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ABSTRACT  
This paper is devoted to present the approach of the selection of input variables in the model, based on a maximum and generalized 

correlation moments, software development and simulation modeling.  
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RESUMEN 

Este trabajo es dedicado a  presentar el enfoque basado en momentos maximales generalizados para la selección de las variables de 

entrada en  el modelo, software y  modelación de la simulación 
 

 

1. INTRODUCTION  
 

The choice of model structure is one of the basic moments in the formulation of the problem of identification. It 

creates a sufficient effect on the accuracy of the identification problem, methods and computing procedures. 

Universal approaches to the choice of the model structure obtained are very little.  

 

In real systems, when there is no exact description of the facility and the processes occurring in it, the input and 

output variables of the model are treated as random variables or random functions. When studying the 

dependence between random variables its necessary to determine not only the equation of relation between 

them, but the degree, closeness of that relation. This is a fundamental difference from the deterministic 

approach, where there is a functional single-valued dependence between the variables.  

 

When analyzing and modeling of nonlinear systems and statistical dependences mathematical tools of the 

classical correlation functions often gives underestimated evaluations of the statistical relationships between 

random variables and functions, and sometimes leads to simply incorrect results. 

 

One of the most frequently used numerical characteristics of a linear relationship between output Y and input 

X  random variables is the correlation coefficient  

xyxyyx
mXmYM  /)])([(2       (1)  

where y x  - the average square deviation of the random variables Y  and X respectively; MYmy  - the 

mathematical expectation of Y ; MXmx  - the mathematical expectation of X  .  

 

But yx  is not an exhaustive measure of dependence. It can turn into zero even for dependent Y and X  and not 

be equal to 1 for the values having the functional nonlinear dependence. In the case of non-linear relationships 

between Y  and X , yx  gives underestimated value of the degree of relationship, and sometimes does not show 

this relationship at all. It is easy to show that even in the linear case correlation coefficient often does not reflect 

the real degree of the relationship between input and output variables. This is explained by the fact that the 

classical correlation functions and correlation moments (in the terminology of Kolmogorov) are not consistent 

characteristics of the dependence between the random elements.  

 

In this paper we develop the ideas of G. Gebeleyn, O.V. Sarmanov, A. Renyi [1-4] and use a class of 

generalized (functional) correlation functions and statistical moments, which limiting cases on the one hand are 

the classical correlation functions and moments, and on the other hand - the maximum correlation function and 

the correlation ratio [2,3]  
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2. MODIFIED ALGORITHMS FOR CHOOSING THE INPUT VARIABLES OF THE MODEL  
 

As already noted, the choice of model structure is one of the key moments in the construction of mathematical 

relationships and patterns. The choice of the structure sufficiently determines the methods, algorithms and 

computational procedures used in identification.  

 

The target of modeling is usually to build a model of a system that satisfies some given accuracy or measure of 

identity:  

,dQ
qxy 

                                                                    (2)  

where d - a given number.  

 

Mathematical model of a system can be constructed by the maximum likelihood of the condition (2):  
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or by the maximum of measure of identity  

                                  (3) 

                                     (4)  

where G - the index set of input variables included in the model Gi  . The s parameter is in general a vector 

quantity.  

 

Usually the researchers apply two different approaches when solving one of the major problems of structure 

selection – the choice of input variables: 

 

1. To construct a more accurate predictive or adequate to the object under study model tend to include in the 

model as much as possible amount of input variables. This allows to increase an accuracy of prediction of the 

output variable or output parameters and precision of control. It is assumed that this reduces the uncertainty that 

arises due to the neglect of factors affecting the output variable.  

2. Since the inclusion of a large number of input variables require significant additional costs associated with 

obtaining information on these variables (for example, extra dimensions) and its subsequent validation, in 

practice researchers seek to ensure that the equation of the model included as little variables as possible. In favor 

of the second requirement is also indicated by the fact that the inclusion of a large number of input variables, 

even weakly correlated with each other, often leads to badly-conditioning of the correlation matrix and, 

consequently, by the incorrectness of inverse problems - inappropriate solutions to the problem of identification.  

 

Let’s consider the problem of selecting of informative variables for the generalized regression equation of the 

form  


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where Y (t) - output of the object at time t, BTtRY ];,0[,1   in general a non-linear operator (for 

example
2LB  - the Hilbert space of square integrable functions). X i (s) - i-th input signal of the object at 

time s, ii CTsRX ];,0[,1  non-linear operators, i = 1, ..., n; a i - coefficients of the linear part of 

the object. As the input signals can be taken the meanings of the output signals at the moments previous to the 

time t. The introduction of time points t and s allows us to consider both static and dynamic cases. Where it does 

not matter, the time moments will be omitted. For simplicity we shall consider the static case.  

