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ABSTRACT                                                                                           

This is a continuation of the earlier work of Matsumoto and Szidarovszky (2010A) that compares Bertrand and Cournot 

equilibria in a differentiated n -firm oligopoly from static and dynamic points of view. It is, among others, found that 

both equilibria can be locally unstable if the firms naively forms expectations and the number of the firms are strictly 

more than three. The main purpose of this paper provides economic circumstances under which such unstable equilibria 

can be stabilized. Three main results have been shown. First, the equilibria can be locally stable if the dynamic system 

with adaptive expectations or the dynamic system with adaptive adjustments is adopted. Second, these two dynamic 

systems are equivalent as far as the local stability is concerned. Third, the total output under the dynamic system with 

naive expectations exhibits a period-2 cycle.  
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RESUMEN: Este trabajo es continuación de uno previamente publicado por Matsumoto y Szidarovszky (2010a) en el 

que se compara el equilibrio de Bertrand y el de Cournot en un oligopolio de  n firmas, desde el punto de vista estático 

y dinámico. Esto es, entre otras cosas, hallar que ambos equilibrios pueden ser localmente inestables si las firmas 

ingenuamente conforman sus esperanzas y el número de firmas es estrictamente mayor que tres... El propósito principal 

de este trabajo provee circunstancias económicas bajo las que tales equilibrios inestables pueden ser estabilizados. Tres 

resultados principales prueban: primero que los equilibrios pueden ser localmente estables si el sistema dinámico con 

esperanzas adaptativas o el sistema dinámico con ajustes adaptativos es adoptado. . Segundo, estos dos sistemas 

dinámicos son equivalentes en lo que concierne a la estabilidad local, Tercero, la salida total bajo el sistema dinámico 

con esperanza ingenua exhibe un periodo de 2 ciclos. 

 

1. INTRODUCTION 

This is a continuation of the earlier work of Matsumoto and Szidarovszky (2010A) that compares 

Bertrand and Cournot equilibria in a differentiated n -firm oligopoly with linear demands and 

asymmetric constant marginal costs. In the literature of the Bertrand and Cournot competitions, there has 

been the conventional view that price competition is more competitive than quantity competition in a 

sense that the price-adjusting firm charges a lower price and produces more quantity of output than the 

quantity-adjusting firm. It has been challenged by a number of theoretical models under various 

conditions whether this view is true or not. Singh and Vives (1984) find that the view is true in a linear 

duopoly framework. Häckner (2000) reconsiders general n -firm oligopoly and points out that the results 

of Singh and Vives are sensitive to the duopoly assumption. These are static results. In the dynamic 

context of a n -firm oligopoly without product differentiation, Theocharis (1960) reminds us of the 

controversial result that the non-differentiated Cournot equilibrium is locally asymptotically stable under 
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the naive adjustment process if and only if the number of firms is two. Matsumoto and Szidarovszky 

(2010A) analyze the general n -firm oligopoly model of Häckner, which is a direct extension of the 

duopoly model used by Singh and Vives. In particular, they address two issues: one is comparing the 

differentiated Bertrand and Cournot equilibria from the static point of view and the other is examining the 

stability of the equilibria. After deriving the optimal strategies of output, price and profit, they provide 

positive support for Theocharis’ result however negative support for the conventional view on 

comparison between the two equilibria:  
 

(i)  Bertrand and Cournot equilibria can be locally unstable when the number of the firms is 

strictly greater than three.  

(ii)  The conventional view is not always true in the n -firm oligopoly.  

 
Looking at these results from a dynamic point of view, it is clear that several important issues remain 

unsolved. The first issue relates to controlling unstable equilibria. In consequence of those two results (i) 

and (ii), it is probable that the conventional view does not hold and the one of the equilibria becomes 

locally unstable. Namely, the Bertrand price can be higher than the Cournot price while it is locally 

unstable or the Cournot output can be larger than the Bertrand output while it is locally unstable. In such 

cases comparing equilibria does not make any economic sense. Applying the results obtained in 

Matsumoto and Szidarovszky (2010B) in which a general n -firm oligopoly is examined with isoelastic 

price function and linear cost under Cournot competition, we will provide economic circumstances under 

which the unstable quantity and price dynamics can be stabilized. The second issue relates to global 

stability of a locally unstable equilibrium. Our main findings are the followings: it is possible to stabilize 

an equilibrium if some learning process is introduced and a locally unstable trajectory converges to a 

period-2 cycle if the non-negativity constraint is explicitly taken into account.  

