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ABSTRACT 

The randomized response technique (RM) introduced by Warner (1965) was designed to avoid non-answers to questions about 

sensitive issues and protect the privacy of the interviewee. In this paper, a model assisted survey sampling approach is used to 

propose an estimator of the total of individuals with some sensitive characteristic; i.e., we use an auxiliar variable (Fuller and 

Park, et al., 2006) in a logistic regression model to improve the estimator. We also propose a model (the G model) that unifies 

several other RM approaches under the finite population sampling scheme and the estimators (Särndal, et al., 1992; 

Cassel, et al., 1976) framework. We also propose an estimator for the variance of the estimator. 
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RESUMEN 

La técnica de respuestas Aleatorizadas (RM) introducida por Warner (1965) fue diseñada para evitar la no-respuesta en 

preguntas sensitivas y para proteger la privacidad del entrevistado. En este artículo, el enfoque de muestreo asistido por un  

modelo es usado para proponer un estimador para el total de individuos con una característica sensitiva; i.e., disponemos de 

una variable auxiliar (Fuller and Park, et al., 2006) en un modelo de regresión logística para mejorar la estimación. 

Proponemos también un modelo, el modelo G, que recoge a varios otros mecanismos aleatorios bajo un esquema de muestreo 

sin reemplazo de poblaciones finitas y en el marco de la teoría de los estimadores  (Särndal, et al., 1992; Cassel, et al., 1977). 

También proponemos un estimador para la varianza de nuestro estimador. 

 
1. INTRODUCTION 

  
In survey studies, interest is frequently focused on issues that are sensitive or confidential for the 

interviewees, such as use of drugs, tax evasion, sexual preferences, honesty in exams, opinions on authorities, 

etc. For this reason, some interviewees refuse to respond (no response phenomenon) to the questions designed 

to obtain information on a sensitive aspect, or they give a false answer. In either case the estimations are 

biased. 

 

The random response technique, introduced by Warner (1965), proposes a solution to protect the privacy of 

the interviewee consisting of using a random mechanism (RM) by which one of two questions is selected: Do 

you belong to the group with characteristic A? or Do you belong to the group that does not have characteristic 

A?, in which A is the sensitive characteristic of interest. The interviewee will answer yes or no, and the 

interviewer, thus protecting her or his privacy. 

 
The RM technique has encouraged a series of approaches, among which the following models are 

outstanding: (a) the W model (Warner, 1965), (b) the U model with an innocuous unrelated question W 

(Greenberg et al., 1969), (c) the C model with an innocuous unrelated question W correlated with the 
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sensitive variable Y; (d) the H model (Horvitz et al., 1976), (e) the D model (Devore, 1977), and (f) the M 

model (Mangat and Singh, 1990).  Each of these is described below. 

 

The U model (Greenberg et al., 1969) is a randomized response approach with unrelated questions. As the W 

model, it has a random mechanism that selects one of two questions, but while one question refers to a 

sensitive subject (Do you belong to the group with characteristic A?), the second question has nothing to do 

with the sensitive subject, but is about some other innocuous aspect W; that is, it does not affect the 

interviewee’s sensitivity. For example, if the first question is “Do you evade taxes?”, the second question 

could be “Do you like the movies?” The W and U models were compared within the framework of infinite 
populations (Moors, 1971), and the outcome revealed that the U model was more efficient than the W model. 

The C model that we introduce is like the U model except that the innocuous aspect W is correlated with the 

sensitive characteristic Y. 

 

Horvitz et al. (1976) proposed the H model, which allows for greater protection of the interviewee’s 

anonymity, without the use of the complementary question. Each element of the sample responds randomly to 

one of three propositions: (1) the sensitive question, (2) an instruction that says “yes”, and (3) an instruction 

that says “no”, to be chosen with probabilities of  and  respectively, with  

 

In the M model, the random mechanism provides n independent responses with two random components. The 
D model is analogous to U, with a basic difference: belonging to the innocuous group W is established with 

probability one. 

