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 ABSTRACT 
  This paper presents a methodology for reaching a consensus vector when different variables are ranked in a set of individuals. 
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 RESUMEN 

 En este trabajo se presenta una metodología para obtener un vector  de consenso cuando diferentes variables son rankeadas en 

 un conjunto de individuos. Se sugiere usar Búsqueda Estocástica Local implementada por una Metaheurística. Los datos 

 provenientes del rankeo de revistas son analizados y el comportamiento de las Metaheurísticas estudiado. Como resultado la 

 influencia de los parámetros de las Metaheurísticas es establecida.  Métodos estadísticos son usados para derivar la 

 significación de los parámetros en las soluciones óptimas generadas y en establecer que conjunto de parámetros poseen la 

 misma función de  distribución función del tiempo de cómputo. 

  

1. INTRODUCTION 
 

A common decision problem is to select the ”best” element of a set of possible alternatives with respect to 

some comparison criteria. Even if only a finite number of possible alternatives are considered, the problem is 

not  easy-computing , because the best alternative respect to one criterion, could be the worst respect to 

another one and all criteria should be considered for the selection. For instance, if a group of specialists 

discuss a clinical case. Consider for example the case of an old woman with arthritis-rheumatoid; their 

opinions are not necessarily coincident when symptoms and laboratory analysis are evaluated. Nevertheless,  

it is necessary to get a group consensus based on an agreement. Another troublesome discussion appears as 

this disease can be treated by using different medicaments and the physicians must select one of them 
considering all the characteristic of the medicament and the patient. Both situations could be represented by a 

discrete Multicriteria decision model: a finite set of alternatives and a finite set of criteria (experts or attributes 

of the alternatives). For each criterion k, a preference relation Pk, k = 1, . . . ,K is defined. The goal is to 

combine the preference relations Pk, k = 1, . . . ,K in order to obtain a compromise or consensus preference 

relation P.  

 

Other examples appear in voting systems and in marketing enterpriser and military activities. Preference 

relations could define a pre-order on the set of alternatives or not. In the first case, it is possible to rank them. 

Frequently, it is possible to express preference for an alternative over another, but not the degree of the 

preference. In this case, the preference relation is called ordinal; otherwise, the preference is called cardinal. 

Consequently, the methods for devising consensus preferences are classified as ordinal or cardinal methods. 
Ordinal methods require less and easier available information than cardinal methods. It is is very 
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advantageous in medical applications, because the information is, in many cases, qualitative and subjective. If 

the preference relations Pk are not described by numerical data, it is easier to use an ordinal than a cardinal 

preference relation, additionally the errors risk is less. 

 

Section 2 we discuss on ranking consensus reaching and present the usual procedures based on deriving an 

“estimation” of it through computing a central tendency measure.  

Section 3 is concerned with the discussion on Stochastic Local Search and the use of Metaheuristics for 

deriving optimal solutions for NP-hard problems. Section 4 presents the study of the consensus ranking of 

journals on economics using different indexing measures. A statistical procedure, allowing establishing the 
influence in the changes of the parameters of the Metaheuristics, is developed.   

 

The obtained results provide an insight on the role of the current indexing procedures and on the effectiveness 

of using optimization techniques instead of relying on a single statistical measure for evaluating the 

importance of the publications. This methodology should allow evaluating journals and papers not included in 

the leading indexing systems.  

 

2. THE SEARCH OF A CONSENSUS  

 

2.1  Some early approaches  

 
The problem of obtaining a consensus in the ranking is very old.  Borda in 1781 developed a consensus 

ranking for voting in the Convention in France. Different approaches have been suggested in voting which 

lead to a compromise or consensus ranking problem. 

 

Different problems need of ranking and producing a consensus ranking. See for example Black (1958), Cook 

and Seiford (1978). Numerous approaches have been suggested in the literature for aggregating individual 

rankings for determining a consensus. 

 
Borda-Kendall’s method is perhaps the agreement method most widely used. Kendall (1962) studied the 

ordinal ranking problem as a problem of estimation and proposed to rank the alternatives according to the 

mean of the ranks assigned by the criteria. It was actually the method proposed by Borda in the 18th century 
for candidates election, hence the method has been named Borda-Kendall method. It doesn’t satisfy the axiom 

of independence and allows the compensation by criteria. However, Borda Kendall method fixes a total 

preorder.  

 

Condorcet, also in the 18th century, established a positional voting system based on the pairwise comparison 

of alternatives. Alternative ar wins a pairwise majority vote election against alternative as if more criteria rank 

i after j than j after i. Condorcet’s winner is the alternative that has a simple majority over every other 

candidate. This agreement function does not allow the compensation by criteria. It could be described by a n 

× n matrix A=(a*ij), where a*ij = 1 iff ai wins aj . If the Condorcet’s winner exits, Borda-Kendall’s method 

might not put it in the highest place. 

 

Coppeland see Cook et al (2005), proposed to rank the alternatives according to 
 

 

 

It is the number of victories of the  alternative i minus the number of its defeats. Coppeland’s agreement 

function defines a preorder, if Condorcet’s agreement function defines a pre-order, both pre-orders coincide. 

