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ABSTRACT 

Ortholog detection has included the comparison of different gene features to build a phylogenetic tree or the initial genome 

correspondence graph. Many pre-processing procedures have been applied to prune graph structures before the clustering of 

potential orthologs. Then, some post-processing improvements have contributed in (>90%) of precision. Although, some algorithms 

yield high levels of precision, it is still the main target for comparative genomics community. In this paper, we present an ortholog 

detection algorithm which combines sequence homology, length and global genomes rearrangements into a novel local-global gene 

dissimilarity measure for the comparison of two closely related eukaryotes species. We use Locally Collinear Blocks reported by 

the “Multiple Alignment of Conserved Genomic Sequence with Rearrangements” software (MAUVE) to take into account global 

genome rearrangements. We build a weighted undirected complete bipartite graph representing the comparison of the two genomes 

with the global gene dissimilarity measure. The pre-processing step eliminates all edges with weight over 20% of the minimum 

weight. Next, we resolve ambiguities by keeping matches within synteny blocks. Finally, in the clustering process we search for 

Best Unambiguous Subsets representing homology groups and pairs of orthologs. We present an experiment with S. Cerevisiae and 

S. Bayanus with 98.45% of true classifications. 
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RESUMEN 

La detección de ortólogos ha incluido la comparación de diferentes rasgos de los genes para construir un árbol filogenético o un 

grafo de correspondencia entre genomas. Se han aplicado múltiples procedimientos de pre-procesamiento para podar las estructuras 

de grafos antes de agrupar los ortólogos potenciales. Además algunas mejoras de post-procesamiento han contribuido a (>90%) de 

precisión. A pesar de que algunos algoritmos arrojan altos niveles de precisión, ésta continúa siendo el principal objetivo de la 

comunidad científica que trabaja en genómica comparativa. En este trabajo presentamos un algoritmo de detección de ortólogos que 

combina la homología de las secuencias, la longitud y los reordenamientos globales en una nueva medida de disimilaridad entre 

genes local-global para la comparación de dos especies de eucariotas estrechamente relacionadas. Para tener en cuenta los 

reordenamientos globales de los genomas, utilizamos los Bloques Localmente Colineales reportados por el software de 

alineamiento múltiple de secuencias genómicas conservadas con reordenamientos “Multiple Alignment of Conserved Genomic 

Sequence with Rearrangements” (MAUVE). Construimos un grafo bipartito completo que representa la comparación entre los dos 

genomas con las medidas de disimilaridad globales entre los genes. El paso de pre-procesamiento elimina todos los arcos con peso 

por encima del 20% del mínimo peso. Luego resolvemos las ambigüedades conservando las correspondencias dentro de los bloques 

de orden conservado. Finalmente, en el paso de agrupamiento, buscamos los mejores subconjuntos no ambiguos  que representan 

los grupos de homología y los pares de ortólogos. Presentamos un experimento con S. Cerevisiae y S. Bayanus con 98.45% de 

clasificaciones verdaderas. 

 

1. INTRODUCTION 
 

Genetic changes might be as subtle as mutations, insertions or deletions of individual nucleotides but as drastic 
as duplication or lost of chromosomal segments, entire chromosomes or complete genomes. Global genome 
rearrangements may be possible due to inversions, translocations, fusions and fissions. The resulting differences 
considering behaviour and chromosome organization may reduce some capabilities in sub-populations or 
emerging species.  
 
On comparing various species we can observe some homologies in their genetic composition and in their gene 
organization. A lot of genes known as orthologs keep their sequence homology and function through different 
species starting from a common ancestor. Orthologs evolved by speciation while some other homolog genes 
known as paralogs evolved by duplication. Inparalogs are genes within species that duplicated after the 
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speciation event, while outparalogs duplicated before the speciation event. In genome comparison we can study 
groups of neighbour genes that preserve local organization (order and distance) throughout evolution. These 
groups are called synteny blocks. 
 
Many studies have classified sets of orthologous sequences among annotated species, and therefore many 
multispecies eukaryotic databases of orthologous groups are available, for instance, NCBI euKaryotic 
Orthologous Group database (KOG) [54],ORTHOMCL_DB [6], INPARANOID [44], Eukaryotic Gene 
Orthologues database (EGO) [34], YOGY [48], ROUNDUP [10] and ORTHOINSPECTOR [36]. Some tools 
such as BLASTO [33] allow for a sequence search in a database set in order to assign this sequence to an 
orthologous group. These databases have been mainly developed through phylogeny-based orthology inference, 
all-against-all sequence comparison or hybrid methods [15], [29], [24] that include additional information such 
as protein interactions, synteny data and protein domains. 
 
