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ABSTRACT
In this paper a new nonparametric functional regression method is introduced for predicting a scalar random
variable Y on the basis of a functional random variable X . The prediction has the form of a weighted average of
the training data yi, where the weights are determined by the conditional probability density of X given Y = yi,
which is assumed to be Gaussian. In this way such a conditional probability density is incorporated as a key
information into the estimator. Contrary to some previous approaches, no assumption about the dimensionality
of E(X|Y = y) or about the distribution of X is required. The new proposal is computationally simple and
easy to implement. Its performance is assessed through a simulation study.

RESUMEN
En este artı́culo se introduce un nuevo método de regresión funcional no paramétrico para predecir una variable
aleatoria Y de valores reales, sobre la base de una variable aleatoria funcional X. Las predicciones se con-
struyen mediante una promediación ponderada de los datos de entrenamiento yi, donde las ponderaciones están
determinadas por la densidad de probabilidad condicional de X dado Y = yi, la cual se supone Gaussiana.
De este modo, dicha densidad condicional es incorporada como información clave en el estimador que se pro-
pone. Contrariamente a otros enfoques existentes, no se requieren supuestos restrictivos sobre la dimensión de
E(X|Y = y) o la distribución de X . La nueva propuesta es computacionalmente simple y fácil de implementar.
Su comportamiento es evaluado a través de un estudio de simulación.
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1. INTRODUCCIÓN
The fast development of instrumental analysis equipment and modern measurement devises provides huge
amounts of data as high-resolution digitized functions. As a consequence, Functional Data Analysis (FDA)
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has become a growing research field [24, 9]. In the FDA setting, each individual is treated as a single entity
described by a continuous real-valued function rather than by a finite-dimensional vector: functional data
(FD) are then supposed to have values in an infinite dimensional space, typically a Hilbert space X with
scalar product 〈·, ·〉.
Specifically, in functional regression analysis one intends to predict a random scalar variable (response
variable) Y from a functional random variable (predictor) X (e.g., with values in X = L2 ([a, b])). That is,
the goal is to estimate the regression function γ(x) = E(Y |X = x), where E(Y |X) denotes the conditional
expectation, on the basis of a sample (xi, yi)i=1,...,n of independent realizations of (X, Y ). Equivalently,
the aim is to fit the functional regression model

Y = γ(X) + ε,

where ε is a real random variable independent of X . Several approaches have been proposed for this
problem, which can be classified into three main families:

a) Linear regression methods. Earlier work were focused on linear regression models where the regres-
sion function γ takes the linear form

γ(x) = c + 〈β, x〉,

where c ∈ R and β ∈ X are unknown parameters. A review of approaches for estimating this model
can be found in [24]; see also, [14, 19, 3, 4, 2, 5, 23].

b) Nonparametric regression methods. A drawback of linear regression methods is that they can not deal
with nonlinear dependencies between the predictor and the response variables. To overcome this, a
number of nonparametric approaches has been proposed. We review the most important approaches
developed in the past few years in that area.

The first approach, introduced in [9], is the use of functional kernel regression estimators:

γ̂(x) =
∑n

i=1 K(d(xi, x)/h)yi∑n
i=1 K(d(xi, x)/h)

,

where h > 0 is the kernel bandwidth, d is a semi-metric on X and K : R+ → R is a suitable kernel
function. This kind of estimators allows for great flexibility in fitting nonlinear models. However,
their consistency properties have been demonstrated only for restricted classes of kernel functions
such as those of types I and II in [9]; furthermore, the data-driven selection of the kernel bandwidth
h is a difficult problem, especially for this high dimensional setting.

Another class of nonparametric regression estimators are the Functional Neural Networks proposed
by Rossi et. al. [25]. In particular, the single hidden layer perceptron is defined by

γ̂(x) =
q∑

j=1

âjT (ûj + l̂j(x)),

where T : R → R is a given activation function, (lj)j are unknown linear functionals to be estimated
(e.g., lj(x) = 〈wj , x〉 with wj ∈ X ) and (aj)j , (uj)j ⊂ R are unknown parameters that also have
to be estimated. Functional perceptrons have the universal approximation property that makes it
possible to represent a wide variety of nonlinear functionals. But notice that they depend on a quite
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large number of parameters (wj)j , (aj)j , (uj)j , which greatly increases with the number of neurons,
q, and that their estimation by the optimization of the least square error leads to local minima issues.
Also, the number of neurons has to be tuned which is a computationally difficult task. In the same
spirit, functional versions of the radial basis functions neural networks have been introduced in [26].

