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ABSTRACT
Autoregressive regime-switching models are being widely used in modelling financial and economic time series.
When the number of regimes is fixed statistical inference is relatively straightforward and asymptotic properties
of the estimates may be established. However, the problem of selecting number of regimes is far less obvious
and hasn’t been completely answered yet. When the number of regimes is unknown, identifiability problems
arise and, for example, likelihood ratio test statistic is no longer convergent to a χ2-distribution. The problem
we address in this paper is how to select number of regimes without knowing the form of the noise. One
possible method to answer this problem is to consider penalized criteria. Recently, consistency of a modified
BIC criterion was recently proven in the framework of likelihood criterion for linear switching models. We
extend these results to mixtures of nonlinear autoregressive models with mean square error criterion and prove
consistency of a penalized estimate for number of regimes under some regularity conditions. As an illustration,
we use this theoretical result to propose and compare effective criteria to find the true number of regimes on a
simple simulation.
KEYWORDS: time series, switching regimes, mean square error, asymptotic statistic, models selection.
MSC: 62F12, 62M10.

RESUMEN
Los modelos autorregresivos con cambio de régimen son ampliamente utilizados en las series temporales de mod-
elos financieros y económicos. Cuando se fija el número de regı́menes la inferencia estadı́stica es relativamente
sencilla y las propiedades asintóticas de los estimadores pueden ser establecidas. El problema de seleccionar el
número de regı́menes es mucho menos obvio y no ha sido completamente resuelto todavı́a. Cuando el número de
regı́menes es desconocido, surgen problemas de identificabilidad y, por ejemplo, el estadı́grafo de la prueba del
cociente de verosimilitud ya no converge a la distribución Chi-cuadrado. El problema abordado en este artı́culo
es la selección del número de regı́menes sin conocer la forma del ruido. Un método posible para resolver este
problema consiste en considerar criterios penalizados. La consistencia de un criterio BIC modificado fue de-
mostrado recientemente en el marco del criterio de verosimilitud para modelos lineales con cambio de régimen.
En este trabajo extendemos estos resultados a las mezclas de modelos autorregresivos no lineales con criterio de
error cuadrático medio y demostramos la consistencia de un estimador penalizado para el número de regı́menes
bajo algunas condiciones de regularidad. A modo de ejemplo, utilizamos este resultado teórico para proponer y
comparar criterios eficaces para encontrar el verdadero número de regı́menes en una simulación simple.

1. INTRODUCTION
A time series is a sequence of data points, measured typically at successive time instants spaced at uniform
time intervals. The future behavior of the time series is partly determined by its past values, throughout
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this paper, we shall consider that number of lags for the past is known and, for ease of writing, we shall set
number of lags equal to one, the extension to l time-lags being immediate. Here, we assume that behavior of
time series is not always the same but switches between different dynamics called “regimes” as in Hamilton
(1989)[5]. Let Xt be a discrete random variable representative of the regimes. We consider the real-valued
time series Yt, t ∈ Z, which matches the following model

(1) Yt = Fθ0Xt
(Yt−1) + εt,

where

• (Xt)t∈Z is an iid sequence of random variables valued in a finite space {1, ..., p0} and with probability
distribution π0 ;

• for every i ∈ {1, ..., p0}, Fθ0i (y) ∈ F and

F =
{
Fθ, θ ∈ Θ, Θ ⊂ Rl

}
, where Θ is a compact set, is the family of possible regression functions.

We suppose throughout the rest of the paper that Fθ0i are sublinear, that is they are continuous and

there exist
(
a0i , b

0
i

)
∈ R2

+ such that ∀y ∈ R,
∣∣∣Fθ0i (y)

∣∣∣ ≤ a0i |y|+ b0i ;

• (εt)t∈Z is an identically distributed and independent sequence of centered noise.