The phylogenetic approach [22], [61] includes the homolog clustering, the generation of correct multiple 
alignments for each group of homolog domain, the construction of a phylogenetic tree for each group, and 
finally, the extraction of orthologs from these trees. The tree methods typically reconcile gene and species trees 
in order to assign duplication and speciation nodes, as well as detect gene losses. 
 
On the other hand, the all-against-all approach focuses on building ortholog groups by clustering pair-wise gene 
relationships mainly obtained from sequence similarity measures: asymmetric BLAST raw score [2], symmetric 
SW score [23], or symmetric BLAST E-value [1]. It is based on the fact that orthologs should be more similar 
than paralogs to each other. Thus, in the pre-processing step most algorithms use a cut-off value to prune the 
correspondence graph and an operational definition of orthology (best hit (BeT) [57], bi-directional best hit 
(BBH) [46], reciprocal best hit (RBH) [26], symmetrical best hit (SymBeT) [51] or reciprocal smallest distance 
(RSD) [60]. In section 2 we summarize some of these gene comparison techniques and their corresponding 
implementations in ortholog detection algorithms. 
 
Other algorithms improve pre and post-processing steps taking duplication events, synteny data and global 
genome rearrangements into account. For example, SOAR [7] and MSOAR [18], [17] have used global 
rearrangement heuristics to estimate the evolution distance and, specifically, MSOAR incorporates a post-
processing step to eliminate pairs of genes which most likely constitute inparalogs [17]. Its precision is (>90%). 
An algorithm based on Best Unambiguous Subsets (BUS) [29] starts from BLASTP [1] correspondences, 
weights graph edges by the amino acid sequence identity and the overall length of BLAST [1] matches and then 
eliminates all edges that are less than 80% of the maximum-weight edge. Before the single linkage graph 
clustering step, the BUS algorithm builds synteny blocks to eliminate some ambiguities between duplicated 
genes that are almost identical. 
 
Despite the outstanding solutions in this field, precision was still a matter of discussion in the „Quest for 
Orthologs‟ meeting at the Welcome Trust Conference Centre in Hinxton, UK in July 2009 [19]. Although new 
significant algorithms have emerged [53], [40], a recent benchmark [52] shows that those which integrate 
information from similarity searches, phylogenies, and synteny are more likely to be better choice for 
evolutionary genomics and functional studies. Hence, the need of gene comparing measures capable of merging 
different features while guaranteeing high levels of precision. Having this motivation, in this paper we present 
an all-against-all algorithm for ortholog detection between two closely related species (eukaryotes probably 
multi-chromosomal) where we combine the homology and length of the sequences with the global 
rearrangements information by using a novel local-global dissimilarity measure (in section 3).  
 
In our algorithm (in section 4) we try to improve the pre-processing step considering a cut-off value and a 
synteny block membership criterion similar to the one in [29]. We follow a BUS-like clustering step [29]. We 
made some experiments with Saccharomyces Cerevisiae and Saccharomyces Bayanus (in section 5). 

 
2. GENE COMPARISON BY USING AN OPERATIONAL DEFINITION OF ORTHOLOGY 

 
Kuzniar in [32] uses the term “nearest neighbour” to collectively designate all ortholog detection algorithms that 
first calculate pair-wise sequence similarity and then apply an operational definition of orthology even though 
the approaches do not necessarily imply phylogenetic proximity [31].They are commonly used as first-pass 
approximations to find putative orthologs skimming the genome-wide matches between two species. For 
example, the construction of functionally annotated Groups of  Ortholog  Clusters (COGs) [57], [55], [56], [54] 
starts from the selection of best BLAST hits (BeTs) to multiple proteomes by using congruent “triangles” of 
BeTs from at least three different species. These minimal COGs are then merged by a single linkage into larger 
groups (protein families). Kuzniar refers to the disadvantages of the COG „triangles‟ in the presence of gene 
losses. He points to deficiencies in the COG approach to differentiate between in- and out-paralogs 
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automatically. The user needs to investigate the pre-computed phylogenetic trees for duplication and speciation 
events. The automatic clustering procedure creates exclusive clusters, thus, multi-domain proteins must be 
handled manually. 
 