Also, the general framework of function approximation in Reproducing Kernel Hilbert Spaces
(RKHS) has been used [22, 15] to introduce functional regression estimators, which have the general
form:

γ̂(x) =
n∑

i=1

âiK(xi, x),

where K is a reproducing kernel on X , and (ai)i ∈ R. In this framework can be included functional
versions of support vector regression [15] and radial basis functions [22]. The latter has the specific
form:

γ̂(x) =
m∑

i=1

âiφ(d(x, ci)),

where φ is the adopted radial basis function, c1, ..., cm ∈ X are given centers, d is a distance defined
on X , and (ai)i are unknown parameters.

An important advantage of the RKHS approach is that the resulting estimator is linear with respect to
the unknown parameters (ai)i: their estimation by least squares optimization thus reduces to solve an
algebraic linear problem. However, contrary to standard RKHS methods for approximating multivari-
ate functions (e.g., standard multivariate splines and radial basis functions such as thin-plate splines),
in the FDA setting the smoothness properties of γ̂ as a functional on X have not been yet defined.
Hence, the selection of suitable reproducing kernels and radial basis functions is still an open issue.

Finally, more recently, k-nearest neighbors regression has been generalized to functional data [16, 1].
This approach leads to the following regression function:

γ̂(x) =
1
k

k∑

i=1

y(i,x)

where y(i,x) is the value of Y for the i-th nearest neighbors of x among (xi)i=1,...,n. The consistency,
as well as a rate of convergence, is given for this approach, depending on regularity conditions on γ.

c) Functional Inverse Regression (FIR) methods. More recently, an alternative methodology has been
introduced that can be regarded as a compromise between too restrictive parametric methods (such
as linear regression) and nonparametric ones (such as kernel methods). This is called Functional
Inverse Regression (FIR or FSIR) [6, 12, 11], and constitutes a functional version of the Sliced Inverse
Regression (SIR) previously proposed for multivariate regression models [17]. The FIR approach
assumes that the following model holds:

Y = g(〈β1, X〉, ..., 〈βd, X〉) + ε,

where d is the so-called effective dimension and g : Rd → R is an unknown function. Under some
additional assumptions (which are guaranteed if X has an elliptic distribution, e.g., a Gaussian distri-
bution in the Hilbert space X ) the directions (βj)j can be estimated from the spectral decomposition
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of the covariance operators V (X) and V (E (X|Y )). The latter involves to fit the mean function of
the “inverse” model

X = µ(Y ) + e, (1.1)

where e is a random element in X with zero mean, not correlated with Y . More specifically, to
estimate (βj)j and g, the following steps are carried out:

1. Obtain an estimate of µ(Y ) = E(X|Y ) by regressing each component of X versus Y through
any univariate nonparametric regression method.

2. Obtain estimates of the covariance operators Γ = V(X) and Γe = V(E(X|Y )) on the basis of
the results of step (1), and carry out the spectral decomposition of the operator Γ−1/2ΓeΓ−1/2.
(βj)j are estimated as the eigenfunctions corresponding to the d first greatest eigenvalues.

3. Finally, estimate g through a d-variate nonparametric regression method.

In this semi-parametric approach, the dimension, d, is an hyper-parameter of the model. Several
methods have been proposed to find a good d, such as the one proposed in [10].

In this paper, a new functional regression method to estimate γ(X) is introduced that also relies on regard-
ing the inverse regression model (1.1). Its main practical motivation arises from calibration problems in
Chemometrics, specifically in spectroscopy, where some chemical variable Y (e.g., concentration) needs to
be predicted from a digitized function X (e.g., an spectrum). In this setting, said “inverse” model represents
the physical data generation process in which the output spectrum X is determined by the input chemical
concentration Y , and e is a functional random perturbation mainly due to the measurement procedure.
Though Y and X could have unknown complex probability distributions, it is a common assumption that
the perturbation e follows a Gaussian distribution P0, and so that the conditional distribution P (·�y) of X
given Y = y is a Gaussian distribution on X with mean µ(y). The relation between the regression function
and the conditional density coming up from the definition of conditional expectation (see, e.g., [7, 27] in a
nonparametric setting, and more specifically [18]) suggests the following estimate of γ(x):

γ̂ (x) =
∑n

i=1 f̂ (x�yi) yi

f̂X (x)
,

where f̂ (x�y) is an estimate of the density f (x�y) of P (·�y) with respect to the measure P0. This
regression estimate will be refereed to as functional Density-Based Inverse Regression (DBIR). If X was
a scalar variable, this would reduce to the approach for univariate calibration proposed in [18]. It requires
more specific assumptions about the distribution of the perturbation e in the inverse model (1.1) (e.g.,
Gaussian distribution) but it has a number of appealing features in comparison with other approaches:

• Likewise other nonparametric approaches, it allows one to capture nonlinear regression functions.

