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ABSTRACT
In this paper a system consisting of independently operating n-machines is considered, where each machine
follows a stochastic process of deterioration, which is associated with a cost function. It is assumed that the
system is observed at discrete time and the objective function is the total expected cost. Also, it is considered
that the horizon of the problem is random with an infinite support. In this case, the optimal replacement problem
with a random horizon is modelled as a non-homogeneous optimal control problem with an infinite horizon and
solved by means of the rolling horizon procedure. Then, a replacement policy is provided, which approximate
the optimal solution. Finally, a numerical example through a program in Maple is presented.
KEYWORDS: Optimal Stochastic Control; Dynamic Programming; Markov Decision Process; Optimal Re-
placement Problem.
MSC: 90C39.

RESUMEN
En este artı́culo se considera un sistema formado por n-máquinas que operan independientemente, en donde
cada máquina sigue un proceso estocástico de deterioro, el cual es asociado con una función de costo. Se supone
que el sistema es observado en tiempo discreto y que la función objetivo es el costo total esperado. También, se
considera que el horizonte del problema es aleatorio con soporte infinito. En este caso, el problema de reemplazo
óptimo con horizonte aleatorio es modelado como un problema de control no homogéneo con horizonte infinito
y resuelto por medio del procedimiento de horizonte rodante. Entonces se determina una polı́tica de reemplazo,
la cual aproxima a la solución óptima. Finalmente, se presenta un ejemplo numérico mediante un programa
elaborado en Maple.

1. INTRODUCTION
In industrial processes the deterioration of electronic components or machines is common. Then it is im-
portant to provide replacement strategies for the optimization of these systems. The problem of optimal
replacement is modeled in different ways. For example, in Sheti et al. (2000)[6] is studied the problem
considering a single machine, which follows a deterioration stochastic process with various quality levels
in continuous time. Also, the optimal replacement has been implemented based on future technological ad-
vances, in this case, a non-stationary process is considered and the optimal decision is characterized using
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forecast horizon approach (see Nair and Hopp (1992)[5]). On the other hand, in Childress and Durango-
Cohen (2005)[3] the problem is studied with n-machines considering two heuristics rules of replacement
that make possible the search of optimal policies. These rules are as follow: the first suggests that a machine
is replaced only if all older machines are replaced and the second one indicates that in any stage machines
of the same age are either all kept or all replaced.
This work was motivated by the model proposed in Bertsekas (1987) [2], which involves a single machine
that follows a Markov process of deterioration with D possible levels, where D is a positive integer. The
process of deterioration is associated with an operation cost of the machine at each level. The machine is
observed in discrete time and, depending on the deterioration level, the following situations are possible:
leaving operate an additional period of time or, replaced it with a cost R > 0. Then, an optimal replace-
ment policy, which minimizes the total cost, is provided. In this model it is considered a finite horizon of
operation.
Now, in this paper a system consisting of n-machines with independent deterioration processes is studied,
assuming that the system is operating over a random horizon. This novel consideration in the model is
due to it is possible that external situations obligate to conclude the process before expected, for example,
bankruptcy of the firm in an economic model (see Puterman (1994)[8], p. 125). The support of the dis-
tribution of the random horizon can be finite or infinite. In this paper the case with an infinite support is
considered. The optimal replacement problem with a random horizon is modeled through Markov deci-
sion processes as a nonhomogeneous optimal control problem with an infinite horizon. Then, the optimal
solution is approximated by means of the rolling horizon procedure and a theoretical result about Markov
Decision Process with a random horizon is presented and applied to verify that the method is efficient.
This paper is organized as follows. Firstly, in Section 2 the basic theory of Markov decision processes and
the rolling horizon procedure are presented. Afterwards, the problem of optimal replacement in a system
with n-machines and random horizon is described and then, an algorithm for the solution is proposed in
Section 3. For solving numerical cases a program in Maple is elaborated. Finally, in Section 4, some
numerical results are illustrated.

