The fuzzy valuation also enables the algorithm to achieve
the qualitative behavior of other classical local search techniques [3]. The scheme of FANS is shown in Fig. 1.
The execution of the algorithm finishes when some external condition holds, for example, when the number of cost
function evaluations reached certain limit. Each iteration begins with a call to the so called neighborhood scheduler
(NS), which is responsible for the generation and selection of the next solution in the optimization path. The call is
done with parametersScur (the current solution),µ() (the fuzzy valuation), andO (a parameterized operator which is
used to construct solutions). The neighborhood scheduler can return two alternative results; either a good enough (in
terms ofµ()) solution (Snew) was found or not. In the first caseSnew is taken as the current solution andµ() parameters
are adapted. In this way, the fuzzy valuation is changed as a function of the context or, in other terms, as a function of
the state of the search. If NS failed to return an acceptable solution (no solution was good enough in the neighborhood
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Procedure FANS;
Begin

While (not-end) Do
/* The neighborhood scheduler NS is called */
Snew=NS(O,µ(),Scur);
If (Snew is good enough in terms ofµ()) Then
Scur:=Snew;
adaptFuzzyValuation(µ(),Scur);

Else
/* NS failed to return a good solution withO */
/* The operator scheduler will modify the operator */
O:=OpSchedul();

Fi
If (TrappedSituacion() Then

doEscape();
Fi

Od
End.

Figure 1: Pseudo Code of FANS

induced by the operator), the parameters of the operator are changed. The strategy for this adaptation is encapsulated
in the so called operator scheduler (OS). The next time NS is executed, it will have a modified operator to search for
solutions. When the whole set of operators available was used and the search was still stagnated (TrappedSituation =
True), a classical random restart procedure is applied, and FANS continues the search from the new solution.

4..3..1. Examples of Application

In order to apply FANS to a particular problem, the user must provide definitions for FANS’s components. Let’s
suppose we are given a problem withn variables where eachvi can take discrete values from a setS with elementssj .
For example, if we consider knapsack problems, thenS = {1, 0} or {included, not included} andn is the number of
items available. Then we can obtain “canonical” implementations of FANS methods as follows. First, we can define
a modification operator which randomly selectsk variables and produce a random assignment asvi = random(S),
whererandom(S) returns any value from the setS. The value ofk, will be modified by the operator scheduler.
A simple strategy may be to start with high values fork, sayk = n, and then doingk = k − 1 each time the
search became trapped. In this way we obtain very disruptive moves at the beginning, making them finer as the run
progresses. The fuzzy valuation will measure how Similar, or Different are two given solutions, or it can measure the
level of Acceptability between a neighbor solutionŝ and the current ones. Using the cost of both solution we can
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define Acceptability as:

µ(s, ŝ) =

 1.0 if f(ŝ) < f(s)
(f(ŝ− β)/(f(s)− β) if f(s) ≤ f(ŝ) ≤ β
0.0 if f(ŝ) > β

If ŝ improves the cost ofs, it will get the highest value of Acceptability. If̂s diminishes the cost a little it may be
considered as acceptable but with lower degree. Ifŝ is much worst thans, it will get a degree of acceptability of zero.
The last component is the neighborhood scheduler. For its definition we may use a First strategy, which simply returns
the first solution obtained withO, satisfyingµ() in certain levelλ. Using such a simple scheme, different versions of
FANS were implemented and adapted to solve knapsack problems with single and multiple restrictions, minimization
of functions of typeRn → R , and also to solve a lattice model of the protein structure prediction problem. For all of
them, comparisons were made against other general purpose heuristics (like genetic algorithm or simulated annealing)
and the results were usually equal or better for FANS. The interested reader may refer to [21] for an updated review
of FANS applications.

4..4. A Fuzzy Rule-based Methodology for Coordinating Metaheuristics

The main idea if this methodology is well explained with the following metaphore: imagine a committee in charge
to solve some concrete problem. The committee is chaired by a Director, who knows the general aspects of the
problem and the particular features of each worker/expert of the team. Besides, the Director knows when the problem
is reasonably solved (i.e. the team found a good enough solution). Each worker tries to solve the problem using a
particular methodology (or perhaps several ones). In this context the set of experts work concurrently, reporting to
the Director the partial results they are obtaining. Based on those partial results, the Director may order changes to
the workers in order to improve the “performance” of the team. Under this schematic view, we propose to implement
workers as optimization algorithms and the Director’s role by means of a fuzzy rule based system. The Director’s
knowledge could be represented by three groups of rules:

1. Global rules: representing the knowledge of the problem (type, size, characteristics, ...), and possibly who are
the best experts to solve it.

2. Worker Specific Rules: represent the specific knowledge of the Director about the performance’s worker (if
exists). Concretely, it stands for knowledge about its behavior across the time, preferences, tuning, etc.

3. Stopping Rules: set of rules representing the termination criteria that the Director uses. Director is able to
recognize when the work should be stopped, based on objective function value and time.

These set of rules try to address the following “common sense” principles:

• If a worker goes fine, don’t touch it, but if it performance becomes bad, change something to alter its behaviour.

• Keep closer to the good ones and you will be as good as them, simply, communicate to workers the good
solutions already found.

• A good food don’t change with a microgram more of salt, which essentially address the problem of when to
stop

270



At the time of writing this article, the methodology is being tested on a bioinformatic problem called protein structure
prediction. The main preliminary conclusion is that the use of several coordinated and concurrent implementations of
FANS, lead to a significant speed up of the computation times.
This work has been partially supported by the projects TIN2005-08404-C04-01 and 02 of the Spanish Ministry of
Science and Technology. A previous version of this paper was published in the Iranian Journal of Fuzzy Systems, 3, 1
(2006)
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