We need the following technical hypothesis which implies, according to Yao and Attali (2000)[6], strict
stationarity geometric ergodicity and β-mixing for Yt:

(HS)
∑p0
i=1 π

0
i

∣∣a0i ∣∣s < 1

Let us remark that hypothesis (HS) does not request every component to be stationary and that it allows
non-stationary “regimes” as long as they do not appear too often.
Let us briefly recall the definition of β-mixing processes which will be needed hereafter. For a more detailed
review, refer to Doukhan (1995) [2] and Bradley (2005)[1].
Let (Yk)k∈Z be a strictly stationary sequence of random variables defined on a probability space (Ω,K,P).
For every n ≥ 1, define the β-mixing coefficients

βn = β
(
F0
−∞, F∞n

)
where F0

−∞ = σ (Yk, k ≤ 0), F∞n = σ (Yk, k ≥ n), as

β (A,B) =
1

2
sup

(Ai)i∈I ,(Bj)j∈J

∑
(i,j)∈I×J

|P (Ai ∩Bj)− P (Ai)P (Bj)|

where (Ai)i∈I (resp. (Bj)j∈J ) ranges over the set of A(resp. B) measurable partitions.
The sequence (Yk)k∈Z is called β-mixing if limn→∞ βn = 0.
Throughout the rest of the paper, we will assume that the observations are a realization of a stationary,
β-mixing, process (Yk).
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2. ESTIMATION OF THE NUMBER OF REGIMES
An important question is whether there are switches in the time series and if it is the case, how many.
This question is very similar to selection of the dimension of models and a rather natural idea seems to
use information criteria as usual for models selection. However, justification of such technic is not obvious
because if the number of regimes is over-estimated the model is no more identifiable (see for example
Oltéanu and Rynkiewicz (2012) [7]) and asymptotic behavior of estimator is very different than in the
identifiable case.
Let us consider an observed sample {y1, ..., yn} of the time series (Yt)t∈Z. Then, for every variable Yt, the
conditional expectation with respect to the previous observation yt−1 and marginally in Xt is

E (Yt | yt−1) =

p0∑
i=1

π0
i Fθ0i (yt−1) := g0 (yt−1)

As the goal is to estimate p0, the number of regimes of the model, let us consider all possible conditional
expectation up to a maximal number of regimes P , a fixed positive integer. We shall consider the class of
functions

GP =

P⋃
p=1

Gp, Gp =

{
g | g (y) =

p∑
i=1

πiFθi (y) , πi ≥ 0,

p∑
i=1

πi = 1 and θi ∈ Θ

}
,

For every g ∈ GP we define the number of regimes as

p (g) = min {p ∈ {1, ..., P} , g ∈ Gp}

and let p0 = p
(
g0
)

be the true number of regimes. In order to construct a criterion to guess p0, let us define
estimate p̂ as the argument p ∈ {1, ..., P} minimizing penalized criterion

(2) Tn (p) = inf
g∈Gp

En (g)− an (p)

where

En (g) =
1

2

n∑
t=2

(yt − g(yt−1))
2

with an (p) a penalty term. We will show that, although the behavior of this estimator is not entirely
determined, it can be upper bounded and penalized criterion will nevertheless select asymptotically the true
number of regimes p0.

3. CONVERGENCE OF THE PENALIZED MEAN SQUARE ES-
TIMATE

First, let us set some definitions.
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Generalized score function. For λ > 0, let us define the generalized derivative function :

dλg (Yt, Yt−1) =

e
−λ(Yt−g(Yt−1))2−e−λ(Yt−g

0(Yt−1))2

e
−λ(Yt−g0(Yt−1))2

‖ e
−λ(Yt−g(Yt−1))2−e−λ(Yt−g(Yt−1))2

e
−λ(Yt−g0(Yt−1))2

‖2

= e
−λ((Yt−g(Yt−1))2−(Yt−g0(Yt−1))2)−1

‖e−λ((Yt−g(Yt−1))2−(Yt−g0(Yt−1))2)−1‖2

and let us define
(
dλg
)
− (Yt, Yt−1) = min

{
0, dλg (Yt, Yt−1)

}
.