2. BASIC THEORY
Markov Decision Processes

Let (X,A, {A(x) : x ∈ X}, Q, c) be a Markov decision or control model, which consists of the state
space X , the action set A (X and A are Borel spaces), a family {A(x) : x ∈ X} of nonempty measurable
subsets A(x) of A, whose elements are the feasible actions when the system is in state x ∈ X . The set
K := {(x, a) : x ∈ X, a ∈ A(x)} of the feasible state-action pairs is assumed to be a measurable subset
of X × A. The following component is the transition law Q, which is a stochastic kernel on X given K.
Finally, c : K→ R is a measurable function called the cost per stage function.
A policy is a sequence π = {πt : t = 0, 1, . . .} of stochastic kernels πt on the control set A given the
history Ht of the process up to time t (Ht = K × Ht−1, t = 1, 2, . . ., H0 = X). The set of all policies is
denoted by Π.
F denotes the set of measurable functions f : X → A such that f(x) ∈ A(x), for all x ∈ X . A deterministic
Markov policy is a sequence π = {ft} such that ft ∈ F, for t = 0, 1, 2, . . ..
Let (Ω,F) be the measurable space consisting of the canonical sample space Ω = H∞ := (X × A)∞

and F as the corresponding product σ-algebra. The elements of Ω are sequences of the form ω =
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(x0, a0, x1, a1, . . .) with xt ∈ X and at ∈ A for all t = 0, 1, 2,. . . . The projections xt and at from Ω
to the sets X and A are called state and action variables, respectively.
Let π = {πt} be an arbitrary policy and µ be an arbitrary probability measure on X called the initial
distribution. Then, by the theorem of C. Ionescu-Tulcea (see Hernández-Lerma and Lasserre (1996) [4]),
there is a unique probability measure Pπµ on (Ω,F) which is supported on H∞, i.e., Pπµ (H∞) = 1. The
stochastic process (Ω,F , Pπµ , {xt}) is called a discrete-time Markov control process or a Markov decision
process.
The expectation operator with respect to Pπµ is denoted byEπµ . If µ is concentrated at the initial state x ∈ X ,
then Pπµ and Eπµ are written as Pπx and Eπx , respectively.

Markov Decision Processes with Random Horizon

Let (Ω′,F ′, P ) be a probability space and let (X,A, {A(x) | x ∈ X}, Q, c) be a Markov decision model
with a planning horizon τ , where τ is considered as a random variable on (Ω′,F ′) with the probability
distribution P (τ = t) = ρt, t = 0, 1, 2, ..., T, where T is a positive integer or T = ∞. Define the
performance criterion as

τ (π, x) := E

[
τ∑
t=0

c(xt, at)

]
,

π ∈ Π, x ∈ X , where E denotes the expected value with respect to the joint distribution of the process
{(xt, at)} and τ . Then, the optimal value function is defined as

Jτ (x) := inf
π∈Π

τ (π, x), (2.1)

x ∈ X . The optimal control problem with a random horizon is to find a policy π∗ ∈ Π such that τ (π∗, x) =
Jτ (x), x ∈ X , in which case, π∗ is said to be optimal.

Assumption 1. For each x ∈ X and π ∈ Π the induced process {(xt, at) | t = 0, 1, 2, . . .} is independent
of τ .

Remark 1. Observe that, under Assumption 1,

E

[
τ∑
t=0

c(xt, at)

]
= E

[
E

[ τ∑
t=0

c(xt, at) | τ
]]

=

T∑
n=0

Eπx

[
n∑
t=0

c(xt, at)

]
ρn

=

T∑
t=0

T∑
n=t

Eπx
[
c(xt, at)

]
ρn

= Eπx

[
T∑
t=0

Pt c(xt, at)

]
,

π ∈ Π, x ∈ X , where Pk =
∑T
n=k ρn = P (τ ≥ k), k = 0, 1, 2, . . . , T . Thus, the optimal control problem

with a random horizon τ is equivalent to a nonhomogeneous optimal control problem with a horizon T + 1
and a null terminal cost.
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In the case T < +∞ the problem is solved using the dynamic programming (see Theorem 1).

Assumption 2.(a) The one-stage cost c is lower semicontinuous, nonnegative and inf-compact on K (for
definitions, see Bertsekas (1987) [2], p. 146).