 

Functions (operators), B and C represent the eigenfunctions of the stochastic kernel 
2/1)]()()[,( ypxpxyp

where T

nxxxx ),...,( 21  - vector of dimension n. In the case when B and C correspond to the maximum 

eigenvalue of the stochastic kernel, i.e. maximum correlation coefficient (the maximum of the correlation 

function in the dynamic case), we have the maximum arithmetization of space of input and output random 
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signals [1,2] In particular, when simulating the linear systems, functions (operators) B and C are identical 

transformations ( xxCyBy  ;   or, in general case, linear transformations.  

 

Thus, the problem of selecting of informative variables consists in reducing the dimension of the input variables 

of the mathematical model of the object with the performance of requirements to the adequacy of a model or 

accuracy of the prediction.  

 

Currently, there are many methods for selecting informative variables, such as group arguments method, method 

of all possible regressions, backward elimination method, forward selection method, stagewise regression 

analysis, factor analysis, various modifications and combinations of these methods and many others. These 

methods often yield the same results, but in general case, even when solving the same problems, their solutions 

are different.  

 

We shall point out also that these solutions are not consistent, and in some cases lead to errors because 

correlation functions and correlation coefficients used in these methods are not consistent measures of 

dependence.  

 

Let’s consider a modification of the classical method of forward selection (inclusion), based on generalized and 

maximum correlation coefficients. 

 

The classical method of variable inclusion is a method for selecting informative variables, i.e input variables 

included in the regression model one by one as long as the regression equation is satisfactory in terms of 

selected criteria. In contrast to the classical method of inclusion, which aims to build a linear model, we consider 

the modification of it, based on generalized and maximum correlation coefficients. The algorithm of the method 

is as follows.  

 

Step 1. We calculate the maximum correlation coefficients 
maxR  between each input variable and output 

variable of the object.  

Step 2. We selects the input variable X i, which has the largest absolute value of the maximum correlation 

coefficient with the output variable Y. Let’s assume that it is X 1 .If it is some other variable, we can enumerate 

them again.  

Step 3. We find the equation of a generalized regression Y on X 1  

))(()( 111 XCAYB   or ))((ˆ
11

1

1 XCABY   . 

 

In future we assume that there exists an inverse operator B 
-1

  

 

Step 4. We compute the generalized partial correlation coefficients between all the remaining variables   X 2, X 3, 

..., X n and Y. From the mathematical point of view, this is equivalent to finding the correlation between the 

remainders of the regression ))((ˆ
11

1 XCABY  and remainders from the other regression

))(ˆ(),(ˆ
1

1

1 XACBXXFX jjjjj

   

Step 5. We select the input value X j, which has the highest partial correlation coefficient with the value of Y. 

Let’s assume that this is X 2.  

Step 6. We find the second generalized regression equation ),(ˆ
2211

1

2 XCXCABY    

Step 7. If the generalized regression equation received in step 6 satisfies a given accuracy 
задdYD )ˆ( the 

process of selecting of informative variables ends.  

 

If the required accuracy of the model is not reached, the process of selecting of informative variables continues.  

 

After selecting the m input variables X 1, ..., X , generalized partial correlation coefficients reflect the correlation 

between the residuals of the regression ),...,,(ˆ
2211 mm XCXCXCFY   and the residuals of the 

regressions jiXCXCXCFX mmiijj  ),,...,,...,(ˆ
11

  

 

Note 1. Selection algorithm terminates either when the required accuracy has been achieved, or after the choice 

of a given (limited with m) number of variables.  
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Note 2. After the introduction of each new variable in the regression to test the statistical significance can be 

examined also the following statistical quantities: 

 

1. The square of a generalized multiple correlation coefficient.  

2. Private F-test for the included variable. The purpose of this - to find out whether the introduced variable 

makes a significant contribution to the total variation. When the value of the private F-criterion relating to the 

entered variable becomes insignificant, the process ends.  

 

In the same way has been designed a modified stepwise regression method for selecting variables in the model. 

Like in the classical linear case, this method is an improved version of the modified method of forward selection 

of variables discussed above. The modification is not only including the use of generalized and maximum 

correlation coefficients, but additional investigation at every step of the variables included in the model in 

previous steps. It is known that the variable that was the best for the introduction in the model at an early stage 

in the following steps may become unnecessary because of its dependence with other variables included in the 

model. To test the significance of an included (or excluded) variable we calculate partial F-criteria for each 

variable from the regression equation and compare it with the value of F-distribution corresponding to the 

selected percentage point. This makes it possible to estimate the contribution into the model of each variable. It 

is assumed that this variable is introduced into the model last, not considering that in fact it could be introduced 

at earlier stages. Any variables that make a non-valuable contribution are excluded from the model. The process 

of selection of the variables can be continued as long as no variables are not being excluded from the equation 

and not being added to it.All this process can be represented as the stepped  algorithm given below.  