 

The paper is organized as follows. The next section introduces a linear n -firm oligopoly model with 

product differentiation and obtain the Cournot and Bertrand equilibria. Section 3 considers the control of 

unstable Cournot and Bertrand dynamics with naive expectations through partial and adaptive 

adjustments. Section 4 concludes the paper.  

2. n -FIRM OLIGOPOLY MODEL 

We recapitulate the main structure of the general oligopoly model constructed in Matsumoto and 

Szidarovszky (2010A) and proceed to dynamic analysis.2 The linear inverse demand function or the price 

function of good k  is given by 

 for 1 2
n

k k k

k

p q q k n 


                                              (1) 

where 
kq  is quantity of good k , 

kp is its price,   measures the degree of differentiation between 

the goods and 
k  measures the quality of good k  

In this study, we assume that 1   and 0    to confine our analysis to the case in which the goods 

are imperfect substitutes or complements and are not independent. Solving (1) for quantities yields the 

direct demand of good k ,  

 

(1 ( 2) )( ) ( )

for 1 2
(1 )(1 ( 1) )

n

k k

k
k

n p p

q k n
n

   

 


    

    
  


                   (2) 

It is linear in the other firms’ prices and its price-independent demand is assumed to be positive, that is, 

                                                
2

In this paper we focus our attention to the linear framework. On the other hand, Matsumoto and Szidarovszky (2010B) consider the 

nonlinear framework in which a linear price function is replaced with a nonlinear (i.e., isoelastic) price function. As a result, best 

responses of the firms are unimodal implying the possibility of complex eigenvalues of the coefficient matrix of the linearized 

dynamic system, as shown in Bischi et al. (2010, Example 3.6, p.127). 
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(1 ( 2) ) 0
n

k

k

n    


     It is further assumed that there is no fixed cost and the cost function of 

firm k is linear. The marginal cost is denoted by 
kc . To avoid negative optimal production, it is also 

assumed that 
k kc   is positive. We can call this difference net quality of good k .  

 

In Cournot competition, firm k  chooses a quantity of good k  to maximize its profit 

( )k k k kp c q    subject to (1), taking the other firms’ quantities given. Assuming an interior 

maximum and solving its first-order condition yield the best reply of firm k , 

 for 1 2
n

C

k k

k

q R q k n
 
 
 
 

 

      

where 

 
2 2

n n
C k k
k

k k

c
R q q

 



 
 
 
 

  


  


                                             (3) 

It is easily checked that the second-order condition is certainly satisfied. The Cournot equilibrium output 

and price of firm k  are  

 
1

( )
(2 )(2 ( 1) )2

n
C k k
k

c
cq

n




  


 

  
                              (4) 

and 

 
1

( ).
(2 )(2 ( 1) )2

n
C k k k
k

c c
cp

n

 


  

 
 

  
                          (5) 

The superscript "C"  is attached to variables to indicate that they are evaluated at the Cournot 

equilibrium. Subtracting (4) from (5) yields 
C C

k k kp c q   which is, then, substituted into the profit 

function to obtain the Cournot profit,  

 
2

C C

k kq  
 
 

                                                                (6) 

 
 

In Bertrand competition, firm k  chooses the price of good k  to maximize the profit 

( )k k k kp c q    subject to (2), taking the other firms’ prices given. Solving the first-order condition 

yields the best reply of firm k , 

 for 1 2
n

B

k k

k

p R p k n
 
 
 
 

 

       

where 

 ( )
2[1 ( 2) ]2

nn
B k k
k

kk

c
pR p

n






 
 
 
 

 


  

 
                                (7) 

The second-order condition  

 

 

 

2

2

1 ( 2)
0

(1 )(1 ( 1) )

k

k

n

p n

 

 

  
   

   
 

 

for an interior optimum solution is definitely satisfied for 0  However the sign of the second 
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derivative is ambiguous when 0    This gives rise to make the following assumption:  

 

Assumption 1  1 ( 1 ) 0n     when 0     

 