(b) Q is either strongly continuous or weakly continuous (see Hernández-Lerma and Lasserre (1996) [4], p.
28).

Theorem 1. Let J0, J1, ..., JT+1 be the functions on X defined by

JT+1(x) := 0

and for t = T, T − 1, ..., 0,

Jt(x) := min
a∈A(x)

[
Ptc(x, a) +

∫
X

Jt+1(y)Q(dy | x, a)

]
, x ∈ X. (2.2)

Under Assumption 2, these functions are measurable and for each t = 0, 1, ..., T, there is ft ∈ F such that
ft(x) ∈ A(x) attains the minimum in (2.2) for all x ∈ X; i.e.

Jt(x) = Ptc(x, ft(x)) +

∫
X

Jt+1(y)Q(dy | x, ft(x)),

x ∈ X and t = 0, 1, ..., T. Then, the deterministic Markov policy π∗ = {f0, ..., fT } is optimal and the
optimal value function is given by

Jτ (x) = τ (π∗, x) = J0(x),

x ∈ X .

The proof of previous theorem is similar to the proof of Theorem 3.2.1 in Hernández-Lerma and Lasserre
(1996) [4].
Let

Ut =
Jt
Pt
,

t ∈ {0, 1, 2, . . . , T}. Then, (2.2) is equivalent to

Ut(x) := min
a∈A(x)

[
c(x, a) + αt

∫
X

Ut+1(y)Q(dy | x, a)

]
, (2.3)

where
αt =

Pt+1

Pt
, t ∈ {0, 1, 2, . . . , T}. (2.4)

Now consider that T = +∞. In this case,

τ (π, x) = Eπx

[ ∞∑
t=0

Pt c(xt, at)

]
, (2.5)

π ∈ Π and x ∈ X .
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For each n = 0, 1, 2, . . ., defines

vτn(π, x) := Eπx

[ ∞∑
t=n

t∏
k=n

αk−1c(xt, at)

]
, (2.6)

π ∈ Π, x ∈ X and
V τn (x) := inf

π∈Π
vτn(π, x), (2.7)

x ∈ X . vτn(π, x) is the expected total cost from time n onwards, applied to (2.5), where the initial condition
xn = x is given and x is a generic element of X .

Remark 2.

i) Observe that Pt =
∏t
k=0 αk−1, t = 0, 1, 2, . . ., where α−1 = P0 = 1 is considered and αk, k = 0, 1, 2, . . .,

is defined by (2.4).

ii) Observe that V τ0 (x) = Jτ (x), x ∈ X (see (2.1)).

For N > n ≥ 0, it is defined that

vτn,N (π, x) := Eπx

[
N∑
t=n

t∏
k=n

αk−1c(xt, at)

]
, (2.8)

with π ∈ Π, x ∈ X , and
V τn,N (x) := inf

π∈Π
vτn,N (π, x), (2.9)

x ∈ X .

Assumption 3.(a) Same as Assumption 2.

(b) There exists a policy π ∈ Π such that τ (π, x) <∞ for each x ∈ X.

Definition 1. M(X)+ denotes the cone of nonnegative measurable functions on X , and, for every u ∈
M(X)+, Tnu, n = 0, 1, 2, . . ., is the operator on X defined as

Tnu(x) = min
a∈A(x)

[
c(x, a) + αn

∫
X

u(y)Q(dy | x, a)

]
,

x ∈ X .

The proofs of Lemmas 1 and 2 below are similar to the proofs of Lemmas 4.2.4 and 4.2.6 in Hernández-
Lerma and Lasserre (1996) [4], respectively. This is why these proofs are omitted.

Lemma 1. For every N > n ≥ 0, let wn and wn,N be functions on K, which are nonnegative, lower
semicontinuous and inf-compact on K. If wn,N ↑ wn as N →∞, then

lim
N→∞

min
a∈A(x)

wn,N (x, a) = min
a∈A(x)

wn(x, a),

x ∈ X .
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Lemma 2. Suppose that Assumption 2(a) holds. For every u ∈ M(X)+, Tu ∈ M(X)+ and, moreover,
there exists fn ∈ F such that

Tnu(x) = c(x, fn(x)) + αn

∫
X

u(y)Q(dy | x, fn(x)),

x ∈ X .

