
 12 

1
REVISTA INVESTIGACIÓN OPERACIONAL                ___                           VOL., 32 , NO. 1,  12-19 , 2011 

 

 

 

 

 

CUMULATIVE SUM CONTROL CHARTS FOR 

BINOMIAL PARAMETERS WHEN THE 

UNDERLYING DISTRIBUTION IS POISSON 
Ashit B. Chakraborty and Anwer Khurshid

2 

Department of Mathematical and Physical Sciences, College of Arts and Science, University of Nizwa, P. 

O. Box 33, PC 616, Birkat Al Mouz, Oman  

 
ABSTRACT 

Cumulative sum control charts (CUSUM) are constructed for controlling the parameters of the binomial distribution when 

the underlying distribution is Poisson. It is observed that the parameters of the V-mask and the Average Run Length (ARL) 

change considerably for a slight shift in the parameters (or ratio) of the distribution understudy. 
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RESUMEN 

Cartas de control se la suma acumulativa (CUSUM) son construidas para controlar los parámetros una distribución  

binomial cuando la subyacente es una Poisson. Se observa que los parámetros de la  V-máscara y del Largo Promedio de la 

Rachas (ARL) cambian  considerablemente para un ligero cambio en el ajuste en los parámetros (o razones) de la 

distribución bajo estudio. 

 

MSC: 62F03 

 

1. INTRODUCTION 

 

A common problem in the application of statistical methods to the quality of material produce by a continuous 

process is that of ensuring that the proportion of defective product does not exceed a specified limit. The 

CUSUM technique proposed by Page (1954, 1961) is a valuable tool to study such problems, as this is much 

more sensitive than the standard Shewhart’s schemes especially to small deviations from the target (see also 

Montgomery, 2005). Johnson (1961) showed that the CUSUM control charts can be interpreted as a modified 

form of a pair of Sequential Probability Ratio Test (SPRT) treated simultaneously and gave mathematical 

procedures for constructing the CUSUM charts. Johnson and Leone (1962) constructed CUSUM charts for 

controlling the means of the binomial and Poisson distributions. 

 

Probability distributions often arise in quality control, life-testing, medical and demographic studies when the 

control charts for ratio of two Poisson means (Sahai and Khurshid, 1993) need to be constructed, as the situation 

may arise to control the ratio rather than the single parameter. In such situation binomial distribut ion being 

derived based on the ratio of two Poisson can be used to develop the CUSUM chart. 

 

The purpose of this paper is to construct one-sided CUSUM control chart for controlling the different 

parameters of the distribution under study and to obtain ARL for detecting the shift of the process parameters 

(or the ratio). The method of Johnson (1961) is used while constructing the CUSUM chart.  

 

2. CUSUM CHART 
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Let X  and Y  be two independent Poisson variates with parameters   and   respectively. Then the 

conditional distribution of X  given YX   follows a binomial distribution (Lehmann and Romano, 2005). 

Thus, 
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where nx ...,,2,1,0 . The mean and variance of X  are given by  
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Charts are constructed separately for controlling the parameters   and   of (2.1a). The ARLs also calculated 

for a number of combinations of the values of the parameters.  

 

2.1. Control of the parameter   when   is known 

 

Let mxxx ,...,, 21  be i.i.d. random variables each distributed with probability mass function (1.1). To test the 

null hypothesis 00 :  H  against the alternative hypothesis )(: 011  H  assuming   known, we 

use the likelihood ratio 
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The continuation region of the SPRT discriminating between the two hypotheses 00 :  H and 

)(: 011  H has the continuation region 
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where   is the probability of accepting 1H  when 0H  is true and   is the probability of accepting 0H  

when 1H  is true. 

 

 

Considering the right hand side inequality in (2.2), we get 
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For a very small value of , we have  
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For constructing the CUSUM chart (as shown in Figure 2.1), we plot the sum 



m

i

im xS
1

 against the number 

of observations .m  Suppose here O is the last plotted point, P  is the vertex of the mask and the point Q is 

obtained by drawing a perpendicular to the line .OP  The change in the value of   from 0  to 1  is detected 

if any plotted point falls below the line .PQ  
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Figure 2.1 Cumulative sum control chart 

 

   

 

In this case the parameters of the mask namely the lead distance d=OP and the angle of the mask OPQ  

are given by 
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Table 2.1: Values of d  for controlling the parameter   

 

(a) When 5.0  and 24n  

    

0  
1  

0.05 0.025 0.01 0.005 0.001 

0.4 0.43 3.808 4.688 5.853 6.734 8.780 

0.4 0.46 1.934 2.383 2.975 3.423 4.463 

0.4 0.49 1.310 1.612 2.012 2.315 3.019 

0.4 0.52 0.997 1.228 1.533 1.764 2.300 

0.4 0.55 0.887 0.996 1.243 1.430 1.865 

(b) When 6.0  and 24n  

    

0  
1  

0.05 0.025 0.01 0.005 0.001 

0.4 0.43 4.223 5.200 6.491 7.468 9.738 

0.4 0.46 2.142 2.368 3.293 3.788 4.939 

0.4 0.49 1.447 1.782 2.224 2.559 3.337 

0.4 0.52 1.102 1.358 1.695 1.950 2.542 

0.4 0.55 0.777 0.955 1.193 1.372 1.789 

(c) When 6.0  and 20n  

    

0  
1  

0.05 0.025 0.01 0.005 0.001 

0.4 0.43 5.068 6.234 7.782 8.954 11.67 

0.4 0.46 3.491 4.316 5.388 6.199 8.08 

0.4 0.49 1.738 2.140 2.671 3.073 4.01 

0.4 0.52 1.322 1.627 2.031 2.336 3.05 

0.4 0.55 1.072 1.321 1.649 1.897 2.47 

 