The author in [46] presents the BBH approach for the detection of conserved clusters of genes based on the 
definition of a “run”. A set of genes occurring on a chromosome is considered as a “run” if and only if all these 
genes occur on the same strand and the gaps between adjacent genes are 300 base pairs or less. Any pair of 
genes occurring within a single run is called a “close”. Two genes xa and xb from two genomes A and B, xa and 
xb are called a BBH if and only if recognizable similarity exists between them, ie.  FASTA scores [47] lower 
than 1.0 X 10-5, and there is no gene zb in B that is more similar than xb to xa and there is no gene z ain A that is 
more similar than xa to xb. Genes (xa,ya) from A and (xb,yb) from B form a pair of “close” bidirectional best hits if 
and only if xa and ya are close, xb and yb are close, xa and xb are a BBH and ya and yb are a BBH. 
 
The OFAM database of protein ortholog families is derived from BBH in the extensible data environment for 
computational genomics CoGenT++ [21].The authors use the BLASTP [1] bit score bs as an estimate of 
sequence similarity and calculate the E-value in a simplified yet uniform manner as follows: Esimpl = LeffX SeffX 
2(−bs), where the effective database size Seff is set to 108 residues and Leff is the effective protein length (number 
of amino acid residues not masked by CAST [50]). They use an E-value cut-off of 10−5 on Esimpl and calculate 
the cut-off that would accept alignments covering 40% of the query protein length. They actually use the most 
permissive cut-off between this alternative cut-off and 10−5. 
 
A common procedure for identifying sequence pairs that are putatively orthologous, admissible for the 
estimation of relative evolutionary rate [60], is the identification of reciprocal best BLAST hits (RBH). Protein x 
in genome A is a reciprocal best hit of protein y in genome B if a forward search of genome B with protein x 
yields as the top hit protein y, and a reciprocal query of genome A with protein y yields as the top hit protein x. 
In [60] the author commented a potential pitfall of RBH in the sense that if the forward BLAST yields a paralog 
best hit, regardless of whether the reciprocal BLAST corrects the error by recovering an actual ortholog, both 
pairs will be excluded. Thus, while RBH will rightfully prevent admission of the paralog pair to the set of 
proteins for which relative evolutionary rates are estimated, it might also wrongly exclude an authentically 
ortholog pair from consideration. Despite of this potential limitation some of the ortholog detection tools 
reported in literature use RBH. 
 
The ORTHOMCL algorithm [35] uses RBH with the application a normalization method introduced to cope 
with the fact that high similarity of inparalogs can bias the BLAST scores. First, the pairs with protein similarity 
scores under 100 are eliminated to get rid of false positives, so that only "most recent" paralogs (inparalogs) are 
included. Then, GAB, representing the average score among all ortholog and inparalog pairs from genomes A and 
B (when A=B, GAB means the average score among those paralog pairs with reciprocal best hits within a 
genome), and G, representing the average score among all pairs, are calculated. Finally, raw scores of pairs were 
divided by GAB/G to obtain the final normalized scores. 
 
In [8] an all-against-all FASTA search is conducted for all the proteins in one reference genome to identify the 
putative orthologs in other genomes. A subclass of putative orthologs is defined as RBH with additional two 
strict criteria: (1) FASTA expectation value [47] is <10−10 and (2) the aligned region between two protein 
sequences is >80% of the protein length in the reference genome.  
 
Recently, ORTHOINSPECTOR combines de use of RBH and BeT. Given a BLAST search result for a protein 
of organism A, all proteins of A with an E-value inferior to the E-value of the best hit in the organism B will 
define a potential group of inparalogs in A with respect to the internal node where species A and B coalesce (that 
is a group of inparalogs in A “with respect to B”). The putative list of inparalogs is then validated if the same 
minimal hypothesis of inparalogy is verified in the BLAST searches for each protein in the list. BLAST best hits 
are used to define the potential relationships existing between inparalog groups. A 1-to-1 relationship is 
described by a best hit between a protein of A and a protein of B complemented by a returning best hit from the 
protein of B to the protein of A, that is a reciprocal best hit. A 1-to-many relationship is described by a best hit 
from a given protein of A to any protein member of an inparalog group of B complemented by a returning best 
hit from any member of the inparalog group of B to the same protein of A. Finally, a many-to-many relationship 
is described by two best hits between proteins of two groups of inparalogs (a group in A and a group in B). 
 