 

Chaudhuri and Mukerjee (1988) present a good review of the pioneer work in randomized responses. Other 

studies are those of Lakshmi and Raghavarao (1992), Mangatet al. (1993), Chua and Tsui (2000), Padmawar 

and Vijayan (2000), and Chaudhuri (2001). A Bayesian approach to the Warner model can be seen in Winkler 

and Franklin (1979) and Bar-Lev et al. (2003). 

 

This paper proposes a logistic regression estimator whose auxiliary variable x  is innocuous and is correlated 

with the sensitive variable Y, but does not affect the individual’s sensitivity maintaining the privacy of the 
interviewee. In this way we get a better estimation in terms of bias and variance, under finite populations 

without replacement sampling setting. Also, it is proposed that these schemes be unified into a G randomized 

response model, such that the W, U, C, H, D, and M models are peculiar cases. Estimators for the variances of 

the different models are proposed, and dispersion of the estimator is studied by simulation.  

 

2. FRAMEWORK 

 

A finite population  is considered. It is assumed that the size of population N is known. 

Sample size is denoted by n, which is not necessarily fixed. Let y be the dichotomized variable that refers to 

the individual’s belonging to the group with the sensitive characteristic of interest, with 
ky  the value of y for 

the element of the population. Thus, is unknown but not random with  if the  individual has 

the sensitive characteristic A, and otherwise. What is to be estimated is , the total number 
of individuals of the population with the sensitive characteristic A. 

 

3. SAMPLING PROCEDURE 

 

The sampling procedure is as follows: 

Step 1 (sample selection). A sample size of size n is extracted in accordance with the sampling design p(s) 

with positive probabilities of inclusion  and  where 

 

 

For each element k in sample S, if ; otherwise, . Note that  is a function of the random 

variable S. Also, 
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Step 2 (information gathering, we follow Cassel, et al., 1976). The interviews of individuals of the sample are 

conducted in accordance with the RM defined for the randomized response model used. For each , RM 

induces a random variable , so that the linear combination  is an unbiased estimation of 

, where a and  are known constants that do not depend on RM; therefore, 

, where  represents the variance of computed from the 

randomized response technique (RM), i.e., the variance obtained for the W Model (assisted for) is ( ), 

and so on. The same interpretation follows for . Thus 

, 

 

, 

 

 

 

where the operator  ( )E  is computed in relation to some superpopulation model  , and  

 

so 

. 

 

4. LOGISTIC REGRESSION MODEL ESTIMATOR 

 

The Generalized Logistic Regression Estimator  for  that we present is an extension of the 

estimator by Lehtonen and Veijanen (1998). We assume that  is a realization of the 

random vector whose components are independent random variables with distribution 

given by 

 

This superpopulation model will be referred as  
Now 

 

 

 
which allows introducing the Logistic Generalized Regression Estimator (LGREG) by Lehtonen and Veijanen 

(1998), which is given by:  

 

where 

 

and  is the Maximum Likelihood Estimator of  in the model , which is obtained in the usual manner in the 

superpopulation model setup:  
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This function is the complete finite population likelihood, i.e., as if  were observed for all , like 

in a census. Then  

 

 

                                                   

where . 

 

5. MAXIMUM LIKELIHOOD ESTIMATOR OF  

 

The equation defines the parameter , then we estimate it through the  of  

: 

 

In general, we maximize the likelihood function numerically by appropriate numerical methods such as 

Newton-Raphson algorithm. Now  

 

 

So 

 

 

 

 

 

 

, 

 

where   and  . Solving , we  

obtain . Once we get , the estimator that we propose for the total of individuals with the sensitive 

characteristic is given by:  

                                                                            

 

                                                       (1) 

 

where  It is interesting to note 

that the estimator in (1) is analogous to the Minimum Dispersion Estimator proposed by Gutierrez and Breidt 

(2009). 

 



250 

 

6. ESTIMATOR OF THE VARIANCE ESTIMATOR 

 

Following the theory of π-estimator ( arndal, et al, 1992) and Lehtonen and Veijanen(1998), we propose  

                                                  (2) 

 

 

 

as an estimator for  The goodness of this estimator is analyzed via simulation. 

 

7. THE UNIFIED APPROACH  

 

7.1   WARNER’S MODEL: W MODEL 

 

     

 

for , and  

 

 

 

 

 
 

7.2    H MODEL 

 

   

 

 

    i.e.  