• Likewise the FIR approach it requires to estimate the mean function µ of the inverse model and some
covariance operator (specifically, V(e)). µ should be estimated through a nonparametric regression
method but, contrary to the classical nonparametric functional regression, this function is defined
on R (and not in a infinite dimensional Hilbert space) and the estimation task is thus much easier,
as well as the issue of tuning the hyperparameters (if so) in the chosen nonparametric regression
method. Moreover, no other parameter have to be estimated. In particular, unlike functional kernel
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regression, this approach does not require the selection of the bandwidth for a kernel on an infinite
dimensional space. Also, it does not involve a large number of parameters related in a non quadratic
way to the functional to optimize, contrary to, e.g., the case of functional perceptrons. DBIR is thus
computationally very easy to use.

• Finally, unlike the FIR approach, few assumptions are required: in particular, γ does not need to
be a function of a finite number d of projections nor X has to follow an elliptical distribution (or
any other given distribution). Also notice that DBIR does not requires the additional multivariate
nonparametric fitting step (c) aforementioned.

This paper is organized as follows. Section 2. defines the functional Density-Based Inverse Regression
(DBIR) estimator. Section 3. carries out a simulation study in order to asses the feasibility and performance
of the DBIR method. Finally, some conclusions are given in Section 4..

2. FUNCTIONAL DENSITY-BASED INVERSE REGRESSION
(DBIR)

2.1 Definition of DBIR in an abstract setting
Let (X, Y ) be a pair of random variables taking values in X × R where (X , 〈., .〉) is the space of square
integrable functions from R to R (X = L2([a, b])). Suppose also that n i.i.d. realizations of (X, Y )
are given, denoted by (xi, yi)i=1,...,n. The goal is to build, from (xi, yi)i, a predictor of the value of Y
corresponding to a future observed value of X . This problem is usually addressed through the estimation
of the regression function γ(x) = E(Y |X = x).
For this, the functional Density-Based Inverse Regression (DBIR) approach fits the inverse regression
model:

X = F (Y ) + ε, (2.2)

where ε is a random process (perturbation or noise) with zero mean, independent of Y , and y → F (y) is a
function from R into X . As was stated in Section 1., this is the commonly assumed data generating model
in calibration problems [21].
Additionally, the following assumptions are made:

1. it exists a probability measure P0 on X (not depending on y) such that the conditional probability
measure of X given Y = y, say P (·�y), has a density f (·�y) with respect to P0; i.e.,

P (A�y) =
∫

A

f (x�y)P0 (dx)

for any measurable set A in X ;

2. it is assumed that Y is a continuous random variable, i.e., its distribution has a density fY (y) (with
respect to the Lebesgue measure on R).

Under these assumptions, the regression function can be written as

γ (x) =

∫
R f (x�y) fY (y) ydy

fX (x)
,
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where
fX (x) =

∫

R
f (x�y) fY (y) dy.

Hence, given an estimate f̂ (x�y) of f (x�y), the following (plug-in) estimate of γ (x) can be constructed
from the previous equation:

γ̂ (x) =
∑n

i=1 f̂ (x�yi) yi

f̂X (x)
, (2.3)

where

f̂X (x) =
n∑

i=1

f̂ (x�yi) .

2.2 SPECIFICATION IN THE GAUSSIAN CASE
The general estimator given in Equation (2.3) will be here specified for the case where, for each y ∈ R,
P (·�y) is a Gaussian measure on X = L2[0, 1]. P (·�y) is then determined by its corresponding mean
function µ (y) ∈ X (which is then equal to F (y) according to Equation (2.2)) and a covariance operator Γ
(not depending on y), which is a symmetric and positive Hilbert-Schmidt operator on the space X . Thus,
there exists an eigenvalue decomposition of Γ, (ϕj , λj)j≥1 such that (λj)j is a decreasing sequence of
positive real numbers, (ϕj)j take values in X and Γ =

∑
j λjϕj ⊗ ϕj where ϕj ⊗ ϕj(h) = 〈ϕj , h〉ϕj for

any h ∈ X .
Denote by P0 the Gaussian measure on X with zero mean and covariance operator Γ. Assume that the
following usual regularity condition holds: for each y ∈ R,

∞∑

j=1

µ2
j (y)
λj

< ∞,

where
µj (y) = 〈µ (y) , ϕj〉 .