For now, let us assume that dλg is well defined, this point will be discuss later. We can state the following
inequality:
Inequality:
for λ > 0,

sup
g∈Gp

n ·
(
En(g0)− En(g)

)
≤ 1

2λ
sup
g∈Gp

∑n
t=1 d

λ
g (yt, yt−1)∑n

t=1

(
dλg
)2
− (yt, yt−1)

(3.1)

Proof :
We have

n ·
(
En(g0)− En(g)

)
=

1
λ

∑n
t=1 log

(
1 + ‖ e

−λ(Yt−g(Yt−1))2−e−λ(Yt−g
0(Yt−1))2

e−λ(Yt−g
0(Yt−1))2

‖2dλg (yt, yt−1)
)

≤ sup
0≤p≤‖ e

−λ(Yt−g(Yt−1))2−e−λ(Yt−g
0(Yt−1))2

e
−λ(Yt−g0(Yt−1))2

‖2

1
λ

∑n
t=1 log

(
1 + pdλg (yt, yt−1)

)
≤ supp≥0

1
λ

(
p
∑n
t=1 d

λ
g (yt, yt−1)− p2

2

∑n
t=1

(
dλg
)2
− (yt, yt−1)

)
.

Since for any real number u, log(1 + u) ≤ u− 1
2u

2
−. Finally, replacing p by the optimal value, we found

n ·
(
En(g0)− En(g)

)
≤ 1

2λ

∑n
t=1 d

λ
g (yt,yt−1)∑n

t=1(dλg )
2

−
(yt,yt−1)

�

This inequality allows to prove the tightness of n ·
(
En(g0)− En(g)

)
under simple assumptions, but now

let us recall a definition needed later.

Donsker class

• We recall the definition of the L2,β (P)-space and the notion of bracketing entropy. Consider Zk a
strictly stationary sequence, β-mixing and such that

∑
n≥1 βn < ∞. The L2,β (P)-space is defined

as

L2,β (P) =
{
f, ‖f‖2,β <∞

}
, ‖f‖2,β =

√∫ 1

0

β−1 (u) [Qf (u)]
2
du

where

– β (u) is the c?dl?g extension of βn by considering β (u) = β[u] and β0 = 1

– ϕ−1 (u) = inf {t ∈ R, ϕ (t) ≤ u}, if ϕ is a non-increasing function
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– Qf is the quantile function of |f (Z0)|, that is the inverse of
t→ P (|f (Z0)| > t)

Consider a set of functions S endowed with the norm ‖·‖2,β . For every ε > 0, we define an ε-bracket
by [l, u] = {f ∈ F , l ≤ f ≤ u} such that ‖u− l‖2,β < ε. The ε-bracketing entropy is

H[·]

(
ε,S, ‖·‖2,β

)
= ln

(
N[·]

(
ε,S, ‖·‖2,β

))
,

where N[·]

(
ε,S, ‖·‖2,β

)
is the minimum number of ε-brackets necessary to cover S.

With the previous notations, we introduce the following assumption:∫ 1

0

√
H[·]

(
ε,S, ‖·‖2,β

)
dε <∞.

Then, according to Doukhan, Massart and Rio (1995)[3], the set S is Donsker.

Main result
The consistency of p̂ is given by the next result, which in an extension of a result of Gassiat (2002) [4]:

Theorem : Consider the model (Yt, Yt−1) defined by (1) and the estimator p̂ minimizing the penalized
criterion introduced in (2). Let us introduce the next assumptions :

(A1) an (·) is an increasing function of p, an (p1)− an (p2)→∞ when n→∞ for every p1 > p2 and

an (p)

n
→ 0

when n→∞ for every p
(A2) the model verifies the weak identifiability assumption:

p∑
i=1

πiFi (y1) =

p0∑
i=1

π0
i F

0
i (y1)⇔

p∑
i=1

πiδθi =

p0∑
i=1

π0
i δθ0i

(A3) It exists λ > 0 so that
{
dλg , g ∈ GP

}
is a Donsker class.

