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 ABSTRACT: 

 In this paper, an attempt has been made to construct control charts for binomial distribution when the underlying distribution is ratio of two 

 Poisson means. Shewhart chart control limits and ARL are obtained based on exact value of the confidence limit.  
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 RESUMEN 

 En este trabajo se ha hecho un intento de construir cartas de control para la distribución binomial cuando la distribución subyacente es la 

 razón de dos medias Poisson. Limites de cartas de control de Shewhart y ARL son obtenidos en base al valor exacto del límite de confianza.  

 

1. INTRODUCTION 

 

A common problem in the application of statistical methods to the quality of material produced by a continuous process 

is to ensure that the proportion of defective product does not exceed a specified limit. In 1924 Walter A. Shewhart 

developed the most important statistical tool in statistical process control: the control chart. Traditionally Shewhart 

control chart assumes normality. Alternatively to control charts based on normality, control charts based on other 

parametric distributions have been proposed. For example, Ferrel (1958) and Cheng and Xie (2000) proposed a control 

chart based on lognormal distribution; Nelson (1979) obtained control limits for median, range and location scales for the 

Weibull distribution; Kaminsky et al. (1992) developed control charts based on geometric distribution. Xie and Goh 

(1997) and Schwertman (2005) illustrate the use of geometric and negative binomial distributions for constructing 
control charts. 

 

Shewhart control chart based on Poisson distribution is used when the response from a process is a count such as, 

number of accidents per worker in a factory, number of persons suffering from an infectious disease, the number of sibs 

with human albinism in families of any size. Literature is also available on control charts based on counted data. Lucas 

(1985) described the design and implementation procedure for counted data for detection of increase or decrease in the 

count level. Chakraborty and Singh (1990) constructed Shewhart control charts for zero-truncated Poisson distribution 

where average run length (ARL) and operating characteristic (OC) function were obtained. Recently Chen et al. (2008) 

obtained attribute control charts using generalized zero-inflated Poisson distribution. 

 

However, in many situations the traditional technique of Shewhart control charts may not be suitable or can not be used, 
as for many processes, the assumptions of Poisson distribution may deviate or may provide inadequate model. 

Distribution of counts generated by various types of processes can not be modeled by the Poisson distribution to use in 

for c-chart. Recently, Hoffman (2003) developed control limits based on negative binomial for counted data with extra 

Poisson variation. 
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The problem of comparing two Poisson rates has been studied in the literature, for example, Nelson (1987), Sahai and 

Misra (1992), Sahai and Khurshid (1993), Price and Bonett (2000), Bratcher and Stamey (2004), Krishnamoorthy and 

Thompson (2004), and Gu et al. (2008) to mention a few. In many cases, binomial distribution may be more flexible and 

natural to use in place of Poisson distribution, when the control charts for ratio of two Poisson means (Sahai and 

Khurshid, 1993) need to be constructed, as the situation may arise to control the ratio rather than the single parameter. In 

such cases traditional 3  )( k  chart may not be ideal to detect the shift of the ratio of two means and since binomial 

is an asymmetric distribution (for qp  ), the probability (exact) limits are more appropriate than typical 3  control 

limits, as Shewhart control charts are based on normal distribution. 

 

This paper considers the binomial model as a simple and flexible alternative to the Poisson model (which may be the 

case of over-dispersion also) for detecting the shift of the ratios of process parameters of two Poisson distributions. 

Control limits of Shewart control charts are obtained for binomial distribution when the underlying distribution is 

Poisson and hence the limits of the control charts are obtained based on the upper limit of the confidence intervals for the 
ratio of two Poisson means. In most of the cases for attribute control charts, the lower control limits may not exist 

because the probability at zero could be larger than the desired type I error probability, hence in this paper, we have 

considered control limits based on the value of exact upper confidence limit. ARL of the chart is studied for different 

values of the parameters of the distribution for different control limits. 

 

2. BINOMIAL DISTRIBUTION (WHEN UNDERLYING DISTRIBUTION IS POISSON) 

 

Let X  and Y  be two independent Poisson variates with parameters   and   respectively. Then the conditional 

distribution of X  given X + Y follows a binomial distribution with parameters n  and 





p  (Lehmann and 

Romano, 2005) 
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where nx ...,,2,1,0 . The distribution (2.1) is used to obtain control limits for Shewhart chart based on exact method 

for )%1(100   confidence interval on 



  . 

 

3. CONTROL CHARTS AND CONSTRUCTION OF CONTROL LIMITS 

 

3.1 Shewhart ( k ) control charts 

 

For the above distribution (2.1), the mean and variance are given by: 
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The limits for np  and fraction defective charts are as follows: 
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where K  is standardized normal variate. 