 
Other agreement functions inspired in voting systems are based also in pairwise comparison between 

alternatives. Some of them lead to Borda-Kendall rank-vector, for example the so called Rank-differences, 

For/again votes. 
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Different coefficients have been defined for expressing agreement or disagreement measures. Consensus 

preference relation could be devised either comparing the coefficients values or using methods of 

mathematical programming.  

 

2.2. Agreement and disagreement measures  

 

The number of criteria for which alternative ai is preferred over alternative aj describes a consensus notion. If 

the criteria differ in importance, their weights have to be taken in account.  

 
Using these ideas some coefficients have been defined. The following definition allows considering classes of 

them: 

 

Definition Let 

 

 

 

The Ordinal Agreement Coefficient with the preference of ai over aj is given by: 

 

 

 

The Ordinal Disagreement Coefficient with the preference of ai over aj is given by: 

 

 

 

Given an utility function Uk (in particular, a rank vector) associated to criterion 

k, k = 1, . . ., K, the Concordance Coefficient with the preference with the preference of ai over aj is given by: 
 

 

 

The Discordance Coefficient with the preference with the preference of ai over aj is given by: 

 

 

 
Using the coefficients defined we are able to define the superiority of an index of the alternatives as 

: 

Superiority index of alternative i=  

 

Then we can compare a decide which alternative is superior using the decision rule 

 

. 
 

Overhead relations are used by the softwares ELECTRE and PROMOTHEE for fixing consensus preferences. 
 

2.3. Mathematical Programming Model Structures in deriving a Ranking Consensus  

 
For obtaining agreement there have been formulated also mathematical programming models. Some of them 

are based on alternatives comparison, other deal with the minimization of a distance defined on the rank-
vector’s set. 
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Another way of modeling consensus in the ranking is to consider that a couple of DM`s fix a matrix 

 

 

Bowman-Colantoni, see Cook et al (2005) modeled the consensus preference relation by defining 

 

 

This matrix describes a pre-order. we look for the  maximization of the function: 

 

 

This model presents a limitation: two optimal solutions of the model might represent preference relations not 

equivalents. 

 

Analogous models could be formulated using the ordinal disagreement, concordance or discordance 

coefficients. 

 

Borda’s method  is based on computing the sum  of the ranks Ri(u), assigned to item u U by DM i I..  The 

consensus rank of u is 
 

 

 

Consider that an expert or decision maker (DM) analyzes a set U of items ranks every u U and  provides a 

vector . If we have a set I of DM`s a collection ,…, 

 and distance d(Ri,Ri*) can be defined for evaluating the agreement between a pair of 

DM`s. If we  look for a consensus ranking the problem is to obtain an arrangement of the ranks. In the case 

where ties are permitted, the set of allowable rank positions is given by W ={1, 1.5, 2, 2.5 ..... (2 U  - 1), n }. 
the value or worth of being ranked in position k is some (generally unknown) quantity Wk. in the case of no 

ties, the alternatives are ranked only at positions {1, 2, 3,..., n }. A set of alternatives  would normally 
occupy rank positions k1, k1, +1…k2, would, if tied, be usually ranked at the median or the mean of these k2 – 

k1 + I positions.  

 

Consensus among a set of ranks can be looked using a distance function d(R,R*)). Hence if V is the set of the 

permutations of the possible ranks we deal with the optimization problem  

 

 

 

The distance function could be defined in different ways consequently will be defined the decision variables. 

This is natural approach as the consensus is obtained by obtaining the rank vector which minimizes the 

distance. V is the set of possible rankings. 
 

A large set of axioms can be used for evaluating the goodness of a distance function. Following Cook -Seiford 

(1978) are considered the axioms: 
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Axiom 1: d(A, B)  0, with equality iff A  B. 
Axiom 2: d(A, B) = d(B, A). 

Axiom 3: d(A, C)  d(A, B) + d(B, C) for any three rankings A, B, C, with equality holding iff ranking B is 
between A and C.  

Axiom 4: d(A, B) = d(A*, B*), where A* and B* result from A and B respectively by the 

same permutation of the alternatives in each case. 

Axiom 5:  If A* and B* result from A and B by listing the same (n + 1)th alternative in last place, then d(A*, 

B*) = d(A, B). 

Axiom 6: The minimum positive distance is 1. 

 
Formally a mathematical approach to the Borda-Kendall problem is to solve the L2 optimization problem  

 

 

 
Its solution minimizes the squared error. Only if we are ranking without ties the optimal solution of this 

problem and Borda-Kendall rank-vector coincide 

 

Le us consider the L1 optimization problem. That is we deal with the so called City Block  (Manhattan) 

distance d(Ri,Rc)= Ri-Rc  It is the only distance satisfying the 6 axioms.  We seek for solving 
 

 

 

Following the approach and notation of  Cook et al. (1996) is worthy to fix that the pure linear ordering is the 

case where the larger the rank the better. 