 

                                                                                  

 

2.2. Average Run Length to control the parameter   when   is known 

 

Following Johnson (1961), the approximate formula for ARL detecting a shift for the parameter   from 0  to 

1  is given by   1
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Thus, we get 
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Table 2.2: Values of   for controlling the parameter   

 

(a) When 5.0  and 24n  

 
                               1  

0  
0.43 0.46 0.49 0.52 0.55 

0.3 84.31 84.42 84.52 84.61 84.69 

0.4 84.75 84.84 84.93 85.01 85.08 

(b) When 6.0  and 24n  

 
                               1  

0  
0.43 0.46 0.49 0.52 0.55 

0.3 83.66 83.79 83.91 84.02 84.12 

0.4 84.18 84.29 84.39 84.49 84.58 

(c) When 6.0  and 20n  

 
                               1  

0  
0.43 0.46 0.49 0.52 0.55 

0.3 82.40 82.56 82.70 82.83 82.95 

0.4 83.03 83.16 83.28 83.40 83.50 

 

 

To find the characteristic of ARL, we differentiate (2.5) with respect to 1  as 
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This will be negative provided the numerator is less than zero, implying that the ARL decreases as 1  increases 

from known (constant) value of .  Tables (2.1), (2.2) and (2.3) depict some numerical values of ,d  and 

ARL for a number of combinations of the values of  , 0 , 1  and   for specific .n  

 

3. CONTROL OF THE PARAMETER   WHEN  IS KNOWN  

 

Let mxxx ,...,, 21  be i.i.d. random variables each distributed with probability mass function (1.1). To test the 

null hypothesis 00 :  H  against the alternative hypothesis 11 :  H  assuming   known, we use the 

likelihood ratio 
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The change in the value of   will be detected if the inequality 
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Table 2.3: Values of ARL  for controlling the parameter   

 

(a) When 5.0  and 24n  

                                   

0  
1  

0.05 0.025 0.01 0.005 0.001 

0.4 0.43 192.42 236.92 295.75 340.26 443.66 

0.4 0.46 51.36 63.24 78.94 90.82 118.41 

0.4 0.49 24.31 29.93 37.36 42.99 56.05 

0.4 0.52 14.53 17.89 22.33 25.70 33.50 

0.4 0.55 9.86 12.14 15.16 17.44 22.74 

(b) When 6.0  and 24n  

                                   

0  
1  

0.05 0.025 0.01 0.005 0.001 

0.4 0.43 197.11 242.70 302.97 348.56 434.48 

0.4 0.46 52.40 64.52 80.54.94 92.65 120.81 

0.4 0.49 24.71 30.42 37.98 43.69 56.97 

0.4 0.52 14.72 18.12 22.62 26.02 33.93 

0.4 0.55 9.95 12.26 15.30 17.60 22.95 

(c) When 6.0  and 20n  

                                   

0  
1  

0.05 0.025 0.01 0.005 0.001 

0.4 0.43 236.53 291.24 363.56 418.27 545.38 

0.4 0.46 62.88 77.42 96.64 111.19 144.97 

0.4 0.49 29.65 36.51 45.57 52.43 68.36 

0.4 0.52 17.66 21.74 27.14 31.23 40.72 

0.4 0.55 11.94 14.71 18.36 21.12 27.54 

 

 

To construct the CUSUM chart in this case also we plot the sum 
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 against the number of 

observations .m  The change of   from 0  to 1  is detected if any plotted points fall below the line 

PQ  as shown in Figure 2.1. The parameters of the mask (the lead distance d and the angle ) are given by 
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3.1. Average Run Length to control the parameter   when   is known 

 

The average run length for detecting a shift in   from 0  to 1  , following Johnson (1961) is approximately 

given by 
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4. AN ILLUSTRATIVE EXAMPLE AND CONCLUSION 

 

In this paper we have formulated the different criteria of CUSUM scheme like distance d and angle   of the 

CUSUM chart along with the derivation of average run length. Computation of the distance d  and angle  of 

the V-mask of one-sided CUSUM chart for different combinations of the values of ,  ,  n  and   for 

controlling the parameters   (when   is known) and   (when   is known) are shown in Tables 2.1, 2.2, 

3.1 and 3.2. 

  

An illustrative example of counts of diatoms (Sahai and Khurshid 1993) may be considered in such a situation 

where it is required to control the diatom concentration of two lake water and to detect the change in the ratio (

 / ) of the concentration. 

 

It has been observed from the Table 2.1 for all the cases (a, b, and c) for fixed , the values of d  decreases as 

the difference )( 01    increases, whereas for the same difference )( 01   , the values of d  increases as 

  decreases. It can also be interpreted as the ratio    increases, the lead distance d  decreases. It is also 

observed from the Table 2.1 (b and c) that the distance d  increases for fixed ratio    and   if n  is 

decreased. 

 

It has also been observed from Tables 2.2 and 3.1 that the angle of the mask increases as the ratio  01   

increases and for fixed ratio  01  , angle of the mask decreases as n  is decreased. It can also be said that 

the angle of the mask increases as the ratio    increased (or decreases as the ratio    increases).  

 

Table 2.3 shows the values of average run length for different combinations of , , n  and  . Here it is 

interesting to note that the ARL values obtained for controlling the parameter   when   is known are same 

as that of controlling the parameter   when   is known. 
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It is evident from Table 2.3 (a, b and c) that for fixed , the ARL decreases as the shift from 0  to 1  

increases (or ratio   increases) and for fixed changed from 0  to 1 , the ARL increases as the initial 

region   decreases. But for fixed change (or ratio  ) and , the ARL increases if the parameter n  

decreases.  
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