In the first INPARANOID program [51], pair-wise similarity scores are calculated with BLAST in four separate 
steps for organisms A, B and C: A versus B, B versus A, A versus A and B versus B. Sequence pairs with 
mutually best hits are detected. If an out-group species (dataset C) is used to detect cases of selective loss of 
orthologs, the similarity scores in bits between A versus C and dataset B versus C are calculated. To avoid 
problems of asymmetric scores between sequence pairs x-y and y-x all pair-wise scores are averaged. After the 
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all-against-all sequence comparison a threshold-pruning process has been applied in the algorithm. User 
adjustable cut-off values are applied to each pair-wise match: a score cut-off (50 bits); and an overlap cut-off. 
The A-B sequence pairs are eliminated if either sequence in A or sequence in B scores higher to out-group 
sequence than they score to each other. Additional orthologs (inparalogs) are clustered together with each 
remaining pair of potential orthologs. Overlapping clusters are resolved by a set of rules. Finally, they estimate 
the probability that a given pair of orthologs had mutual best score only by chance. 
 
In release 7 of the algorithm [45], INPARANOID uses the SEG low-complexity filter to mask only during 
seeding but not during extension (soft masking). This more stringent low-complexity filtering permitted the 
procedure to lower the score threshold from 50 to 40 bits. However, matches accepted in the first pass are 
realigned using BLAST with SEG and compositional adjustment switched off, before the overlap criteria are 
applied to avoid the effect of shorter alignments. For both the query and the match sequence, the distance 
between the first and the last aligned residue must equal or exceed 50% of the length of the sequence. 
Furthermore, for both the query and the match sequence, the sum of the lengths of the aligned regions on that 
sequence must equal or exceed 25% of the length of the sequence. When there are multiple high-scoring 
segment pairs, INPARANOID requires that they maintain the same relative order on both sequences, and that 
they do not overlap by >5%. 
 
In an effort to correct the mentioned source of error in RBH, Wall et al. developed the RSD algorithm [60], [10] 
that preserves the safeguard of reciprocal genome queries, but is less susceptible to exclude an ortholog if a 
paralog is returned as the top hit in either the forward or reverse steps of a reciprocal BLAST query. This 
approach has been shown to provide more comprehensive lists of orthologs than other methods that are based on 
BLAST alone. It is likely to be more accurate for identifying orthologs because it uses a phylogenetically-
grounded measurement of similarity that matches certain assumptions about how orthologs in different species 
have evolved. 
 
The RSD algorithm employs BLAST as a first step, starting with a subject genome B, and a protein query 
sequence x, belonging to genome A. A set of hits H, exceeding a predefined significance threshold (e.g. E < 
10−20) is obtained. Then, using the multiple alignment program CLUSTALW [58], each protein sequence in H is 
aligned separately with the original query sequence x. If the alignable region of the two sequences exceeds a 
threshold fraction of the alignment‟s total length (cut-off of 0.8), the program PAM [63] is used to obtain a 
maximum likelihood estimate of the number of amino acid substitutions separating the two protein sequences, 
given an empirical aminoacid substitution rate matrix [28]. The model under which a maximum likelihood 
estimate is obtained may include a variation in the evolutionary rate among protein sites, and for more distant 
comparisons they have generally assumed a gamma distribution with shape parameter α = 1.53 [43]. Of all 
sequences in H for which an evolutionary distance is estimated, only y, the sequence yielding the shortest 
distance, is retained. This sequence y is then used for a reciprocal BLAST against genome A, retrieving a set of 
high scoring hits L. If any hit from L is the original query sequence x, the distance between x and y is retrieved 
from the set of smallest distances calculated previously. The remaining hits from L are then separately aligned 
with y and maximum likelihood distance estimates are calculated for these pairs. If the protein sequence from L 
producing the shortest distance to y is the original query sequence x, it is assumed that a true ortholog pair [60] 

has been found and their evolutionary distance is retained. 
 