 

Step 1. Calculating the maximum correlation coefficients of input variables (factors) with the output variable. 

Finding the corresponding transformation 
i

B  and 
i

C  , where  corresponds to the - th input variable.  

Step 2. We calculate the generalized (functional) correlation coefficients and construct the correlation matrix 

consisting of generalized and maximum correlation coefficients.  

Step 3. Selecting the input variable most strongly correlated with the output variable, i.e variable having the 

largest absolute correlation coefficient with the output variable. Let it be . We shall note that if this variable 

has a different serial number, we can replace them and rename the numbering.  

Step 4. As the next variable to be included in the regression model, we select the variable which is 

characterized by the highest partial correlation coefficient with the output variable. Let it be, considering the 

comments on step 3, the input variable  .  

Step 5. We obtain the regression model . We investigate the contribution of the variable 

(or, rather, which would have occurred if in the model was initially included a variable nd then 

 To do this, calculate the value of the private F-test and determine a statistical significance of the magnitude 

. If 
 
is statistically significant, it remains in the model. If it is not statistically significant, it is excluded 

from the model. Let  be statistically significant and included in the model.  

Step 6. In accordance with the stepwise method, for the next variable to be included in the model, we select the 

input variable, which has the highest partial correlation coefficient with the output variable (assuming that the 

variables  and  are already included in the generalized regression model). We assume, considering the 

comments in step 3, that it is a variable   

Step 7. We obtain the regression model in the form  In this step, we define partial F-test 

for variables  and  in order to find out, shall we leave them in the regression equation or not.  

 

The process of selecting informative variables continues as long as the adding or deleting the variables in the 

regression model process does not stop. The process of inclusion or exclusion of informative variables is 

completed when the remaining variables are statistically insignificant for the F-criterion or all of the measured 

variables are statistically significant and should be included in the final mathematical model.  

 

Also have been examined the modification of the stagewise regression method, based on a maximum and 

generalized correlation coefficients.  
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Like in the classical stagewise regression method, the basic idea is as follows. First we construct a regression 

equation for Y  related to the variable most strongly correlated with Y , i.evariable having the highest 

maximum correlation coefficient with Y   , where number of 

observations. We calculate the residuals between Y  and the value Ŷ  by the regression equation.  

 

These residuals are considered as the value of the new response, and the regression dependence of a new 

response from one of the remaining input variables that is most strongly correlated with the new response is 

constructed.  

 

This process continues until any desired stage. The final regression equation for this method can be obtained by 

consequent substitutions of regression equations derived in the previous step t -1 in the equation for the t-th 

stage until the final solution.  

 

Remark. This method is less accurate than the wealthy or the generalized least squares method. However, this 

method has other advantages:  

 

- it allows you to choose sequentially input variables that most strongly influence on the output variable;  

- the method allows you to select control variables for inclusion in the model for the target of further use for the 

control or process optimization. In the future, you can use the method in its classical form to reduce the 

dimension of the space of input variables;  

- as generalized least squares method has better accuracy and prognostic characteristics, the modified stageise 

regression method can be used for selection of informative variables and the choice of the structure of the 

regression equation. And then the selected structure of the equations and the selected informative variables can 

be used to obtain the regression equation by the method of least squares.  

 

3. SOFTWARE IMPLEMENTATION AND SIMULATION  
 

With the help of software product developed to calculate the eigenvalues and the maximum and the generalized 

correlation coefficient was conducted simulation experiments and comparative analysis of classical linear and a 

modified approach to the selection of significant variables in the model.  

 

The most interesting question for us – does the maxR  determine the statistical dependence between random 

variables in cases where a linear correlation does not catch it? Stepwise procedure of inclusion of variables is 

considering the partial pair linear correlation (i.e., purged of the influence of other variables) as a criterion for 

inclusion of a variable in the model. Let’s consider examples of systems and interdependencies for which the 

methods of classical correlation theory are either inapplicable or giving large errors when using them.  

 

To construct the regression equations we use a linear function:  

 



mi

i

i XaY
,1

)(*         (6)  

and the method of least squares.  

 

Table 1 
Type of 
dependence   

Schedule of quality of the selection 
model at the last step 

Stepwise regression method of including of variable 

Hald data:  

n = 13;  
m = 4  

 (The 

dependence  
is unknown) 

 

Step, 

 № 

The variance 

of error  

Fisher F-criteria  

(significance 0.05) 

The variables  

included in the  
equation Tabulate

d 

Calcula 

ted 

1  73.65   4.84   22.79  )4(
X  

2  4.82   4.1   229.5  )2(
,

)1(
XX  

 

We shall compare on the same samples stepwise method of including and its modification, in which the criterion 

of partial correlation is replaced by the maximum correlation. As an example, we consider the data given by 

k
X
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YXYX jk
RR max Nj ,...,2,1 N
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Hald, cited in [5] of heat release per gram of cement (Y, in calories), depending on its composition (X-

components of the clinker in % by weight of clinker).  