Lemma 3. Suppose that Assumption 3(a) holds and let {un} be a sequence in M(X)+. If un ≥ Tnun+1,
n = 0, 1, 2, . . ., then un ≥ V τn , n = 0, 1, 2, . . ..

Proof. Let {un} be a sequence in M(X)+ such that un ≥ Tnun+1, and then by Lemma 2, there exists
fn ∈ F, where

un(x) ≥ c(x, fn(x)) + αn

∫
X

un+1(y)Q(dy | x, fn(x)),

x ∈ X . Iterating this inequality, it is obtained that

un(x) ≥ Eπx

c(xn, fn(xn)) +

N−1∑
t=n+1

t∏
j=n+1

αj−1c(xt, ft(xt))


+

N∏
j=n+1

αj−1E
π
x

[
u(xN )

]
, (2.10)

x ∈ X . Here
Eπx
[
u(xN )

]
=

∫
X

u(y)QN (dy | xn, fn(xn)),

whereQN (· | xn, fn(xn)) denotes theN -step transition kernel of the Markov process {xt}when the policy
π = {fk} is used, beginning at stage n. Since u is nonnegative and αk ≤ 1, recalling that xn = x, it is
obtained from (2.10) that

un(x) ≥ Eπx

αn−1c(xn, fn(xn)) +

N−1∑
t=n+1

t∏
j=n

αj−1c(xt, ft(xt))

 .
Hence, letting N →∞, it yields that

un(x) ≥ vτn(π, x) ≥ V τn (x),

x ∈ X .

Theorem 2. Suppose that Assumption 3 holds. Then, for every n ≥ 0 and x ∈ X ,

V τn,N (x) ↑ V τn (x) as N →∞.
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Proof. Using the dynamic programming equation given in (2.3), that is

Ut(x) = min
a∈A(x)

[
c(x, a) + αt

∫
X

Ut+1(y)Q(dy | x, a)

]
, (2.11)

for t = N − 1, N − 2, . . . , n, with UN (x) = 0, x ∈ X , it is obtained that V τn,N (x) = Un(x) and
V τs,N (x) = Us(x), n ≤ s < N . Furthermore, it is proved by backwards induction that Us, n ≤ s < N , is
lower semicontinuous. For t = n, (2.11) is written as

V τn,N (x) = min
a∈A(x)

[
c(x, a) + αn

∫
X

V τn+1,N (y)Q(dy | x, a)

]
, (2.12)

and V τn,N (·) is lower semicontinuous. Then, by the nonnegativity of c, for each n = 0, 1, 2, . . ., the sequence
{Vn,N : N = n, n+1, . . .} is nondecreasing, which implies that there exists a function un ∈M(X)+ such
that for each x ∈ X ,

V τn,N (x) ↑ un(x),

as N →∞. Moreover,
V τn,N (x) ≤ vτn,N (π, x) ≤ vτn(π, x),

x ∈ X and π ∈ Π, hence
V τn,N (x) ≤ V τn (x),

N > n. Then un ≤ V τn . Using Lemma 1 and letting N →∞ in (2.12), it is obtained that

un(x) = min
a∈A(x)

[
c(x, a) + αn

∫
X

un+1(y)Q(dy | x, a)

]
, (2.13)

n = 0, 1, 2, . . . and x ∈ X . Finally, by Lemma 3, un ≥ V τn , obtaining that un = V τn and concluding this
way the proof of Theorem 2.

Remark 3. Theorem 2 can be applied to obtain Jτ = V τ0 , as the limit of the sequence {V0,N}τ . Nev-
ertheless in the practice is very difficult to obtain this limit. But, Theorem 2 can be used to approximate
Jτ .

The Rolling Horizon Procedure

The rolling horizon procedure is the most common method employed in practice for generating solutions
to nonhomogeneous optimal control problems when the horizon is infinite (see Wang and Liu (2011)[9]).
The procedure fixes a horizonN , solves the correspondingN–period problem, implements the first optimal
decision found, rolls forward one period and repeats from the new current state. Below, the rolling horizon
algorithm is presented.