 

The general quasi linear case define two sets of variables. , with the latter being a set of 

U ( U -1), , ,…, , where  represents the value 

or utility associated with the rank position occupied by r +i alternatives which, if separately ranked, would be 

positioned at k1, k1 + 1. , k1 + r. Rather than assuming that the only valid rank positions in a weak ordering are 
the integer points and the midpoints of t as in the case in the conventional model 

 

Define the set of constraints 

 

C(CB) 

 

Wk -Uk +1  Z                                                                                                               

Uk k+1 –Wk+1 Z, k=1,…., U -1.                                                                                     
If r + 2 alternatives are tied for positions {k, k + 1, . . ., k +r+ 1), then the value uk,k+1,…,k+r 

uk,k+1,…,k+r - uk,k+1,…,k+r+1  Z                                                                                                               

uk,k+1,…,k+r+1 - uk+1,…,k+r+1  Z , k=1,…., U -r-1, r=1,…, U -2 

W U  Z,                                                                                                             

  

 

We consider  Z as a parameter, discrimination parameter, and  the last constraint fixes that 0 < Z 1/2. The 
other constraints establish that we discriminate between the worth of consecutive rank positions by some 

positive amount. 

 

Note that if two alternatives, for example, are tied for positions k and k + 1, then the value Uk k< 1 of being 

ranked at this 'tied position' must be between the value Wk of being ranked at position k and the value Wk+1 

associated with position k + 1. 



63 
 

 

Cook et al (1996) proved  that  the optimal consensus ranking is independent of Z and hence this constraint is 

unimportant.  We have the optimization problem 

 

 

 

Theorem 3.1. of Cook et al (1996) established  that  the values (W or u) associated with the different rank 

positions are restricted only to be a natural ordering. 

 

The ranking is obtained as solution of an assignment problem. Mathematical programming models provide an 

elegant formulations of the consensus preference problem. However, as we deal with discrete variables and 

the dimensional limitation of the software for such problems could be a handicap for their application to real 

problems. Establishing a consensus preference, does not mean necessarily that a good response to the problem 

has been found. Depending of the problem’s nature, it could be necessary to count with DM`s information. 

 

In the next section we will consider the problem of computing a consensus ranking, 
 

3. COMBINATORIAL OPTIMIZATION PROBLEMS (COP) 

3.1. The nature of COP 

Many optimization problems become unmanageable using combinatorial methods as the number of objects 

becomes large.  

From a decision theory point of view we have a cost function and a finite set of solutions. Each solution can 

be obtained by a permutation, an arrangement or a partition of the objects.  For each instance we have a set of 

feasible solutions S={s} and f assigns to each pair (instance, feasible solution) a value of the involved 

objective function f. A COP looks for optimizing f.  

The term local search identifies Metaheuristics that solve NP- hard optimization problems. They are useful for 

finding an optimal solution of an optimization problem searching a set of candidate solutions, search space.  

In the sequel an important role is played by the concept of neighborhood. 

Definition (Neighborhood). A mapping :S↦2S determines the set of neighboring solution of s S 

( (s) S\s).  

A local search algorithm (LSA) moves from solution to solution in the search space by applying local changes 

A LSA starts from an initial candidate solution and then moves iteratively to a neighbor solution using some 

logic procedure. Usually the set of neighbors of a candidate solution has several candidates. A choice is made 

using only the information provided by the solutions in the neighborhood of a selected candidate.  The search 

ends whether the best solution selected is not improved in a given number of steps or the fixed time for the 

search is consumed.  

A mathematical description in terms of a target function  f(x), x a vector with real or discrete coordinates. 

When x has only discrete coordinates we can model the problem using a graph. 

We are involved in the search of an optimum it is needed distinguishing between the global and the local 

optimum 

http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Neighbourhood_(mathematics)
http://en.wikipedia.org/wiki/Neighbourhood_(mathematics)
http://en.wikipedia.org/wiki/Function_(mathematics)
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Definition. A solution s S is a local optimum with respect to a neighborhood (s) iff there does no exist 

another s* S such that f(s*) is  better solution than f(s). It is a global optimum if this statement is true for any 

s* S.  

A LSA relies on neighborhoods that generally are of small size and its performance will be improved if there 

is a path connecting the feasible solutions with the global optimum. 

If a neighbor solution is selected by taking the one locally optimal solution the Metaheuristic is named hill 

climbing. It moves from the initial solution attempting to find a better solution by incrementally changing a 

single element of the solution. A solution is considered as better solution if the new solution improves the 

previous one. It is repeated until there are no more improvements. Hill climbing is adequate if is enough 

finding a local optimum but is possible that the global optimum is not attained. More complex schemes have 

been developed for attenuating this inadequacy.  

Note in the figure that the first summit can be identified as a global maximum being false. 

 

Figure 1. A problem with two hills 

In discrete cases each candidate of the search space is identified with a vertex. A  Hill climbing search will 

move from vertex to vertex. An evaluation of f(x) is made at each vertex and is preferred if the new solution is 

better than the previous one. It ends when a locally optimal solution is obtained. 

Some particular criteria generate different types of algorithms: 

1.  simple hill climbing: the first closer node is chosen 

2. Steepest ascent hill climbing all neighbors are compared and the closest to the solution is chosen.  

3.  Best-first search, tried all possible extensions of the current path instead of only one. 

4. Stochastic hill climbing  a neighbor is selected at random. If the gain is sufficiently large the move 

is accepted or another one is selected and analyzed. 