The Bertrand equilibrium price and output of firm k  are given by 

 

 

(2 ( 3) ) (1 ( 1) )( ) (1 ( 2) ) ( )

(2 (2 3) )(2 ( 3) )

n

k k k
B k
k

n n c c n c

p
n n

      

 

 
  



         


   


         (8) 

 

and  

 

 
1 ( 2)

( )
(1 )(1 ( 1) )

B B

k k k

n
q p c

n



 

 
 

  
                                          (9) 

implying that 

 

 
1

(2 ( 3) )(1 ( 1) )( ) (1 ( 2) ) ( )

(2 (2 3) )(2 ( 3) )

n

k k
B

k k

n n c n c

p c
n n

     

 


        

  
   


    (10) 

 
The superscript "B"  is attached to variables to indicate that they are computed at the Bertrand 

equilibrium. Due to (9), the Bertrand profit of firm k  is given as  

 

 
2(1 )(1 ( 1) )

( )
1 ( 2)

B B

k k

n
q

n

 




  
 

 
                                            (11) 

 

The price, quantity and profit comparisons are summarized in Table 1, which were shown earlier by 

Matsumoto and Szidarovszky (2010A). Let 
k  denote the ratio of the average difference net quality of 

all firms over the net quality of firm k , 

 
1

1
( )

n

k

k k

c
n

c









 



 

 

Firm k  is called higher- or lower-qualified according to k is greater or less than unity. The results 

with " " are newly obtained. Accordingly, it can be observed that as far as the outputs and the prices are 
concerned, higher-qualified Cournot firms charge higher prices and produces less outputs than 

higher-qualified Bertrand firms regardless of whether the goods are substitutes or complements. It is also 

observed that profitability of these firms are ambiguous. On the other hand, when the firms are 

lower-qualified, then the Cournot profit is larger than the Bertrand profit when the goods are substitutes 

and the inequality is reversed when the goods are complements. The same results holds in the duopoly 

framework. However the conventional view does not necessarily hold in n -firm oligopolies.  

  
 Substitutes 

( 0)    

Complements 

( 0)     
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Higher qualified

( 1)k




  

C B

k k

C B
k k

C B
k k

p p

q q

 







  

C B

k k

C B
k k

C B
k k

p p

q q

 







   

Lower qualified

( 1)k




  

C B

k k

C B
k k

C B
k k

p p

q q

 







  

C B

k k

C B
k k

C B
k k

p p

q q

 





   

Table 1. Comparison of Cournot and Bertrand strategies  
 

3. DYNAMIC ADJUSTMENT PROCESSES 

 

In addition to the results summarized in Table 1, it is also demonstrated in Matsumoto and Szidarovszky 

(2010A), and will be reviewed shortly, that under the native expectation scheme, the Cournot output can 

be locally unstable when the goods are substitutes while the Bertrand price can be locally unstable when 

the goods are complements. In consequence, we naturally raise two questions:  

 

(1)  Are there any other expectation schemes under which the Cournot and Bertrand equilibria 

are stable?  

(2)  Where does an unstable trajectory of output or price go when it starts in a neighborhood of 
a locally unstable equilibrium?  

 

We introduce two expectation schemes: partial adjustment towards best response with naive expectations 

and the best reply dynamics with adaptive expectation.3 Then we answer the first question by finding that 

the smaller values of the adjustment coefficients stabilize the otherwise unstable equilibrium. Concerning 

the second question, global dynamics of locally unstable Cournot equilibria is examined and the existence 

of a period-2 cycle is shown. The quantity-adjusting system is examined in Section 3-1 and the 

price-adjusting system is discussed in Section 3-2.  