Then, P (·�y) and P0 are equivalent Gaussian measures, and the density f (·�y) has the explicit form:

f (x�y) = exp





∞∑

j=1

µj (y)
λj

(
xj − µj (y)

2

)

 ,

where xj = 〈x, ϕj〉 for all j ≥ 1. This leads to the following algorithm to estimate f (x�y):

1. Obtain an estimate µ̂ (·) (t) of the function y → µ (y)(t) for each t ∈ R. This may be car-
ried out trough any standard nonparametric method for univariate regression based on the data set
(yi, xi (t))i=1,...,n, e.g., a smoothing kernel method:

µ̂(y) =
∑n

i=1 K
(

yi−y
h

)
xi∑n

i=1 K
(

yi−y
h

) (2.4)

as proposed in [13] (note that, in this case, the bandwidth h has a common value for all t).
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2. Obtain estimates (ϕ̂j , λ̂j)j of the eigenfunctions and eigenvalues (ϕj , λj)j of the covariance Γ on
the basis of the empirical covariance of the residuals êi = xi − µ̂ (yi), i = 1, ..., n

Γ̂ =
1
n

n∑

i=1

(êi − ē)⊗ (êi − ē)

with ē = 1
n

∑n
i=1 ei. Only the first p eigenvalues and eigenfunctions are retained, where p = p(n) is

a given integer, smaller than n.

3. Estimate f (x�y) by

f̂ (x�y) = exp





p∑

j=1

µ̂j (y)

λ̂j

(
x̂j − µ̂j (y)

2

)

 , (2.5)

where µ̂j (y) = 〈µ̂(y), ϕ̂j〉 and x̂j = 〈x, ϕ̂j〉.
Finally, substituting (2.5) into (2.3) leads to an estimate γ̂ (x) of γ (x), which will be referred to as the DBIR
estimator. It can be proved that this estimator is consistent (limn→∞ γ̂(x) =P γ(x)) under mild regularity
assumptions.

3. A SIMULATION STUDY
In this section, the feasibility and the performance of the nonparametric functional regression method de-
scribed in Section 2. is discussed through a simulation study. All the simulations were done using Matlab
[20]. The algorithm for the DBIR method was also implemented in Matlab. The FDA functions [8], devel-
oped by Ramsay et. al. were used for some operations with functional data. The DBIR code is available
upon request.

3.1 Data generation
The data were simulated in the following way: values for the real random variable Y were drawn from a
uniform distribution in the interval [0, 10]. Then, X was generated by 2 different models or settings:

M1 X = Y v1 + 2Y v2 + 3Y v5 + 4Y v10 + e,

M2 X = sin(Y )v1 + log(Y + 1)v5 + e,

where (vi)i≥1 is the trigonometric basis of X = L2([0, 1]) (i.e., v2k−1 =
√

2 cos(2πkt), and v2k =√
2 sin(2πkt)), and e a Gaussian process independent of Y with zero mean and covariance operator Γe =∑
j≥1

1
j vj⊗vj . More precisely, e was simulated by using a truncation of Γe, Γe(s, t) '

∑q
j=1

1
j vj(t)vj(s)

by setting q = 500. From these two designs, training and a test samples were simulated with sizes nL = 300
and nT = 200 respectively.
Figures 1 and 2 give examples of realizations of X obtained under the first and the second model, respec-
tively, for three different values of y. The underlying (non noisy) functions, F (y) is also represented on
them. In the case of model M2, the simulated data have a high level of noise which makes the estimation a
hard task.
To apply the DBIR method, the discretized functions X were approximated by a continuous function using
a functional basis expansion. Specifically, the data were approximated using 128 B-spline basis functions of
order 4: Figures 1 and 2 show the comparison between the raw functions and their B-spline approximation.
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Figure 1: Model M1. True function F (y) (smooth continuous line), simulated data X (gray rough line) and
approximation of X using B-splines (rough black line) for three different values of y.
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Figure 2: Model M2. True function F (y) (smooth continuous line), simulated data X (gray rough line) and
approximation of X using B-splines (rough black line) for three different values of y.
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3.2 Simulation results
The conditional mean µ(y) was estimated by a kernel smoothing (such as in Equation (2.4)). Two hyper-
parameters were to be tuned in this approach: the bandwidth parameter for the estimation of µ(y) and the
number, p, of eigenfunctions involved in Equation (2.5). These two parameters were selected by a 10-fold
cross-validation minimizing the mean square error (MSE) criterion on the training sampling.