 

 

7.3   U AND C MODELS 

 

                            

 

 

 

               

 

                          
 

 

7.4   DEVORE’S MODEL: D MODEL 
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   and   

 

                 

 

   
 

 

7.5     M MODEL 

 

 

 

 

 
 

 
 

                               and         

 

 

 

 
 

 

The following table shows the values of a and  for the RMs considered in this work.  

 

Table 1. Values of a and  for the different randomized response techniques. 

 

 a  

W 
  

H 
  

U 
  

C 
  

D 
  

M 
  

 

 

8.   SIMPLE RANDOM SAMPLING 

 

S, 
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and 

 

 

 

 

9. SIMULATION 

 

We simulated a finite population with N=700, , n=140 and did compare models W and H. The 

following results were obtained: 

 

Table 2.  Total population and variances estimated for models W and H with =700,  and n=140 

  
  

W 475.94 74.35 64.004 

H 478.34 36.03 34.04 

 
 

The following table shows that high positive correlate W1 variable in the random mechanism with Y in model 

C produces a very important reduction in the variance estimator. For each row we simulate M=700 times and 

fixed cor.yW1 

 

The table 3 shows that high positive correlations between the W1 variable in the random mechanism and Y in 

model C produces a very important reduction in the variance of the estimator. 

 

In this work a model assisted (Model C) survey sampling approach by using an auxiliary variable was used to 

propose an estimator of the total of individuals with some sensitive characteristics. Simulations were carried 

out under this framework. 

 
Results of simulations for Model C were compared with those for Models W and H (Table 2 and Table3). Our 

results suggest that model C is more efficient than these traditional randomized response techniques also 

based on a model assisted approach, by producing a significant reduction in the variance of the estimator. This 

relationship follows under positive correlation between W1 and Y, as well as under the finite population 

sampling scheme and the estimators. 
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Table 3. Total population estimated and standard deviation of the estimator, for different fixed correlations 

between W1 variable and Y in model C (M = 700). 

MODEL C 

 Mean.  cor.yW1 
  

 1 476.66 -1.00 44.77 40.11 

 2 478.43 -0.84 40.88 38.96 

 3 479.01 -0.69 41.50 37.94 

 4 476.82 -0.54 42.03 36.78 

 5 479.34 -0.41 38.16 35.73 

 6 476.90 -0.27 38.43 34.60 

 7 479.41 -0.13 35.40 33.19 

 8 478.04 -0.00 35.15 31.99 

 9 478.00  0.13     32.88      30.73 

10 477.23     0.26     31.47      29.27 

11 477.05     0.40     27.73     27.74 

12 477.44     0.53     27.42    26.23 

13 477.95 0.69     25.87    24.66 

14 477.39 0.84     23.78    22.58 

15 477.56 0.99     21.04   20.85 

 

Figure 1. Estimated variances (horizontal axis) against correlations for W1 variable in the random 

mechanism, and Y in model C . 

 
  

 
Other approaches for RM´s may be considered in order to compare with our results, as well as for emphasize 

that the proportion of reduction of the variance for the estimator is a very important advantage of our 

approach.  
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APPENDIX 

 

N<-700 

Iset<-1:N 

x<-sample(14:70,N,replace=T) 

B0<--3 

B1<-0.1 

mu<-function(B0,B1,x) (exp(B0+B1*x)/(1+exp(B0+B1*x))) 

p<-mu(B0,B1,x) 

plot(x,p) 

y<-rep(2,N) 

u1<-runif(N) 

for (k in 1:N){if (u1[k]<=p[k]) (y[k]<-1) else 

                (y[k]<-0) 

              } 

A<-sum(y) 

A 

 

#MU HATS 

#Bhat Matrix of estimated betas via Newton-Raphson 

mu.hat.U<-matrix(rep(0,N*M),nrow=N) 

for (j in 1:M){ 

            for (i in 1:N) (mu.hat.U[i,j]<-mu(Bhat[j,1],Bhat[j,2],x[i])) 

              }  

mu.hat.s<-matrix(rep(0,n*M),nrow=n) 

for (j in 1:M) (mu.hat.s[,j]<-mu.hat.U[s[,j],j]) 