 

3.1. Cournot Dynamics 

 

3.1.1. Local Adjustment 
 

We turn our attention to the adjustment process and assume that in period 1t  , each firm expects the 

total output of the rest of the industry and changes its output level to the best response accordingly. This 

process can be written as 

 ( 1) ( ( 1))C E

k k kq t R Q t    

where ( 1)E

kQ t   is the expected output of firm k . The adjustment process depends on how the firms 

form their expectations. If firm k  has naive belief that the other firms’ output will remain unchanged, 

                                                
3
Other types of expectations are discussed in detail in Okuguchi and Szidarovszky (1990, 1999). Section 4.3 of the first edition 

contains combined expectations, when some firms follow Cournot expectation while others select adaptive expectations. In the 

second edition, section 4.2 covers adaptive expectation, 4.3 sequential adjustments and 4.4 extrapolative expectations. In the linear 

case general stability conditions are derived without product differentiation, their extensions for oligopolies with product 

differentiation would not change the fundamental methodology and results. We plan to present the details in a future study. 
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then the expected output is determined by  

 ( 1) ( )
n

E

k

k

Q t q t


    

This formation is called the naive expectation. So we call the dynamic adjustment process based on this 

most simple expectation formation the best reply dynamics with naive expectations that will be associated 

to naive dynamics 

 ( 1) ( ) 1 2
n

C

k k

k

q t R q t k n


 
       

 
                                     (12) 

 

According to naive dynamics, firm k  immediately jumps to its best reply level. However, concerning 

changes of the output levels of any firm in most industries, it is clear that the changes require time, new 

employments, purchase of new machinery, etc. Therefore there are a lot of circumstances in which output 

changes are made gradually. It may be plausible under such a circumstance that the firms adjust their 

previous output levels in the direction towards the optimal levels in the next period. If the new output 

level is a weighted average of the current output and the naively-determined optimal output, then the 

resulting adjustment process is called partial adjustment towards the best reply with naive expectations 

that will be abbreviated as partial dynamics. Firm k  gradually moves into the direction towards its 

profit maximizing output. This process is described by the following n -dimensional dynamic system: 

 ( 1) (1 ) ( ) ( ) 1 2C

k k k k k

k

q t q t R q t k n 


 
         

 
                            (13) 

where (0 1]k    is the adjustment coefficient. The Jacobian of this system has the form 

 

1 1 11 1

2 22 2 2

1

1

1

CC

CC

C

C C
n n nn n

    

    

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

    


     

     

 

J  

where  

 
2

C
C k
k

R

q





   


 

 

Notice that in the case of 1k   for all k partial dynamics reduces to naive dynamics and firm k  

reaches its profit maximizing output. The corresponding characteristic equation reads 

 

1
( 1)

det( ) ( 1) 0
2 2

n

n

C

n 
  


   

        
   

J I  

which implies that there are 1n   identical eigenvalues and one different eigenvalue. Since 1   is 

assumed, it is apparent that the naive dynamics are locally asymptotically stable if 1C

n   where  

 
( 1)

2

C

n

n 



    

Under Assumption 1, 1C

n   always if 0    On the other hand, the following results are obtained 

when 0  : 



210 

 

 
2 31for 2 1for 3

2

C Cn n


            

and solving 1C

n    yields the stability condition of the Cournot output for 3n    

 1
2

n


    

Hence we have the benchmark result concerning the local dynamics of the Cournot output4:  

 

Theorem 1. Under Assumption 1, the best reply dynamics of the Cournot output with naive expectations 

is locally asymptotically stable if the goods are complements(i.e., 0  ) while the local stability can be 

lost if the goods are substitutes(i.e., 0  ) and the number of the firms are strictly greater than three.  

  
 

We now turn our attention to the case of 1k    Notice that  

 
T

C  J D ab  

with  

 
1 2( )

2 2 2

T T

n

  
  

 
        

 
a b  

and  

 1 21 1 1 1 1 1
2 2 2

ndiag
  

  
      

              
      

D  

The characteristic polynomial of 
CJ  can be decomposed by using the simple fact that if 

nR  x y  

then  

  det 1
T T  I y xxy                                                        (14) 

where I  is the n n  identity matrix. We can rewrite the determinant as  

 

 

 1

det( ) det

det( )det ( )

T
C

T

 

  

   

    

J I D Iab

D I I D I ab

 

The first determinant is diagonal, the second has the special structure of (14) with 
1( )  x D I a  

and  y b  Identity (14) gives the characteristic equation of 
CJ  as  

 

1 1

( 2)
1 (1 ) 1 0

2 1 (1 2)

n n
k

k

k k k

  
 

   

   
        

      
                               (15) 

The roots of the first factor are 
2

1 (1 )k

   which are inside the unit circle if and only if their 

absolute values are less than unity. Direct calculations show that it is the case if and only if 