5. Coordinate descent: A search I developed along a coordinate direction at the current point at each 

iteration. 

6. Random-restart hill climbing or Shotgun hill climbing. A hill-climbing is developed using a 

random initial start. The optimal solution is recorded and the procedure is repeated for a number of 

times.  The best of the finally accepted solutions is the optimal solution. 

Some of these algorithms are considered as stochastic. We refer to Stochastic optimization (SO) for 

identifying optimization methods that generate and use random variables in the solution of a problem. SO 

methods generalize deterministic methods existing for deterministic problems. We can identify two large 

classes of problems: 

1. The random variables are included in the formulation of the optimization problem itself involving 

random objective functions or random constraints.  

2. Methods that use in some stage random iterates.  

 

http://en.wikipedia.org/wiki/Hill_climbing
http://en.wikipedia.org/wiki/Hill_climbing
http://en.wikipedia.org/wiki/Incremental_heuristic_search
http://en.wikipedia.org/wiki/Local_optimum
http://en.wikipedia.org/wiki/Global_optimum
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Best-first_search
http://en.wikipedia.org/wiki/Stochastic_hill_climbing
http://en.wikipedia.org/wiki/Coordinate_descent
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Deterministic_system_(mathematics)
http://en.wikipedia.org/wiki/Objective_function
http://en.wikipedia.org/wiki/File:Local_maximum.png
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Some SO methods use random iterations for solving stochastic problems, combining both meanings type of 

SO methods.  Hence we can develop LS using SO, Stochastic LS. Stochastic local search is a successful 

technique in diverse areas of combinatorial optimization and is predominantly applied to hard problems. 

When dealing with individual instances of hard problems, gathering information about specific properties of 

instances in a pre-processing phase is helpful for an appropriate parameter adjustment of local search-based 

procedures. 

 

The introduction of randomness into the search-process usually accelerates the process of finding the optima. 

It improves the method making it less sensitive to modeling errors and search procedures. For example 

injecting randomness may enable escaping from being trapped in a local minimum and not identifying a 

global optimum.  

We can use SO in developing LS.  They perform well when compared with the standard LS. Usually in 
problem-specific evaluations they only give some guidance information regarding what is the best direction 

for choosing the next LS-step, looking for escaping from getting stuck in local optima. The introduction of 

some randomness in the search allows escaping form the so called “dead ends.”  These procedures conforms 

the class of Stochastic LS (SLS). The Decision Maker makes al description of SLS fixing: 

 

 An initial probability distribution function FD on S. 

 Taking PD(x)=P(that candidate s∈S under FD.) 
 

For each s ∈ S, a local search probability distribution L(x) on (s) is determined .Then PL(s))(s*)=P(s*) is 

selected in the LS- step starting with s) 

 

Mathematically we are fixing that 

 

Hence the generic local search algorithm for a problem is implemented by the pseudo code 

. 

A pseudo code for SLS 

INPUT the problem 

Choose an initial candidate solution s ∈ S according to distribution FD 

WHILE ( s  is not the optimal solution or  s is not a failure) DO 

Replace s by one of its neighbors s*∈ (s) selected according to the distribution L(x) 
END-WHILE 

 

Generally it is impossible to establish if s is an optimal solution and a function g is used for measuring its 

goodness. Then g becomes optimal if s is an optimal solution. Hence if the value g(s) remains unchanged for 

some evaluations this might support stopping. Also, the definition of L(s) might be based on the g-values 

generated by s and its neighbors. In the simplest implementations it might be the case that s is a failure; that is 

PL(s)(s) = 1. 

 

Usually SLS is implemented by selecting one general algorithm. The involved parameters are calibrated for 

enhancing a good behavior in terms of accuracy or time consumption. 

3.2. Metaheuristics  

3.2.1. Reasons for using a Metaheuristic 

 

In practice, it is sometimes almost impossible to obtain global solutions in the strict sense. In many problems, 

it is sufficient  having a local optimum or at least being close to i: Say that we are interested in solution s  

such that the objective function is “as high (small) as possible”. 
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Metaheuristics are popularly used for solving COP`s a discrete search-space because usually the search-space 

of candidate solutions grows more than exponentially with the problem the size.  Hence an exhaustive search 

for the optimal solution is generally infeasible. This is particularly true in multidimensional combinatorial 

problems. 

In discrete search spaces are of current used for solving COP`s simulated annealing, genetic algorithms, ant 
colony optimization, scatter search and tabu search. for  real-valued search-spaces the tools of optimization is  

deriving the gradient of the objective function and  employing gradient descent or a quasi-Newton method. 

The most used Metaheuristics are particle swarm optimization, differential evolution  and evolution strategies.  

Some mathematically based studies of the performance of the Metaheuristics are scarce. Convergence results 

for simulated annealing have been derived modeling it as a sequence of homogeneous Markov chains or as a 

single inhomogeneous Markov chain see Johnson and Jacobson, 2002..For genetic algorithms we have the so 

called. Holland's schema theorem, Holland (1975); the result of the thesis of  Rechenberg (1971) on evolution 

strategies; the recent paper of Trelea (2003) sustaining how to develop the analysis of particle swarm 

optimization.  