  

#W&MAS&LGREG 

Zs<-matrix(rep(2,n*M),nrow=n) 

U<-matrix(rep(0,n*M),nrow=n) 

tY.W.LGREG<-rep(0,M) 

P<-0.70 

a<-1/(2*P-1) 

b<--(1-P)/(2*P-1) 

for (j in 1:M){ 

               U[,j]<-runif(n) 

               for (k in 1:n){ 

                           if (U[k,j]<P) (Zs[k,j]<-y[s[k,j]])  

                           if (U[k,j]>P)(Zs[k,j]<-1-y[s[k,j]]) 

                           } 

            Zs[,j]  

            tY.W.LGREG[j]<-sum(mu.hat.U[,j])+(1/f)*(sum(a*Zs[,j]+b)-sum(mu.hat.s[,j])) 

              } 

hist(tY.W.LGREG) 

mean.tY.W.LGREG<-mean(tY.W.LGREG) 

var.tY.W.LGREG<-var(tY.W.LGREG) 

D<-matrix(rep(-1/(n-1),n*n),nrow=n) 

diagD<-rep(1,n) 

diag(D)<-diagD 

D<-((1-f)/(f*f))*D 

var.hat.tY.W.LGREG<-rep(0,M) 

for (j in 1:M){var.hat.tY.W.LGREG[j]<-(t((a*Zs[,j]+b)-mu.hat.s[,j])%*%D%*%((a*Zs[,j]+b)-mu.hat.s[,j]))} 

mean.var.hat.tY.W.LGREG<-mean(var.hat.tY.W.LGREG) 

cWarner<-c(mean.tY.W.LGREG,var.tY.W.LGREG,mean.var.hat.tY.W.LGREG) 

cWarner 

 

 

   

#H&MAS&LGREG 

Zs<-matrix(rep(2,n*M),nrow=n) 

U<-matrix(rep(0,n*M),nrow=n) 

tY.H.LGREG<-rep(0,M) 

P1<-0.70 

P2<-0.15 

for (j in 1:M){ 

               U[,j]<-runif(n) 

               for (k in 1:n){ 

                           if (U[k,j]<P1) (Zs[k,j]<-y[s[k,j]])  

                           if  ((P1<=U[k,j])&(U[k,j]<P1+P2))(Zs[k,j]<-1) 
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                           if (U[k,j]>P1+P2)(Zs[k,j]<-0)  

                           } 

            Zs[,j]  

            tY.H.LGREG[j]<-sum(mu.hat.U[,j])+(1/P1)*(1/f)*sum(Zs[,j]-(P1*mu.hat.s[,j]+P2)) 

              } 

hist(tY.H.LGREG) 

mean.tY.H.LGREG<-mean(tY.H.LGREG) 

var.tY.H.LGREG<-var(tY.H.LGREG) 

a<-1/P1 

b<--P2/P1 

D<-matrix(rep(-1/(n-1),n*n),nrow=n) 

diagD<-rep(1,n) 

diag(D)<-diagD 

D<-((1-f)/(f*f))*D 

var.hat.tY.H.LGREG<-rep(0,M) 

for (j in 1:M){var.hat.tY.H.LGREG[j]<-(t((a*Zs[,j]+b)-mu.hat.s[,j])%*%D%*%((a*Zs[,j]+b)-mu.hat.s[,j]))} 

mean.var.hat.tY.H.LGREG<-mean(var.hat.tY.H.LGREG) 

cH<-c(mean.tY.H.LGREG,var.tY.H.LGREG,mean.var.hat.tY.H.LGREG) 

cH 

 

 

#W is a matrix whose columns are non-related questions with differents correlation with Y.  