 (2 ) 4k     

The other eigenvalues are the roots of equation 

 

1

( 2)
( ) 1 0

1 (1 2)

n
k

k k

g
 


  

 
  

   
  

with  

                                                
4
This is essentially the same as Theorem 1 of Matsumoto and Szidarovszky (2010A). 
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1 (1 2) 0

lim ( ) 1 lim ( )
k

g g
   

 
     

     

and 

 
2

1

( 2)
( ) 0

(1 (1 2) )

n
k

k k

g
 


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



 
  

   
  

All eigenvalues are inside the unit circle if and only if ( 1) 0g    which can be rewritten as  

 

1

1
4 (2 )

n
k

k k



 

 
 

  

In summary, we can present conditions for the local asymptotic stability of the partial dynamics (13).5  

 

Theorem 2. The Cournot output is locally asymptotically stable if for all k ,  

 (2 ) 4k    

and 

 

1

1
4 (2 )

n
k

k k



 

 
 

  

 

  
Let us now shift the emphasis of the stability analysis to two special cases. Consider first the case when 

the firms select identical adjustment coefficients (i.e., 
k   for all k ). The two conditions of 

Theorem 2 reduce, respectively, to  

 (2 ) 4 and (2 ( 1) ) 4n         

where the first inequality always holds for any (0 1)    and (0 1]    The corresponding 

characteristic equation can be written in the form 

 
( 2)

1 (1 ) 1 0
2 1 (1 2)

n
n  

 
  

   
        

      
 

Assuming that the first 1n   eigenvalue are the same, we conclude that  

 1 (1 ) for 1 2 1
2

C

i i n


         

which is less than unity and positive if (2 ) 4     that is, if the first condition of Theorem 2 is 

fulfilled. Making the second factor of the characteristic equation equal to zero and solving it for   yield 

the remaining eigenvalue of 
CJ  with 

k   for all k  as 

 1 1 ( 1)
2

C

n n



 

     
 

 

This is less than unity in absolute value if (2 ( 1) ) 4n    , that is, if the second condition of 

Theorem 2 is fulfilled.  

 

We can represent the second stability condition graphically. Given  , the (2 ( 1) ) 4n     locus 

is a partition line dividing the positive ( n  ) plane into two parts; the stable region with 

(2 ( 1) ) 4n     below the line and the unstable region with (2 ( 1) ) 4n     above. In 

Figure 1 in which the red-hyperbola is the ( 1) 2n    locus (i.e., the partition line with 1  ), the 

Cournot output is locally stable in the light-gray region and unstable in the darker-gray region under the 

naive dynamics, as Theorem 1 indicates. Three dotted loci are associated with three different values of 

                                                
5
This is a modifed version of the first half of Theorem 2.1 in Bischi et al. (2010). 
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  and the boundaries between the stable and instable regions. It can be seen that the boundary shifts 

upward as the value of   decreases. This means that the stability region of 
C

n  enlarges as   

decreases to zero from unity. Any unstable Cournot output under naive dynamics can be stabilized with 

partial dynamics by selecting sufficiently small values of   

 

Consider next a numerically-specified case with different values of 
k . Let us consider the set of 

parameters 4n    
1 0 6     

2 0 5     
3 0 3     

4 0 2     and 0 8   . 6  The 

corresponding characteristic equation has the form 

 

4 4

1 1

( 2)
1 (1 ) 1 0

2 1 (1 2)

k
k

k k k

  
 

   

   
       

      
   

and the different 
k s indicate that 

2
1 (1 )k

   is not an eigenvalue of 
C J  All eigenvalues are the 

roots of equation ( ) 0g    with 4n    Solving it yields four distinctive real roots,  

 

 

  
all of which are positive and less 

 
 

Figure 1.  Enlargment of the stable region) 

 

than unity. Hence the Cournot output is locally asymptotically stable under the partial dynamics.  