In general, the all-against-all detection of orthologs between two genomes inputs two FASTA format [47] 
protein sequence files A and B. The procedure starts with the calculation of all pair-wise similarity scores 
between all studied sequences. Then, it applies an operational definition of orthology with a pruning strategy 
and it follows with the application of some clustering algorithm such as the Markov Clustering algorithm 
(MCL) [59], the minimum common partition and the maximum cycle decomposition [7].  
 
Instead of using an operational definition of orthology we are defining a similarity-based method with a local-
global dissimilarity measure described in the next section. We compare genes measuring the dissimilarity of the 
DNA sequences, their length and their membership to truly homolog regions defined in [9] considering global 
genome rearrangements. 

 
3. A NOVEL LOCAL-GLOBAL GENE DISSIMILARITY MEASURE 

 
We model the dissimilarity between two genes x and y by dividing it into local functions for each feature and 
then combining them into a global function using the local-global principle [4]. In order to measure sequence 
similarity we select a global optimum alignment Needleman-Wunsch algorithm [42] implemented in the 
nwalign Matlab function [38] with default “Scalevalue” of 1, 'NUC44' [14] scoring matrix for nucleotides and 
default “GapOpenValue” and “ExtendGapValue” of 8. From the optimal global alignment score in bits [14] we 
define an association coefficient ca of gene sequences x.s and y.s for a local dissimilarity function d1. 
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Since recombination may produce genome rearrangements in evolution, ortholog regions may be reordered or 
inverted in relation with other genomes. Therefore, we use MAUVE multi-alignment software [9] to identify 
conserved segments that do not seem to be altered by genome rearrangements (Locally Collinear Blocks) (LCB) 
[9]. We consider that genes belonging to the same LCB will probably be orthologs. We define d2 as a local 
distance function for each gene xi, i = 1..n1 + n2 and j = 1.. Number_of_LCBs based on Jaccard Similarity 
Coefficient [27]. 
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The value of the Jaccard coefficient ),,( matLCByxCJaccard for a pair of gene vectors,x and y, ranges form 0 
to 1 and is equal to the number of bits “on” in the corresponding pair of binary vectors in matLCB, divided by 
the number of bits “on” in either vector. The distance measure d2, is called the Soergel distance andsatisfies the 
triangle inequality [37]. It represents the percentage of nonzero coordinates that differ in gene vectors x and y in 
matLCB. 
 
Some other choices could be appropriate to compare binary vectors in the rows of matLCB: the Hamming metric 
[11], the Maryland Bridge coefficient [39] MBxy, representing the average proportion of the overlap in these 
vectors, the similarity coefficient WAxy [30] suggested by Korbel et al., the Simpson similarity index [49], [64] 
and the Dice similarity index [16] representing the arithmetic average cardinality of two sets.Dice and Jaccard's 
coefficients are monotonic in each other [62]. The standard correlation coefficient [11] and the Mutual 
Information [25] could also be used to measure the similarity between binary vectors with similar results [20].  

Authors in [20] define the parametric family )0(,,,
B
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xy
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and Xxy is the dot product of two vectors. They show that distance measures with 0attach more importance 

to shared presence of 1s, weighting shared vector coordinates by a factor of 2 . This may make two genes 
belonging to more LCBs more similar to each other, than any genes with different and low degrees of 

membership which is the generality in our problem. However, functions with negative values (as MBxy and 

WAxy) may tend to balance the shared 1‟s and the degree of LCB membership.  

 

In [39], authors define the MBxy coefficient to cope with the flaw in the Jaccard coefficient in that it 

systematically underestimates the similarity between genomes in some studies on gene content (presence-

absence) trees when the sizes of comparing sets are about the same and their overlap is about half of the 

elements in each of them. They notice that the underestimate becomes even more striking when one set is much 

smaller than the other, as it frequently happens with genomes and the small value of the coefficient contradicts 

predictions on the evolutionary relationships between genomes. In our case it should be important to study the 

overlap ratio in order to detect possible errors in the similarity estimation of d2. Such further study might change 

our measure choice for the LCB membership gene comparison. In fact, the Maryland Bridge coefficient not only 

has all the advantages and is co-monotone with the Jaccard coefficient but properly evaluates similarity in the 
cases where the latter fails [39]. 
 