Algorithm

1. Set m = 0 and n = N .

2. Find the policy π∗ = (π∗m, π
∗
m+1, . . . , π

∗
n−1), which is optimal for periods from m to n, and set

π̂m = π∗m.

3. Let m = m+ 1 and n = n+ 1.
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4. Go to step 2.

The policy π̂ = (π̂0, π̂1, π̂2, . . .) is called a rolling horizon policy.

Remark 4. The rolling horizon policy in some cases may not be optimal, an example is presented in Alden
and Smith (1992)[1]. Also, in Alden and Smith (1992)[1] an error bounded theoretical is provided for the
rolling horizon procedure applied to nonhomogeneous Markov decision processes with an infinite horizon.

3. THE REPLACEMENT PROBLEM
Consider a system consisting of n−machines, each other with an independent stochastic process of deteri-
oration, whose possible levels of deterioration are denoted by 1, 2, 3, . . . , D, where D is a positive integer.
Level one denotes that the machine is in perfect condition. Suppose that deterioration level is increasing,
i.e., that a machine operating at level i is better than at level i+ 1, i = 1, 2, 3, . . . , D − 1.
Let P = (pi,j)D×D be the matrix of transition probabilities for going from level i to level j (identical for
the n-machines). Because any machine cannot move to better level of deterioration, pi,j = 0 if j < i. Let
g : {1, 2, 3, . . . , D} → R be a known function, which will measure the cost of operation of a machine.
Suppose that g is nondecreasing, i.e.

g(1) ≤ g(2) ≤ . . . ≤ g(D),

and that at the beginning of each period of time can be considered the following options.

a) Operate the machine k, k = 1, 2, . . . , n in a level of deterioration for this time period, or

b) replace by a new one with a fixed cost R > 0.

Also, consider that the system can operate over τ time periods, where τ is a random variable, which is inde-
pendent of the process followed by the system with probability distribution P (τ = t) = ρt, t = 0, 1, 2, . . .,
such that E[τ ] <∞.

The problem consists on determining optimal replacement policies that minimize the total cost of operation
of the system.

The problem is solved through theory of Markov decision processes. This requires to identify the corres-
ponding Markov control model.

At the beginning of an arbitrary time period, the state of the system can be registered as (d1, d2, . . . , dn)
where dk, k = 1, 2, . . . , n, is the level of deterioration in which the machine is operating, therefore the state
space is defined by:

X = {(d1, d2, . . . , dn) : dk ∈ {1, 2, . . . , D}, k = 1, 2, . . . , n},

x ∈ X , where card(X) = Dn states.
A replacement action can be represented by (a1, a2, . . . , an) with ak = 0 or ak = 1, where ak = 0 means
letting that the machine k operate on the level dk and ak = 1 means replacing it. At this way

A = A(x) = {(a1, a2, . . . , an) : ak ∈ {0, 1}, k = 1, 2, . . . , n},
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where its cardinality is 2n actions.
For an arbitrary machine k, let P 0 = (p0

i,j)DXD = P be the transition matrix of the process of deterioration
when the machine is not replaced. Let P 1 = (p1

i,j)D×D be the transition matrix when the machine is
replaced, where p1

i,j = 1, if j = 1 and p1
i,j = 0 in otherwise (safely when machine k was replaced, the

machine goes to level one). Let Qa = (qai,j)Dn×Dn be the transition matrix of the state i at state j of the
system, when the action a ∈ A is taken, i, j ∈ X . For the independence of the deterioration processes of
the machines, it is obtained that

q
(a1,a2,...,an)
(i1,i2,...,in),(j1,j2,...,jn) = pa1i1,j1 · p

a2
i2,j2
· . . . · panin,jn .

Also at any time period t

c(xt, at) =

n∑
k=1

γ(xk,t, ak,t),

where γ(xk,t, ak,t) = g(xk,t), if ak,t = 0 and γ(xk,t, ak,t) = g(1) + R, if ak,t = 1. In this case xk,t and
ak,t represent the state and the action at time t of the machine k, respectively.

Lemma 4. The replacement model of n–machines with random horizon satisfies Assumption 3.