N<-700 

y1<-y 

M<-700 

W<-matrix(rep(0,M*N),nrow=N) 

for (k in 1:M)(y1[k]<-1-y1[k])&(W[,k]<-y1) 

cor.yW<-cor(y,W)  

 

#C0&MAS&LGREG 

Zs<-matrix(rep(2,n*M),nrow=n) 

U<-matrix(rep(0,n*M),nrow=n) 

tY.C0.LGREG<-rep(0,M) 

P<-0.70 

a<-1/P 

b<--(1-P)/P 

B0<-b*W[,200] 

for (j in 1:M){ 

               U[,j]<-runif(n) 

               for (k in 1:n){ 

                           if (U[k,j]<P) (Zs[k,j]<-y[s[k,j]])  

                           if (U[k,j]>P)(Zs[k,j]<-W[s[k,j],200]) 

                           } 

            Zs[,j] 

            tY.C0.LGREG[j]<-t(rep(1,N))%*%mu.hat.U[,j]+(1/f)*t(rep(1,n))%*%(a*Zs[,j]+B0[s[,j]]-mu.hat.s[,j]) 

              } 

hist(tY.C0.LGREG) 

mean.tY.C0.LGREG<-mean(tY.C0.LGREG) 

var.tY.C0.LGREG<-var(tY.C0.LGREG) 

D<-matrix(rep(-1/(n-1),n*n),nrow=n) 

diagD<-rep(1,n) 

diag(D)<-diagD 

D<-((1-f)/(f*f))*D 

var.hat.tY.C0.LGREG<-rep(0,M) 

for (j in 1:M){var.hat.tY.C0.LGREG[j]<-t(a*Zs[,j]+B0[s[,j]]-mu.hat.s[,j])%*%D%*%(a*Zs[,j]+B0[s[,j]]-mu.hat.s[,j])} 

mean.var.hat.tY.C0.LGREG<-mean(var.hat.tY.C0.LGREG) 

cC0<-c(mean.tY.C0.LGREG,var.tY.C0.LGREG,mean.var.hat.tY.C0.LGREG) 

cC0 

 

 

#C&MAS&LGREG 

x<-seq(0,700,by=50) 

x[1]<-1 

x<-x[sort.list(-x)] 

x 

W1<-W[,x] 

cor.yW1<-cor(y,W1) 

cor.yW1 

lx<-length(x) 

tY.C.LGREG<-matrix(rep(0,lx*M),nrow=M) 
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P<-0.70 

a<-1/P 

b<--(1-P)/P 

B<-b*W1#B<-b*W[,x] 

Zs<-matrix(rep(2,n*M),nrow=n) 

U<-matrix(rep(0,n*M),nrow=n) 

for (j1 in 1:lx){ 

              for (j in 1:M){ 

                               U[,j]<-runif(n) 

                                             for (k in 1:n){ 

                                                          if (U[k,j]<P) (Zs[k,j]<-y[s[k,j]])  

                                                          if (U[k,j]>P)(Zs[k,j]<-W[s[k,j],x[j1]]) 

                                                          } 

            Zs[,j] 

            tY.C.LGREG[j,j1]<-t(rep(1,N))%*%mu.hat.U[,j]+(1/f)*t(rep(1,n))%*%(a*Zs[,j]+B[s[,j],j1]-mu.hat.s[,j]) 

                                } 

                } 

mean.tY.C.LGREG<-apply(tY.C.LGREG,2,mean) 

var.tY.C.LGREG<-apply(tY.C.LGREG,2,var) 

var.hat.tY.C.LGREG<-matrix(rep(0,lx*M),nrow=M) 

for (j1 in 1:lx){ 

                for (j in 1:M){var.hat.tY.C.LGREG[j,j1]<-t(a*Zs[,j]+B[s[,j],j1]-mu.hat.s[,j])%*%D%*%(a*Zs[,j]+B[s[,j],j1]-mu.hat.s[,j]) 

                              } 

               } 

var.hat.tY.C.LGREG<-apply(var.hat.tY.C.LGREG,2,mean) 

df2<-data.frame(mean.tY.C.LGREG,cor.yW1,var.tY.C.LGREG,var.hat.tY.C.LGREG) 

sd.tY.C.LGREG<-sqrt(var.tY.C.LGREG) 

sd.hat.tY.C.LGREG<-sqrt(var.hat.tY.C.LGREG) 

df3<-data.frame(mean.tY.C.LGREG,cor.yW1,sd.tY.C.LGREG,sd.hat.tY.C.LGREG) 

plot(cor.yW1,var.tY.C.LGREG) 

 