The study of the performance and convergence aspects of Metaheuristic optimizers are often sustained by 
empirical research. Wolpert and Macready (1997) derived that all optimizers perform similarly on the 

average. This results identified as “ no free lunch theorems” are unimportant because the hypothesis 

sustaining them  usually do not hold in many practical situations. The main problem is that here is not a 

Metaheuristics  guaranteeing tat the optimum or even a satisfactory near-optimal solution is obtained. They 

can face problems on which the performance is poor. So it is necessary gaining experience on each class of 

problems.  

We will consider Simulated Annealing and Tabu Search in our reseearch 

3.2.2. Simulated annealing 

Simulated annealing (SA) is often used to solve not only discrete optimization problems but also in 

continuous optimization solving it may provide adequate solutions to problems belonging to the NP-complete 

class of problems. Simulated annealing mimics the process undergone by misplaced atoms in a metal when it 

is heated and then slowly cooled. The process of physical annealing with solids, in which a crystalline solid is 

heated and then allowed to cool very slowly until it achieves its minimum lattice energy state, say be free of 

crystal defects.  Then the final configuration results in a solid with such superior structural integrity. 

Simulated annealing establishes the connection between thermodynamic behavior and the search for global 

minima for a discrete optimization problem and provides an algorithmic means for exploiting this connection. 
The key algorithmic issue SA is that it provides a means for avoiding being trapped by y local optima by 

accepting hill-climbing moves worsening the objective function value 

 

SA is easy to implement and its, convergence properties and its use of hill-climbing moves to escape local 

optima have made it very popular. This technique is unlikely to find the global optimal solution but often it 

finds good solutions even in the presence of noisy data. At each iteration of a SA algorithm, applied to a 

discrete optimization problem, the objective function generates values for two solutions (the current solution 

and a new randomly selected solution). They  are compared. Improving solutions are always accepted but  a 

fraction of non-improving  solutions are accepted looking for escaping from the curse of the local optima in 

search of global optima. The probability of accepting non-improving solutions depends on a temperature 

parameter T. It is non-increasing with each iteration of the algorithm. As T is decreased to zero, hill climbing 

moves occur less frequently.  The solution distribution is described by a no-homogeneous Markov chain 
modeling the behavior of the algorithm. It is proved that the algorithm converges to a form in which all the 

probability is concentrated on the set of globally optimal solutions, provided that the algorithm is convergent. 

If not it converges to a local optimum. 

 

SA is based on the Metropolis acceptance criterion (Metropolis et al., 1953). It models how a thermodynamic 

system moves from the current state (solution) s to a candidate solution s* in which the energy content is 

http://en.wikipedia.org/wiki/Discrete_mathematics
http://en.wikipedia.org/wiki/Simulated_annealing
http://en.wikipedia.org/wiki/Genetic_algorithms
http://en.wikipedia.org/wiki/Ant_colony_optimization
http://en.wikipedia.org/wiki/Ant_colony_optimization
http://en.wikipedia.org/wiki/Tabu_search
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Gradient
http://en.wikipedia.org/wiki/Mathematical_function
http://en.wikipedia.org/wiki/Gradient_descent
http://en.wikipedia.org/wiki/Quasi-Newton_method
http://en.wikipedia.org/wiki/Particle_swarm_optimization
http://en.wikipedia.org/wiki/Differential_evolution
http://en.wikipedia.org/wiki/Evolution_strategies
http://en.wikipedia.org/wiki/Holland%27s_schema_theorem
http://en.wikipedia.org/wiki/Evolution_strategies
http://en.wikipedia.org/wiki/Evolution_strategies
http://en.wikipedia.org/wiki/Particle_swarm_optimization
http://en.wikipedia.org/wiki/Particle_swarm_optimization
http://mathworld.wolfram.com/NP-CompleteProblem.html
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being minimized. Denote by tk >0 the temperature parameter at (outer loop) iteration k. It must satisfy that 

.  The candidate solution, is accepted as the current solution based on the acceptance 

probability 

 

The equilibrium of the system follows the Boltzmann distribution, which is described by the probability that 

the system be in state s S with energy f(s) at temperature T such that 

 

and if 

 

We have a non-negative square stochastic matrix with transition probabilities 

 

 

These are transition probabilities defining a sequence of solutions generated from an inhomogeneous Markov 

chain. 

 

A pseudo code for implementing SA 

Fix an initial solution s S and  an initial temperature t0 0,  k=0 
Fix a temperature cooling parameter A 

Fix a repetition schedule Mk that defines the number of iterations executed for temperature a tk 

Repeat 

Set repetition counter m = 0 

Repeat 

Generate a solution s* (s) 

Calculate  

 

 

 
Until m=Mk 

 

Until stopping criterion is met  
 

The total number of iteration of this algorithm is M0+M1+….+Mk. 

 

3.2.3. Tabu Search 

 

The Tabu Search (TS) method was proposed in 1986 by Glover to solve COP`s. Two principles of the TS 

method are the neighborhood search approach and the tabu list (TL), respectively. The simplest is called naïve 

tabu search (NTS) that is usually trapped by local solutions. The convergence analysis of the conventional TS 

is derived by Glover-Hanafi  (2001) and  Hanafi (2000). 