 

Stepwise regression method of variable inclusion  

Main characteristics of stepwise regression are given in Table 1.  

 

The resulting equation looks as follows:  
)2()1( 66.047.158.52* XXY      (7)  

 

As can be seen, selected model is very efficient and involves only two variables. In addition, F-criteria shows its 

high significance. Model (7) is built in 2 steps, because the remaining variables )4()3( , XX   did not bring a 

significant estimation of the private F-criteria.  

 

Modification of the stepwise method  

 

We calculate 
maxR  for each pair  Y

j
X ,

)(  For comparison, in the 3rd column of the table shown the 

coefficients of the classical correlation  r:  

Table 2 

The compared 

variables  

maxR  Linear correlation 

coefficient (r)  

 YX ,
)1(  -0.5 0.73 

 YX ,
)2(  1.0 0.81 

 YX ,
)3(  -0.914 -0.53 

 YX ,
)4(  -0.901 -0.82 

 

Visible dependence between maxR  and r  is not detected.  

 

To construct the regression we will consistently add into the equation variables 
)( j

X  in descending order of 

their corresponding absolute value of 
maxR  : 

)1()4()3()2(
XXXX   (Table 3).  

 

The resulting equation is:  
)4()3()2()1( 14.01.051.055.14.62* XXXXY       (8)  

F-criteria shows the significance of the equation at all steps. 

Table 3 

Type 

of 

depen

dence 

Schedule of quality of the 

selection model at the last step 
Modification of Stepwise regression method  

Hald 

data:  

n= 13;  

m = 4  

 (The 

depen

dence 

is 

unkno

wn) 
 

Step,  

№ 

The  

variance  

of error  

Fisher F-criteria 

(significance 0.05) 

The variables 

included in the 

equation Tabulated Calculated 

1 75.52 4.84 21.96 )2(
X  

2 34.62 4.1 27.68 )3(
,

)2(
XX  

3 6.15 3.86 107.3 )4(
,

)3(
,

)2(
XXX  

4 3.98 3.83 111.47 )1(
,

)4(
,

)3(
,

)2(
XXXX  

 

Let’s consider one more simulation experiment. Generate the following selection of variables N (0,1): 

)3(
,

)2(
,

)1(
XXX  of 50 values of each. And consider the following system:  
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)2()1(
XXY        (9)  

 

Since this function is additive, then we can assume that its linear regression approach will be effective. Variable 

)3(
X  is introduced just as an additional factor. In this case, the standard and modified procedures of 

stepwise regression gave the following results (Table 4,5):  

Table 4 

Schedule of quality of the selection model 

at the last step 
Stepwise regression method of selection of variables 

 

Step, № The 

dispersion 

of error 

Fisher F-criteria 

(significance 0.05) 

The 

variables 

included 

in the 

equation 

Tabulated Calculated 

1 0.157 4.04 1.02 )3(
X  

 

On the given tables formally we cannot give preference to any of the regressions: they are both insignificant, 

both reaching almost the same level of variance error, both cost-effective (if a second procedure to perform only 

in 1 step).  

 

However, there are qualitative differences. The first scheme included variable )3(
X in the equation with linear 

correlation r = 0.14. But first, this relationship can be considered significant only with great reserve, and, 

secondly, )3(
X  - is not included in the function (9).  

Table 5 

Schedule of quality of the selection model at 

the last step 
Modification of Stepwise method 

 

Step, 

№ 

The 

variance 

of error 

Fisher F-criteria 

(significance 0.05) 

The 

variables 

included in 

the equation 
Tabulated Calculated 

1 0.1607 4.04 0.04 )1(
X  

2 0.1605 3.17 0.03 )2(
,

)1(
XX  

3 0.157 2.8 0.35 )3(
,

)2(
,

)1(
XXX  

 

In other words, the inclusion of this variable in the equation - a mere formality. Which can not be said for the 

modified method: it turned out that the order of variable inclusion was found to reflect the real dependence (9). 

In other words, the modified method makes it possible not to go through all possible combinations of variables, 

but just add a few of the most important factors to be sure that they really represent the nature of the process. 

And to further reduce the variance of the remainders can continue to add the observed input variables.  

 

Thus, based on a sufficiently large number of simulation experiments (about 100 samples from 10 different 

functions), we can say that the maximum correlation is actually better detecting the stochastic relationship 

between random variables than the standard linear correlation.  
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