 

                                                
6
Theorem 1 implies that 4  is the minimum integer number of the firms when the Cournot output is locally unstable under naive 

dynamics. 
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Although the calculations are done with Mathematica (version 7), the roots are graphically obtained and 

confirmed to be less than unity in absolute value as follows. In Figure 2, the graph of ( )g   is 

illustrated. Since 
1 2 3 41 0         and 0 (1 2) 1i       the four dotted vertical lines 

pass through each of the points, 1 (1 2)i     for 1 2 3 4i       As we have already seen that  

 
1 (1 2) 0

lim ( ) 1 lim ( ) and ( ) 0
i

g g g
   

  

     
      

which imply that some parts of the graph of ( )g   are located between the dotted lines and cross the 

horizontal axis. Three of the four roots are found and depicted as the red points in the interval between the 

smallest 
11 (1 2)     and the largest 

41 (1 2)    . Furthermore  

 
11 1 (1 2)( 0 64) and ( 1) 0 63 0g            

implying that the first root, the most left red dot, found to be less than unity in absolute value, in 

particular it is about 0 07  in this case. It is thus confirmed that all roots are real and inside the unit 

interval. Therefore the Cournot output is locally asymptotically stable under partial dynamics. Notice that 

the same Cournot output is locally unstable under the naive dynamics because 
4 6 5C    . 

 

 
Figure 2: Graph of ( )g   with 4n  ) 

 

3.1.2. Global Adjustment 

We are interested in global dynamics when the Cournot output is locally unstable. For the sake of 

simplicity, we focus on naive dynamics. Summing both sides of (12) over all values of k  and taking 

into account the non-negativity of the total output yield the piecewise linear dynamic equation of the total 

output, 
1

n
Q q


   as 
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0

( ) ( 1)
( ) if ( )

2 2

( 1)

0 otherwise

n c n
Q t Q t Q

Q t

  
  


  

 



                                (16) 

where 
0Q  is the threshold value of the total output for which the first case of (16) generates zero output 

in the next period, 

 0

( )

( 1)

n c
Q

n









 

and   and c  are the averages of 
i  and 

ic  defined by 

 

1 1

1 1
and

n n

c c
n n

 
 

     

A fixed point of (16) is  

 
( )

2 ( 1)
C

n c
Q

n








 
 

and it is locally stable if the slope of the first linear equation of (16) is less than unity in absolute value. 

When 0    
CQ  is always stable in the region where Bertrand competition is feasible.7 On the other 

hand, when 0    
CQ  can lose its stability. Hence we draw attention to the global dynamics of the 

locally unstable Cournot equilibrium of the total output by making the following assumption:  

 

Assumption 2.  
( 1 )

1
2

n 
    

 

Following Puu (2006), we can derive an asymptotic dynamic process of the individual output associated 

with changes of the total output. In particular, using (12), we first form an output difference dynamics by 

subtracting the dynamic equation of firm k  from that of firm , 

  
( ) ( )

( 1) ( 1) ( ) ( )
2 2

k k
k k

c c
q t q t q t q t

    
        

Given 0 1   the sequences of these differences are convergent, and the output difference eventually 

approaches a fixed quantity. After any transient has been passed, the equation can be rewritten as 

 
( ) ( )

( ) ( )
2

k k
k

c c
q t q t

 



  
  


 

Summing this equation over all values of  and solving the resultant equation for ( )kq t gives the 

output dynamic equation of firm k depending on the total output as follows: 

( ) ( ) ( )
( )

2

k k
k

Q t c c
q t

n

 



  
  


                                                (17) 

Substituting the last equation into the price function (1) yields the price dynamic equation associated with 

the total output, 

1 ( 1) (2 ) (1 )[( ) ( )]
( ) ( )

2

k k k
k

n c c
p t Q t

n

     



       
   


                 (18) 

                                                

7Assumption 1 implies that 
( 1) 1

0
2 2

n 
     
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It is clear that individual dynamics of ( )kq t  and ( )kp t  are synchronized with dynamics of the total 

output ( )Q t   It, therefore, suffices for our purpose to confine attention to global dynamics of the total 

output.  