Then, under hypothesis (HS) and (A1)-(A3), p̂→ p0 in probability.

Proof :
By applying the inequality,

P (p̂ > p0) ≤
∑P
p=p0+1 P

(
Tn(p) ≤ Tn(p0)

)
=∑P

p=p0+1 P
(
n
(

infg∈Gp0 En(g)− infg∈Gp En(g)
)
≤ n

(
an(p)− an(p0)

))
≤∑P

p=p0+1 P

(
1
λ supg∈Gp

∑n
i=1 d

λ
g (xi,yi)∑n

i=1(dλg )
2

−
(xi,yi)

≥ n
(
an(p)− an(p0)

))
Now, under (A3)

supg∈Gp
1

n

(
n∑
i=1

dλg (xi, yi)

)2

= OP (1)
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where, Op(1) means bounded in probability. Moreover, under (A3) the set
{(
dλg (xi, yi)

)2}
is Glivenko-

Cantelli (the set admits an uniform law of large numbers see van der Vaart (2000) [8]). Hence

inf
g∈Gp

1

n

n∑
i=1

(
dλg (xi, yi)

)2
−
n→∞−→ inf

g∈Gp
‖
(
dλg (X,Y )

)
− ‖

2
2

But infg∈Gp ‖
(
dλg (X,Y )

)
− ‖2 > 0, since the random variable dλg (X,Y ) is centered and ‖dλg (X,Y )‖2 = 1.

Then, we get :
1

λ
sup
g∈Gp

∑n
i=1 d

λ
g (xi, yi)∑n

i=1

(
dλg
)2
− (xi, yi)

= OP (1)

and P (p̂ > p0) tends to 0 as n tends to infinity. Finally,

P (p̂ < p0) ≤
p0−1∑
p=1

P

(
inf
g∈Gp

En(g)− En(g0)

n
≤ an(p)− an(p0)

n

)

and infg∈Gp
En(g)−En(g0)

n converges in probability to

inf
g∈Gp

E
(
En(g)− En(g0)

)
> 0

since p < p0, so p̂ P−→ p0 �
The assumption (A1) is fairly standard for models selection. BIC criterion, for example, fulfills this condi-
tion. Note that weak identification assumption (A2) does not allowed to use linear regression because the
regression functions have to be linearly independents. Finally, assumption (A3) is more difficult to check.
First we note:(

e−λ((Yt−g(Yt−1))
2−(Yt−g0(Yt−1))

2) − 1
)2

=

e−2λ((Yt−g(Yt−1))
2−(Yt−g0(Yt−1))

2) − 2e−λ((Yt−g(Yt−1))
2−(Yt−g0(Yt−1))

2) + 1

So, dλg is well defined if E
[
e−2λ((Yt−g(Yt−1))

2−(Yt−g0(Yt−1))
2)
]
<∞, but

(Yt − g(Yt−1))2 − (Yt − g0(Yt−1))2 =
(Yt − g0(Yt−1) + g0(Yt−1)− g(Yt−1))2 − (Y − g0(Yt−1))2 =
2ε(g0(Yt−1)− g(Yt−1) + (g0(Yt−1)− g(Yt−1))2

where ε = Yt − g0(Yt−1) is the noise of the model. Hence, if regression functions are bounded, dλg is
well defined if λ > 0 exists such that eλ|ε| < ∞ (i.e. ε admits exponential moments). Finally, using the
same techniques of reparameterization as in Liu and Shao (2003)[9] or Olteanu and Rynkiewicz (2012)[7],
assumption (A3) can be shown to be true for mixture of MLP regression models.