 
The general TS consists in constructing from a solution s another one s* checking whether one should stop 

there or perform another search. It uses the corresponding neighborhood (s) of the feasible solution s for 
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looking for an improvement .For improving the efficiency of the search the procedure keeps track on local 

information and on the exploration process.  

 

The method considers that S have k strictly local minima and is divided into k regions S(i) . Each region has 

w members and contains only one local minimum, which must not be located at the boundary.  A finite sub-

space of S* S is randomly determined, S* = m < n. Take a finite sequence s(i) = {s0,i}, i = 1,2,…,p, as a 
collection of solution movements, s0, consisting of p solutions to reach the global minimum (k < p). Denote 

by t(s) the time consumed to visit a solution s in the search space. Usually t(s)=t(s*)>0, when moving in S. 

for i = 1,2,…,n. The term Iteration counts the number of iterations, how many solutions in Swere already 

visited. Count do a similar job with the cumulative search round of sub-space explorations, how many sub-
spaces in Swere already explored entirely. Another involved variable is the Back-tracking (BT) mechanism 

which controls the use of previously visited local optima the Tabu-List for generating a new starting point 

different from the one in hand. Finally the TS needs of an adaptive search radius mechanism (AR) which 

allows reducing the access time to local optima.  

 

As there are non-improving moves is recommended to avoid the risk of visiting again a solution and of 

generating cycling. Then the BT allows forbidding moves which might lead to recently visited solutions. Now 

the structure of (s) will depend upon the itinerary and hence upon the iteration k. Therefore we may refer to 

(s,k) and s* as the best solution found so far and k the Iteration counter. 

 
Some times we look for efficiency using several lists Tr simultaneously. Then some constituents tr  will be 

given a tabu status to indicate that these constituents are currently not allowed to be involved in a move. 

Generally the tabu status of a move is a function of the tabu status of its constituents which may change at 

each iteration. That is, tr(i,m) Tr (r=1,...,t). A move m (applied to a solution s) will be a tabu move if all 
conditions are satisfied. Sometimes we accept m in spite of its status by fixing aspiration level a(i,m) which is 

better than a certain fixed threshold value A(i,m) which identifies  some set of preferred values for a function 

a(i,m). This is formalized writing ar(i,m)  Ar(i,m) (r=1,...,a). If at least one of these conditions is satisfied by 
the tabu move m applied to s, then m will be accepted. 

 

In some model is convenient modifying the objective function f  another function f* for intensifying and 

diversifying the search. Formally the DM is able to define it as f*=f+Intensification+Diversification. In order 

to intensify the search in promising regions, we may decide returning to one of the best previously obtained 

solutions. Diversification is instrumented by using different random restarts or by penalizing frequently 

performed moves or solutions often visited. 

 

A pseudo code for implementing TS 

Step 1. Fix an initial solution s S. Set s*=s and k=0. 

Step 2. Set k=k+1 and generate a subset V* of solutions in (s,k) such that: 

 either one of the tabu conditions tr(i,m) Tr is violated (r=1,...,t) 

 or at least one of the aspiration conditions ar(i,m) Ar(i,m) holds (r=1,...,a). 

Step 3. Choose a best s*=s, m V* (with respect to f or f*) and set s=s*. 
Step 4. If f(s) is preferred to f(s*) then set s*=s. 

Step 5. Update tabu and aspiration conditions. 

Step 6. If a stopping condition is met then stop. Else go to Step 2.  
 

In TS some usually defined stopping conditions are: 

- (s,k+1) =  
- k is larger than the maximum number of iterations allowed 

-The number of iterations since the last improvement of s* is larger than a specified number K 

- We have evidence that a optimum solution has been obtained. 

 

The efficiency of the TS depends mostly on the modeling which relies on the parameters. 

. 

4. THE STUDY OF CONSENSUS  RANKING FOR JOURNALS 
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4.1 The problem of ranking journals 

 

The need for a complete journal ranking  is growing as researchers and academicians obtains financing, 

promotion, or grants as a function of  good evaluation of their research outputs.  The number of academic 

journals is growing as a result; it is certainly more and more difficult assessing the quality of research through 

the journal where a result has been published. Hence is needed to have an unabridged evaluation of papers for 

any journal. Develop a complete ranking of them is useful for all these reasons.  

 

Thomson Reuters ISI Web of Science (2011 is the most prestigious source of quantifiable bibliometric 
Research Assessment Measures (RAM). It constitutes a benchmark for comparing other general databases, 

such as SciVerse Scopus, Google Scholar and Microsoft Academic Search, social science open access 

repositories. When impact factors and other citations data are used without appropriate care misleading, 

unintended inferences may be drawn.  They are not more than a  descriptive statistics to capture journal 

impact and performance, and as they are not based on a mathematical model, no sound  inferences can de 

done. 

Bibliometrics has been increasingly using new metrics such as the h-index, EigenFactor, SJR, and SNIP.  