Proof. Since X and A are finite, then Assumption 3(a) holds. Moreover, there exist M such that c(x, a) ≤
M for each x ∈ X and a ∈ A(x). Hence, τ (π, x) ≤ M

∑∞
t=0 Pt = M (1 + E[τ ]). But, it is supposed

that E[τ ] <∞, then τ (π, x) <∞ for each π ∈ Π and x ∈ X , i.e. Assumption 3(b) holds.

Algorithm to obtain the rolling horizon policies

1. Do n = 0.

2. Do t = N + 1 and Ut(x) = 0 for each x ∈ X.

3. If t = 0, do f̂n = f0, n = n+ 1 and return to step 2. Else, go to step 4.

4. Replace t by t− 1 and calculate Ut(x) for each x ∈ X by means of the equation

Ut(x) = min
a∈A(x)

[
c(x, a) + αt+n

∑
y∈X

Ut+1(y)qax,y

]
, ,

(see 2.3), putting
ft(x) = a,

for some

a ∈ arg mina∈A(x)

[
c(x, a) + αt+n

∑
y∈X

Ut+1(y)qax,y

]
.

Return to step 3.

f̂ = (f̂0, f̂1, f̂2, . . .) is the rolling horizon policy obtained with N fixed, where N is an integer.
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4. NUMERICAL EXAMPLE
Consider the optimal replacement problem with random horizon and the following numerical values: n = 3,
D = 3,

P =

 0.4 0.3 0.3
0 0.3 0.7
0 0 1

 ,

g(1) = 5, g(2) = 7 and g(3) = 29, R = 4, ρk = P (τ = k) = − (1−p)k+1

(k+1) ln p , k = 0, 1, 2, . . ., where
0 < p < 1 with p = .8 (Logarithmic Distribution) and N = 20.

In Table 1, the rolling horizon action depending on the stage and the state of the system is presented.

Stage 1 2 3 4 5 6 7 . . .
State
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 3 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1
1 3 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 3 2 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 3 3 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 3 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 3 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
2 3 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
2 3 2 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
2 3 3 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
3 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
3 1 2 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
3 1 3 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1
3 2 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

...
...

...
...

...
...

...

Table 1: Rolling horizon policies

In this numerical case, it is observed that the policy is stationary (independent of time) and it is possible
determine a replacement optimal level for each machine. In this case, each machine is replaced if the
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machine is in level 3. The value function is obtained evaluating the rolling horizon policy in the performance
criterion.

Remark 5. By Theorem 2
V τ0,N (x) ↑ Jτ (x) as N →∞.

Then, for N∗ long enough
V τ0,N∗(x) ≈ Jτ (x).

Observe that if |τ (π̂, x) − V τ0,N∗(x)| < ε, x ∈ X , then optimal solution is approximated by means of the
rolling horizon policy efficiently.

In Table 2, the column number one shows the evaluation only of the first five actions of the rolling horizon
due to the curse of the dimensionality (see Powell (2007)[7]), and in the second column it is presented an
approximation of the optimal value function using Theorem 2 with N∗ = 30 obtained from a ε = 10−19.

Initial State x τ (π̂, x) V τ0,N∗(x)

1 1 1 17.44943 17.45081
1 1 2 19.60531 19.60669
1 1 3 21.26398 21.26537
1 2 1 19.60531 19.60669
1 2 2 21.76119 21.76257
1 2 3 23.41986 23.42125
1 3 1 21.26398 21.26537
1 3 2 23.41986 23.42125
1 3 3 25.07854 25.07992
2 1 1 19.60531 19.60669

...
...

...

Table 2: Approximation of the optimal value function

Remark 6. The program was developed in Maple, for the goodness that comes in the manipulation of
highly accurate values. For the calculation of the αt, t = 0, 1, 2, . . ., was necessary to work with up to 400
digits. Nevertheless, the program gets the rolling horizon policy over acceptable time (about 30 seconds
for the example). The main problem is in the evaluation of the rolling horizon policy, where, arrays of size
Dn(k−1) are required for saving the information in the stage k, making impossible the evaluation taking k
large.
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