4. A LITTLE EXPERIMENT
The theoretical penalization terms of the previous section can be chosen among a wide range of functions
(see condition (A1)). In the sequel, a little experiment is conducted to assess right rate of penalization
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to guess the “true” number of regimes of a model. First, let us recall the definition of special case of
parametric non-linear function called multilayer perceptron (MLP). Let y = (y(1), · · · , y(d))T ∈ Rd be
vector of inputs and wi := (wi1, · · · , wid)T ∈ Rd be a parameter vector for the hidden unit i. The MLP
function with k hidden units can be written :

Fθ(y) = β +

k∑
i=1

aiφ
(
wTi y + bi

)
,

with θ = (β, a1, · · · , ak, b1, · · · , bk, w11, · · · , w1d, · · · , wk1, · · · , wkd) the parameter vector of the model
and φ a bounded transfer function, usually a sigmoı̈dal function like the hyperbolic tangent function.
Let a simulated model be:

Yt+1 = Fθ0Xt
(Yt) + εt, t = 1, · · · , n

with Y1 = 0, (ε1, · · · , εn) i.i.d., εt ∼ N (0, 1), Xt a random variable on {1, 2, 3} such that

P (Xt = 1) = P (Xt = 2) = P (Xt = 3) =
1

3

and
(
Fθ0i

)
i∈{1,2,3}

three MLP functions with 4 hidden units (13 weights) and different parameters. Note

that the three MLP functions are linearly independent.
We try to guess the true number of regimes (3 regimes) of the time series. Since we are only interested in
guessing number of regimes, the architecture of the MLP regression model is assumed to be known (in real
application such information will not be available) and the number of regimes is assumed to be between 1
and 10. Three penalized criteria are assessed:

• AIC like: En(g)n + 2σ2C×p
n (theoretically not consistent).

• BIC like: En(g)n + σ2C log(n)×p
n (theoretically consistent).

• SP (Strong Penalization): En(g)n + σ2C×p
√
n

n (theoretically consistent).

We simulate n = 100, n = 500 and n = 1000 data, for each n the experiment is repeated 100 times.
The constant C, proportional to the number of parameters of the regression function, is fixed to the true
dimension of the regression models (13 parameters for each model). The parameters of models are always
estimated by minimizing the mean square error: En(g)

n . Note, that these criteria involve the knowledge
of the variance of the noise σ2. In a first experiment we will use the true variance of the noise, then this
problem will be addressed in the following section.

4.1. Models selection with σ2 known
Results with n = 100. The following numbers of regimes are chosen by the criteria:

• AIC like:
nb of regimes 1, 2, 3, 4 5 6 7 8 9 10

models selected 0 3 7 18 17 23 32
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• BIC like:
nb of regimes 1, 2 3 4, 5, 6, 7, 8, 9, 10

models selected 0 100 0

• SP (Strong Penalization) :

nb of regimes 1, 2 3 4, 5, 6, 7, 8, 9, 10
models selected 0 100 0

Results with n = 500. The following numbers of regimes are chosen by the criteria:

• AIC like:
nb of regimes 1, 2, 3, 4, 5, 6, 7 8 9 10

models selected 0 12 19 69

• BIC like:
nb of regimes 1, 2 3 4, 5, 6, 7, 8, 9, 10

models selected 0 100 0

• SP (Strong Penalization):

nb of regimes 1, 2 3 4, 5, 6, 7, 8, 9, 10
models selected 0 100 0

Results with n = 1000. The following numbers of regimes are chosen by the criteria:

• AIC like:
nb of regimes 1, 2, 3, 4, 5, 6, 7 8 9 10

models selected 0 7 24 69

• BIC like:
nb of regimes 1, 2 3 4, 5, 6, 7, 8, 9, 10

models selected 0 100 0

• SP (Strong Penalization):

nb of regimes 1, 2 3 4, 5, 6, 7, 8, 9, 10
models selected 0 100 0

The BIC like and the Strong Penalization criteria chose always the true number of regimes whatever the
number of data. According to the theory, AIC like criterion is not consistent (see condition (A1)) and the
number of regimes estimated is always too large. These good results assume that the true variance of the
noise is known, but for regression models this is never the case. A straightforward idea is to replace the
unknown variance by the estimated one, this is done in the next section.
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4.2. Models selection using estimated variance σ̂2.
The estimated variance σ̂2 is the mean square error of the model:

σ̂2 :=
En(g)

n

computed for the least square estimator of parameters. Hence, the comparison is done with the penalized
criteria :

• AIC like: En(g)n + 2σ̂2C×p
n (theoretically not consistent).

• BIC like: En(g)n + σ̂2C log(n)×p
n (theoretically consistent).

• SP (Strong Penalization): En(g)n + σ̂2C×p
√
n

n (theoretically consistent).

Results with n = 100. The following models are chosen by the criteria:

• AIC like:
nb of regimes 1, 2, 3, 4, 5, 6, 7 8 9 10

models selected 0 6 16 78

• BIC like:
nb of regimes 1, 2 3 4 5 6 7 8 9 10

models selected 0 26 6 3 2 5 9 18 31

• SP (Strong Penalization):

nb of regimes 1, 2 3 4 5 6 7 8 9 10
models selected 0 94 2 0 0 0 1 3 0

Results with n = 500. The following models are chosen by the criteria:

• AIC like:
nb of regimes 1, 2, 3, 4, 5, 6, 7 8 9 10

models selected 0 2 24 74

• BIC like:
nb of regimes 1, 2 3 4, 5, 6, 7, 8, 9, 10

models selected 0 100 0

• SP (Strong Penalization):

nb of regimes 1, 2 3 4, 5, 6, 7, 8, 9, 10
models selected 0 100 0
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Results with n = 1000. The following models are chosen by the criteria:

• AIC like:
nb of regimes 1, 2, 3, 4, 5, 6 7 8 9 10

models selected 0 1 6 27 66

• BIC like:
nb of regimes 1, 2 3 4, 5, 6, 7, 8, 9, 10

models selected 0 100 0

• SP (Strong Penalization):

nb of regimes 1, 2 3 4, 5, 6, 7, 8, 9, 10
models selected 0 100 0

As usual the AIC like criterion misbehaves like in the previous section. But, for a small number of data
(n = 100) the use of an estimation of the variance of the noise instead of the true one leads to overestimation
of the number of regimes for the BIC like criterion. The explanation is that the variance of the noise is
underestimated for large number of regimes and so the penalized criterion. This drawback disappears for
larger number of data (n = 500 and n = 1000) because estimation of the variance becomes better. The
Strong Penalized criterion seems better to guess the true number of regimes whatever the number of data.

5. CONCLUSION
We have proven the consistency of penalized criteria for estimating the number of regimes in a mixture of
non-linear regression. This result can be shown without knowing the form of density function of the noise.
Note that the weak identifiability assumption excludes linear regression functions. This result comes from
an inequality showing that overfitting of the model is moderate if the noise admits exponential moments
and the parameters of the model are assumed to be bounded. This bound justifies use of penalized criteria
in order to fit model dimension. Hence, The user can select the true number of regimes thanks to penalized
criteria, of the form

En(g) + an(p)

Hence, if the penalization term an(p) is well calibrated the true number of regimes will be automatically
selected if n is large enough. A little experiment suggests that a good choice of penalization seems to be
the middle of the possible range: an(p) = C · p

√
n. A further question could be to know if this empirical

finding for the tuning of penalization term can be justified theoretically. Note that, this paper was only
concerned with the identification of the true number of regimes. The point is more to get an idea of the
complexity of the model than to have a predictive model. However, if there are enough data, the true model
will also be the best predictive model.
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