In practice only a relatively small percentage of papers from many journals are included in the top databases 

and it is not clear how the system bases the selections. A main aspect of the systems is that the ratings are not 

based on bibliometric data at the journal level, but on a somewhat historical expert evaluation at level of the 

papers. A key role for evaluating a paper is played by citations in top rated journals. nevertheless it is not a 

reliable measure of intellectual achievements of the author because are equally considered positive and 

negative and neutral citations. The existent ranking on relies peer assessment of journal quality provided by a 

few available citation indexes, must of them elitist.. Seglen (1997) cautioned against using impact factors of 

journals to evaluate scientific research. It seem s more reliable o evaluate he author, see Hirsch (2005. 

 

We developed a research for developing a consensus ranking that allows evaluating more or less selective 

aspects of journals. We used the 299 leading journals in Economics analyzed by Chen et al (2012).  Our man 

objective was to consider how the SLS works inconsnesus ranking. The involved RAM`s are 

 

 (1) the 2-year impact factor including journal self citations (2YIF): Total citations in a year to papers 

published in a journal in the previous 2 years / Total papers published in a journal in the previous 2 years”. 

(2) the 2-year impact factor excluding journal self citations (2YIF*): 2YIF excluding self citations. 

(3) the 5-year impact factor including journal self citations (5YIF):  “Total citations in a year to papers 

published in a journal in the previous 5 years / Total papers published in a journal in the previous 5 years.” 

(4) Immediacy, or zero-year impact factor including journal self citations (0YIF): “Total citations to 

papers published in a journal in the same year / Total papers published in a journal in the same year.”  

(5) 5YIF Divided by 2YIF (5YD2):  “5YD2 = 5YIF / 2YIF”. 

(6) Eigenfactor (or Journal Influence): Use the Eigenfactor algorithm (www.eigenfactor.org/methods.htm)  

ranks journals according to citations and the length of time that researchers are logged on to a journal’s 
website.  

(7) Article Influence: “Eigenfactor score divided by the fraction of all articles published by a journal.” 

(8) IFI:  is the Impact Factor Inflation (IFI) given by “IFI = 2YIF / 2YIF*”. 

(9) H-STAR: “H-STAR = [(100-HS) - HS] =(100-2HS)”. If HS = 0 (minimum), 50 or 100 (maximum) 

percent. 

(10) 2Y-STAR: If 2YS = journal self citations over the preceding 2-year period,  

“2Y-STAR = [(100-2YS) – 2YS] = (100-2(2YS))”. If 2YS = 0 (minimum), 50 or 

100 (maximum) percent. 

(11) Escalating Self Citations (ESC): “ESC = 2YS – HS = (H-STAR – 2YSTAR) 

/ 2”.  

(12) C3PO: “C3PO (Citation Performance Per Paper Online) = Total citations to a journal / Total papers 

published in a journal.”  
(13) h-index: “h-index = number of published papers, where each has at least h citations.”  

(14) PI-BETA:PI-BETA(= Papers Ignored (PI) - By Even The Authors (BETA)),. 

(15) CAI: “CAI = (1 - PI11BETA)(Article Influence)”.  

http://arxiv.org/abs/physics/0508025
http://www.eigenfactor.org/
http://www.journalmetrics.com/index.php
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The computing experiments were performed on a Intel® Xeon™ 2,40 GHz CPU with 2GB of RAM and the 

programs used MATLAB tool kits. 

 

4.2 The experimentation with SA 

 

The parameters used in the Monte Carlo experiments with SA were: 

 

i) the initial temperature t0,  
ii) the threshold  Mk =M, for any k, for the number of repetitions of solution cycling before diminishing 

the temperature, 

iii) the cooling parameter A. 

 

We used two replica for each combination. Each parameter setting is used for computing solutions  in 1,000 

independent trials. The values of the paramtrere were 

i) the initial temperature t0 =100, 10,  

ii) the threshold  M= 100, 1000, 

iii) the cooling parameter A=0,90 , 0,10. 

 

The comparison of the means of the optimal value computed is developed using ANOVA for SA. 
 

Table 1. ANOVA of the experiments with Simulated Annealing 

Source of variation Degrees of 

freedom 

Mean square F p-value 

Temperature (T) 1 0,3393 1,8355 0,1756 

Maximum number of 

repetitions (M) 

1 0,4729 2,5537 0,07792 

Cooling parameter 

(A) 

1 1,4780 7,9805 0,0003 

T M 1 3,3037 17,8385 3,072e-05 

T A 1 1,9467 10,511 4,596e-14 

M A 1 9,6783 52,2571 5,6351e-13 

T M A 1 3,4796 18,7882 9,3266e-15 

Residual 4992 0,1852   

 

The experiments sustain, see the ANOVA for SA, that only changes in the cooling parameters generate 
significantly different means.  All the interactions generate significant differences . 

 

4.3. The experimentation with TS 

 

The parameters used in the Monte Carlo experiments with TS were: 

 

iv) the initial search radius (R),  

v) the number of neighborhood members ( nm),  
vi) the number of repetitions of solution cycling before back-tracking (n_re_max), 

vii) the kth backward solution selected by the back-tracking mechanism (kth-bs) 

viii)  the percentage of search radius reduction compared to the radius before adaptation (DF). 