 

Regardless of a choice of an initial point, the divergent quantity-adjustment process (16) with 

Assumption 2 sooner or later generates 
0( 1)Q t Q   at period 1t  However the non-negativity 

constraint prevents the output in the next period from being negative and thus the total output is replaced 

with zero output.8 Substituting ( ) 0Q t   into the dynamic equation (16) gives the total output at period 

1t    

 
( )

( 1) 0
2

n c
Q t

 
    

so ( 1) 0kq t   .9 Substituting ( 1)Q t   into the first equation of (16) yields the total output at 

period 2t     

 
( ) ( 1)

( 2) 1 0
2 2

n c n
Q t

   
     

 
 

where the inequality is due to Assumption 2. The non-negativity constraint replaces the negative value of 

( 2)Q t   with zero output, and then this process repeats itself. In summary we have the following result 

on global dynamics:  

 

Theorem 3. Given Assumption 2, the aggregate dynamic system (16) generates a period-2 cycle of the 

total output with periodic points 

 1 2

( )
0 and

2

n c
Q Q

 
    

 

3.2. Bertrand Dynamics 

If the Bertrand firms naively form their expectations on the prices, then the best reply dynamics of 

Bertrand price of firm k  is obtained by lagging the variables,  

 

 ( 1) ( ( ))B

k k

k

p t R p t


    

We move one step forward and introduce a learning process in which each firm observes the other firms’ 

choice of price and revises its price expectations based on earlier data. The most popular such learning 

process is obtained when the firms adjust their expectations adaptively according to  

 

 ( 1) ( ) ( ) ( )
n

E E E

k k k k

k

P t P t p t P t


 
    

 
  

in which ( 1)E

kP t   is the sum of the prices of the rest of the industry expected by firm k  and the 

expectation is revised on the basis of the discrepancy between the observed value and the previously 

                                                
8
Since ( )kq t  cannot be negative, ( ) 0Q t   implies ( ) 0kq t   for all k  

9
Given ( 1)Q t    equation (17) determines the output of firm k  as 

 
2( ) ( ) ( )(2 )

2(2 ) 2(2 )

k k k k kc c c    

 

    
 

 
 

Notice that 2 k  is necessary to have non-negative individual output. 
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expected value. This adjustment process is called the best reply dynamics with adaptive expectations 

which will be abbreviated as adaptive dynamics and described by the 2n -dimensional system 

 

 

( 1) ( ) (1 ) ( )

( 1) ( ) (1 ) ( )

n
B E

k k k k k

k

n
E E

k k k k

k

p t R p t P t

P t p t P t

 

 





 
     

 

    





 

 

for 1 2k n   . Notice that 1k   for all k  reduces the adaptive dynamics to naive dynamics. 

The Jacobian of adaptive dynamics evaluated at the Bertrand price has the form 

 

1 1 1 1 1 1

2 2 2 2 2 2

1 1 1

2 2 2

0 (1 ) 0 0

0 0 (1 ) 0

0 0 0 (1 )

0 1 0 0

0 0 1 0

0 0 0 1

B B B

B B B

B BB
A n n n nn n

B

n nn

     

     

     

  

  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

  

       

  


  

  

       

  

J  

where  

 
2[1 ( 2) ]

B
B k
k

R

p n







  
  

 

The eigenvalue equation of this matrix has the form 

 1 1with ( )A e e

B n np p p p    J x x x  

which is equivalently written as  

 

(1 ) 1

(1 ) 1

n
B B e

k k k k k k

k

n
e e

k k k k

k

p p p k n

p p p k n

    

  






      




       






 

Subtracting the 
B

k -multiple of the second equation from the first one gives 

 ( ) 0B e

k k kp p     

The value 0   cannot destroy stability, so we may assume 0    Then 
B e

k k kp p   and by 

substituting it into the second equation, we have  

 (1 ) 1
n

B e e

k k k k

k

p p p k n   


        

This equation with 
B B

k   is the eigenvalue problem of the n n  matrix 
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1 1 11 1

2 22 2 2

1

1

1

BB

BB

B

B B
n n nn n

    

    

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

    
 

     

     

 

J  

As in the Cournot competition, we first deal with the case of 1k    The Jacobian 
BJ  has the same 

structure of 
CJ  with 1k   for all k . Replacing 

C

k  with 
B

k  yields the eigenvalues  

 1 1

( 1)
and

2[1 ( 2) ] 2[1 ( 2) ]

B B B

n n

n

n n

 
  

 



       

   
 

The stability of the Bertrand price under the naive dynamics is summarized as follows10:  

 

Theorem 4. Under Assumption 1, the best reply dynamics of the Bertrand price with naive expectations 

is locally asymptotically stable if the goods are substitutes(i.e., 0  ) while it can be locally unstable if 

the goods are complements(i.e., 0  ) and the number of the firms are strictly greater than three.  