3.2.1 Linear case: M1

This section gives the results obtained in the first simulated model, which presents a linear relation between
the real explanatory variable and functional response variables in the inverse model of Equation (1.1). From
Figure 1, it can be noticed that the level of noise in the data is greater for small values of Y .
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Figure 3: Model M1. Top: True (discontinuous lines) and estimated (continuous lines) values of F (y) for
different y values. Bottom: true and estimated values of F (·)(t) for different values of t (bottom). The dots
(bottom) represents the simulated data (xi(t))i in the training set.

The estimation of the conditional mean using a kernel estimator (Equation (2.4)) is shown in Figure 3. A
comparison between true values and estimated values of F (y)(t) are given for various values of y (top) and
for various values of t (bottom). The linearity of the inverse model of Equation (1.1) is illustrated by the
linear F (y) in the bottom part of this figure. In general, the estimates are good but, in some cases (e.g.,
bottom right) the level of noise appears to be too high and the true mean (as a function of y) it is not as well
estimated as in the other cases.
Figure 4 shows the estimated eigendecomposition of the empirical covariance of residuals r (Section 2.2,
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step 2) and the predicted values of Y on the training and test sets by using the DBIR estimator. More
specifically, the comparison between the true and the estimated eigenfunctions are shown in Figure 4 (a-c)
and the comparison between the true and the estimated eigenvalues in Figure 4 (d). The results show very
good predictions in both the training and test sets (Figure 4 (e-f)).
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Figure 4: Model M1. (a-c): True (dashed line) and estimated eigenfunctions (continuous line); (d): esti-
mated vs. true eigenvalues and (e-f): predicted values for Y vs. the true ones for training and test sets.

3.2.2 Nonlinear case: M2

For this nonlinear model M2, Figure 2 showed that the level of noise is much higher than for M1. In the
same way as in the previous section, Figure 5 compares the true F (y)(t) to its estimated values for various
values of y (top) and for various values of t (bottom). The results are very satisfactory given the fact that
the data have a high level of noise (which clearly appears in the bottom of this figure).
Figure 6 shows the results of the steps 2-3 of the estimation scheme: the estimated eigendecomposition of
r is compared to the true one, and the predicted value for Y are compared to the true ones, both on training
and test sets. The estimation of the eigendecomposition is also very satisfactory despite the high level of
noise, and the comparison between training and test sets shows that the method does not overfit the data.

4. CONCLUSION
A new functional nonparametric regression approach has been introduced motivated by the calibration
problems in Chemometrics. The new method, named functional Density-Based Inverse Regression (DBIR)
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Figure 5: Model M2. Top: True values (discontinuous lines) and estimates (continuous lines) of F (y) for
various values of y. Bottom: true values and estimates of F (·)(t) for various values of t (bottom). The dots
(bottom) are the simulated data (xi(t))i in the training set.
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Figure 6: Model M2: (a-c): True (dashed line) and estimated eigenfunctions (continuous line); (d): esti-
mated vs. true eigenvalues and (e-f): predicted values for Y vs. the true ones for training and test sets.

was fully described for the sample space X = L2([a, b]) under a Gaussian assumption for the conditional
law P (·�Y ) but it can be extended to other sample spaces and distribution families. Two appealing features
of the new method are its rather mild model assumptions and its computational simplicity. The simulation
study of DBIR has shown that it performs well for both linear and nonlinear models. Thus, DBIR can be
considered as a promising functional regression methods, particularly appealing for calibration problems.
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[13] Ferré, L. and Yao, A. (2005): Smoothed functional inverse regression Statistica Sinica, 15:665–683.

[14] Hastie, T. and Mallows, C. (1993): A discussion of a statistical view of some chemometrics regression
tools by i. e. frank and j. h. friedman Technometrics, 35:140–143.

[15] Hernández, N., Biscay, R. J., and Talavera, I. (2007): Support vector regression methods for functional
data Lecture Notes in Computer Science, 4756:564–573.
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