 

3.2 Exact Control Limits 

 

For a specified level   (Type I error), upper and lower control limits are  )( UCLxP  and  )( UCLxP , 

i.e., 
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Hence for exact  -level control limits, we have UCL such that  
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where 
Up  is the upper confidence limits, when the limits are set on 
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4. AVERAGE RUN LENGTH (ARL) 

 
ARL is the average number of points that must be plotted before a point indicates an out of control condition. For any 

Shewhart control chart, the ARL is defined as 
1][  PARL , where P  is the probability that a single point exceeds the 

control limits. Now, if the mean shifts from the in-control value, say, ,0  to another value  k 01 , the 

probability of not deleting this shift on the first subsequent sample or the  -risk (Montgomery, 2005) is 

 

    LCLxPUCLxP  . 

 

Thus for (2.1), we have 
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Hence,  
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which will give ARL as 
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Operating Characteristic (OC) curve for the Shewhart control chart when the underlying distribution is binomial can be 

constructed by plotting the  -risk against the magnitude of the shift of the (process) parameter that we wish to detect. 

 

5. AN ILLUSTRATIVE EXAMPLE AND CONCLUSION 

 

An example of counts of diatoms (Sahai and Khurshid, 1993) is considered to develop control limits, where 95% 

confidence interval on 



   was constructed when the sampling distribution is restricted to 25n  counts.   and 

  being the mean diatom concentration of two lake waters. 

 

The exact upper confidence limit ( ) from the example of diatom is 2.1990 which is calculated from 

6874.0






p . This upper limit of )( Upp   is used in this paper to develop the limits of control charts and 

hence average run length (ARL). 

 

The 3  Shewhart control chart limits for 6874.0p  are 24UCL  and 10LCL . ARL values are calculated 

for change in the values of p . ARL also calculated for different control limits as shown in Tables 1 and 2. 

 

Table 1: Some numerical values of   for 7.06847.00 p  and different control limits 

 

  

0p   )3(    

24UCL , 

10LCL  

 )2(    

22UCL , 

13LCL  

 )5.1(    

21UCL , 

14LCL  

 )(    

20UCL , 

15LCL  

 )5.0(    

18UCL , 

16LCL  

0.2    0.006        0        0        0        0 

0.3    0.098    0.002        0        0        0 

0.4    0.414    0.035    0.007    0.001        0 

0.5    0.788    0.202    0.067    0.013        0 

0.6    0.966    0.556    0.029    0.096    0.005 

0.7    0.998    0.880    0.671        0    0.045 

0.8    0.996    0.985    0.937    0.362    0.223 

0.9    0.928    0.911    0.901    0.877    0.57 

0.95    0.723    0.693    0.676    0.659    0.556 

 

The values of   and ARL for shifting of the parameter )6874.0(0 p  to some other values 1p  (say) are shown in 

Tables 1 and 2 for different control limits. It is evident from the Table 1 that the values of   (the probability of not 

detecting the shift from 0p  to 1p  on the first subsequent sample) will go on increasing for fixed control limits 

)5.0,1,5.1,2,3(  kk  as we keep increasing the shift of the parameter from 0p  to 1p  but for fixed shift of 

the parameter, the values of   decrease as we increase the size of the control limit. Whereas from the Table 2 it is 

observed that the values of ARL for fixed control limits )5.0,1,5.1,2,3(  kk  will go on decreasing as we 
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keep increasing the shift of the parameter from 0p  to 1p . But for fixed shifting of the parameter, the values of ARL 

increase as we increase the size of the control limit.  

 

 

 

Table 2: Some numerical values of ARL for 7.06847.00 p  and different control limits 

 

0p  1ARL  

)3(    

2ARL  

)2(    

3ARL  

)5.1(    

4ARL    

)(    

5ARL  

)5.0(    

0.2    1.006 1    1    1    1 

0.3    1.1086 1.002    1    1    1 

0.4    1.7064 1.0363    1.007    1.001    1 

0.5    4.7169 1.253    1.072    1.0132    1 

0.6   29.412 2.252    1.408    1.106    1.005 

0.7 500 8.333    3.0395    1    1.047 

0.8 280 66.667  15.874    1.567    1.287 

0.9   13.88 11.2359  10.1    8.13    2.326 

0.95    3.61 3.257    3.086    2.932    2.252 

 

Table 3 shows the values of ARL for different values of n  for fixed 7.06874.0 p . It has been observed here that 

for fixed n , the values of ARL decrease as we decrease the range of the limit, whereas ARL values are random in nature 

as n  takes different values for fixed limits. This interesting case will be considered in detail elsewhere. 

 

Table 3: Values of ARL for different control limits and n  when 7.0p  

 

                           n  

Limits    25   20 15 10 5 

)3(     500     - - - - 

)2(     125 55.36 - - - 

)2(         8.3 17.86 18.18 - - 

)5.1(         3.04 17.86   6.02 5.62 - 

)(         1   2.99   2.47 3.34 1.76 

)5.0(         1.05   1.59   1.74 1.36 1.56 

 

 

Figure 1 gives the idea of the distribution of ARL. The histogram shows the high degree of skewness in the positive 

direction as we decrease  -limits and for a specified  , the test will detect large differences more easily if the  -

limits are decreased which is also observed in Figures 2 and 3. Figure 4 depicts graphic representation of ARL for 

different values of n  and subsequent control limits for fixed 7.06874.0 p . 
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