 

We used two replica for each combination. Each parameter setting is carried out in 1,000 independent trials. It 
starts assigning the mean ranks of each item. The searches stopped when hold one of the conditions 

TS1) the maximum search round of 10,000 

TS2) the cost function sufficiently small. 
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We implemented if by fixing that R(old) and R(new) are the search radius before and after adaptation. The 

values of DF,the factor of radius reduction, were 10% and 50% of the current radius and R = 2,0%, 10,0%.; 

nm=10, 50 ; n_re_max =5 and 20, kth-bs = –2, .-5}; 
The adaptive radius scheme is set to have three steps of reduction as: 

 i) if [cost function < 0,1] then [R(new) = R(old)/DF]; 

ii) if [cost function < 0,001] then [R(new) = R(old)/DF]; 

 iii) if [cost function < 0,001] 

 

 

Table 2. ANOVA of the experiments with Tabu Search 

Source of variation Degrees of 
freedom 

Mean square F p-value 

R 1 3,2789e-03 0,1296 >5e-02 

DF 1 0,1093 4,3212 >1e-02 

nm 1 8,797e-02 3,4769 >1e-02 

n_re_max 1 0,1153 4,5591 >1e-02 

kth-bs 1 2,2612e-02 1,0328 <5e-02 

R DF 1 9,1606e-02 3,6208 <1e-02 

R nm 1 4,317 170,6516 <2,2e-16 

R  n_re_max 1 4,1448 163,8316 <2,2e-16 

R  kth-bs 1 4,698 185,7116 <2,391e-12 

DF nm 1 1,2779 50,5112 2,391e-12 

DF  n_re_max 1 1,3527 53,47 <2,391e-12 

DF  kth-bs 1 0,4495 17,770 <5e-02 

nm  n_re_max 1 1,30874 51,7312 2,391e-12 

nm  kth-bs 1 7,572e-02 2,9931 >1e02 

n_re_max  kth-bs 1 7,2593e-02 2,8693 >1e02 

R DF nm 1 1,2695 50,181 <2,391e-12 

R DF  n_re_max 1 1,311 51,84 2,391e-12 

R DF  kth-bs 1 4,067 160,79 <2,2e-16 

R nm  n_re_max 1 1,2648 49,9934 <2,391e-12 

R nm  kth-bs 1 1,2651 50,0004 <2,391e-12 

R nm n_re_max 
kth-bs 

1 1,2390 48,9741 <2,391e-12 

DF nm  n_re_max 1 4,5814 181,2084 <2,2e-16 

DF  n_re_max  kth-
bs 

1 4,7030 185,8886 2,2e-16 

DF nm  kth-bs 1 4,1202 162,8530 <2,2e-16 

nm  n_re_max  kth-
bs 

1 4,2476 167,8931 <2,2e-16 

R DF nm  

n_re_max  kth-bs 

1 4,5227 181,7516 <2,2e-16 

Residual 4979 0,0253   

 

The experiments sustain, see the ANOVA for TS that the values of the parameters are unimportant in terms of 

the mean of the solutions derived as the corresponding sources are non-significant.  All the interactions 

generate significant differences excepting at the second level for R DF , DF  kth-bs, nm  kth-bs  and 

n_re_max  kth-bs.  Therefore once R is fixed the values of DF are non-influent in the solution obtained. 

Similarly DF has no interaction witht kth-bs and kth-bs with nm  and n_re_max · 
 

4.4. Study of the computing times 
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Let us consider a variable Y describing the run time and denote by FRT(t) its distribution function. It is 

continuous.  Each Metaheuristic M has a distribution function indexed by the set of parameters fixed for 

performing SLS. Take  as these parameters. Hence we deal with FRT(t M, )=P(Y t). This probability 
measures our likelihood that the algorithm  finds the solution with run time t in a single run. We estimate it 

using the  empirical distribution function 

 

Clearly Y1,…,Ynumberofruns are independent variables ,as the runs are independent.  Our interest is to establish if 

the DF varies with  for a certain M. 
 

We perform 1000 runs for each  hence we deal with a large sample of independent and identically 

distributed variables. This fact supports, see Hollander-Wolfe (1999) that  and 

that the Kolmogorov-Smirnov test can be used for testing whether if  or not. 

We perform the test considering the set . A test of equality of the different instances of the algorithm 

is performed computing 

 

We accept for a certain significance level p that all the  are equal if 

.  See Birbaum-Hall test, see Conover (1980). In case of detecting that the 

FD`s of a pair of parameters set are different a pairwise study must be performed using   

 

As the sample size is large the asymptotic distribution of the Kolmogorov-Smirnov statistic is used. 

 

The distribution of the times of TS were different for any pair of parameters sets wit p-values moving in 

(0,003, 0,007). 

 

The distributions for SA were unaffected by changing T for fixed values of M and A. The rest of the 

comparisons were significant with p-values moving in (0,0006, 0,004). 

 

5. CONCLUSIONS 

 

SA seems to be less sensitive to changes in the parameters.  The cooling parameter A is the most influential 
one; hence the DM must be aware of that fact when implementing the procedure. The interaction among the 

parameters is important as the means associated differ . The distribution of the time for the temperature 

conditioned to a fixed set is the same.  

 

TS is very sensitive for the interaction among the parameters. The distributions of any set of parameters differ 

significantly. 

 

For determining a procedure for deriving a ranking consensus of the journals SA is recommended 
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