We define the length of the sequence distance function d3 as a renormalized difference [13] for an interval-
scaled attribute where max_length and min_length are the minimum and maximum lengths of gene sequences: 
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Each local functions has values ranging in [0..1] so we can classify them as interval-scaled attributes and select 
Minkowski Distance, Euclidean Distance, Manhattan Distance or Maximum Distance to compute the global 
gene dissimilarity [3]. Following the approach in [3] we can calculate the gene dissimilarity using an attribute-
weighted function of mixed attributes or the weighted Euclidean Distance [13] with the corresponding study of 
the possible weight values with biological meaning. For now, the global dissimilarity measure dg between gene 
x and gene y is defined as: 

 

3

).,.(),().,.(
),(

2
3

2
2

2
1 sysxdyxdsysxd

yxdg
 

 
(6) 

 
4. ALGORITHM OVERVIEW 

 
We construct G(V,E) as a weighted bipartite undirected complete graph [12] describing the measure dg between 
the two sets of genes A and B in the two species compared. The set of vertices V have order n=n1+n2 where n1 

are the total of genes in A and n2 are the total of genes in B. Every edge e=(x,y) in E connecting nodes x A and 
y B is weighted by dg(x,y) global measure (6). 
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Figure 1: Algorithm to build the synteny blocks. 

 
In the pre-processing step we eliminate out-edges over 20% of the minimum-weight edge in the directed version 
of G. This initial pruning process creates numerous two-node sub-graphs representing one-to-one unambiguous 
matches between genes that are not closely-related paralogs. With these sub-graphs we build synteny blocks 
based on the physical distances between consecutive matched genes. Figure 1 shows the algorithm to build 
synteny blocks. We use the maximum distance for gene proximity defined in [29] as: two genes are near if they 
are 20kb apart, i.e. approximately 10 genes apart from each other. As in [29] in an additional pruning process we 
rather keep edges connecting additional genes within the synteny blocks of at least three genes since theses 
edges may represent ortholog relationships. 
 
In the clustering step we separate BUS connected components in pruned graph G as in [29] such that the best 
match of any node within the subset of nodes is contained within the subset, and no node outside the subset has 
its best match within the subset. These two properties assure that the subsets will be both best and unambiguous 
and that the separation of subsets does not leave any orphan node or does not remove the strictly best match of 
any node [29]. Finally, each BUS represents a homology group, and especially each two-node BUS represents a 
pair of orthologs. The algorithm general schema is represented in Figure 2. The time complexity of the all-
against-all calculation of the global gene dissimilarity measure (6)  
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Figure 2: Overall schema of the algorithm. 

 
5. EXPERIMENTS AND RESULTS 
 
Saccharomyces Cerevisiae and Saccharomyces Bayanus are two closely related Saccharomyces species in the 
group Saccharomyces sensu stricto [29]. Due to processing capability limitations, we selected S. Cerevisiae 
chromosome 5 of the S288C annotation available in the NCBI Genomes Database [41] with 226 annotated 
genes. The complete S. Bayanus sequence was found in Biomax Database [5] with 4792 annotated genes.  
 
First, we calculated 69 LCBs using MAUVE with its default parameters (see Figure 3). Then, we ran the all-
against-all alignment. We found 28 unambiguous matches and 4 synteny blocks. We eliminated 10869 
ambiguities. We found a total of 202 homology groups and 131 ortholog pairs. Figure 4 shows the plotting of 
the comparison between the two genomes.  
 

 
Figure 3: A region of the alignment in MAUVE with 4 LCBs. 

 
In order to validate the results and because we could not find the counter part results in the available ortholog 
databases, we use the annotation of the two genomes. The annotated S. Bayanus genome has 194 S. Cerevisiae 
homolog genes. 191 genes were correctly classified so we achieved 98.45% of true classifications. 
 
6. CONCLUSIONS/FUTURE WORK 

 
Based on our novel local-global dissimilarity measure, our ortholog detection algorithm yields a promising 
performance. Further papers should present a validation performance comparison with whole genome datasets. 
The bipartite graph construction using our novel function should improve the one in [29] since it can incorporate 
new features to the gene comparison thus enhancing the complete prediction process. Our work pursues the 
inclusion of new gene features, some improvements in gene comparison and in different algorithm steps. We are 
also developing a parallel version of the algorithm. 
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. 

Figure 4: Undirected bipartite graph with the best matches and the ortholog pairs founded. Red asterisks 
represent the ortholog relationships. 
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