 

Even in the case of 1k    
BJ  is exactly the same as 

CJ  if the derivatives of the Cournot best 

reply (i.e., 
C

k ) are replaced with the derivatives of the Bertrand best reply(i.e., 
B

k ). From these facts 

we can conclude first that the local stability conditions of the adaptive dynamics are identical with those 

of the partial dynamics regardless of whether the quantities or prices are adjusted, and second that the 

stability conditions of the Bertrand prices are obtained by replacing the derivatives in Theorem 2 that 

provides the stability conditions of the Cournot output under partial dynamics. In summary 

asymptotically stable conditions for the Bertrand prices under adaptive dynamics as well as for partial 

dynamics are given as follows:  

 

Theorem 5. The Bertrand price is locally asymptotically stable under adaptive dynamics if for all k   

 1 2
2[1 ( 2) ]

k
n






 
  

  
 

and  

 
 1

1
2[1 ( 2) ] 2 (2 3)

n
k

k kn n

 

  

  
    

  

 

 

The first condition of Theorem 4 is always fulfilled since (0 1] 1k      and 3n   The second 

condition is satisfied if the 
k  values are sufficiently small. In particular Figure 2 illustrates how the 

Bertrand unstable price is stabilized by selecting the smaller values of   when the adjustment 

coefficients are assumed to be identical (i.e., 
k  ). The four dotted curves are associated with the 

four different values of   and divides the ( )n   plane with 0   into the stability region under 

the curve and the instability region above. The Bertrand price is locally stable in the light-gray region and 

locally unstable in the dark-gray region when naive dynamics is adopted. The unstable region is 

surrounded by the two red loci: the 1 ( 1) 0n     locus and the partition locus with 1  . It can 

                                                
10

This is the same as Theorem 2 of Matsumoto and Szidarovszky (2010). 
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be seen that as the value of   becomes smaller, the dotted curves shift upward enlarging the stability 

region. In summary, the stability region under adaptive dynamics as well as partial dynamics enlarges as 

the speed of adjustment gets smaller. 

 

 
Figure 3: Enlargement of the stability region 

 

4. CONCLUDING REMARKS 

The main purpose of this paper is to reconsider, from the dynamic point of view, the conventional 

wisdom that price competition is more competitive than quantity competition. To this end, we shed light 
on the asymptotic behavior of Bertrand and Cournot equilibria. For the sake of mathematical simplicity 

we use a n -firm oligopoly with product differentiation in a linear framework in which price and demand 

functions are linear and so are cost functions. The best replies and the equilibria in Cournot and Bertrand 

competitions are determined first and then it is shown that differentiated Bertrand and Cournot equilibria 

can be locally unstable if the firms have naive belief that all other firms’ behavior will remain unchanged. 
The asymptotic behavior of both equilibria and the global behavior of locally unstable Cournot 

equilibrium are examined to obtain the following three results:  

 

1)  The local stability conditions of the best reply dynamics with naive expectations (i.e., 

adaptive dynamics) are identical with those of the partial adjustment towards the best reply with 

naive expectations (i.e., partial dynamics);  

2)  As a consequence of the second result, if the firms have either partial dynamics or adaptive 

dynamics, the smaller adjustment coefficient leads to larger stable region in which the 

equilibrium is locally asymptotically stable;  

3)  In Cournot competition, the total output as well as the individual outputs generates a 

period-2 cycle if the best reply dynamics with naive expectation is locally unstable.  

 
The effects of the goods being strategic substitutes or complements on stability are fully discussed in 

sections 3.2 and 3.3 of our earlier paper, Matsumoto and Szidarovszky (2010A). For the sake of 
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simplicity, we assumed the interior optimal solutions in the profit maximizing problems. One possible 
extension of the current study is to examine the case with corner solutions. The dynamic system could be 

piecewise linear and the resultant dynamics may be complicated. Some simple elementary stability 

conditions are given in Bischi et al. (2010, Appendix B, pp. 281-289). We will consider this interesting 

extension in a future study.  
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