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ABSTRACT 

In this paper CUSUM control charts for zero-truncated negative binomial distribution (ZTNBD) and zero-truncated geometric 
distribution (ZTGD) are constructed. Average run length (ARL) is studied for different values of the parameters of both the distributions. 

The method of Johnson (1961) is used for constructing the CUSUM chart. 
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RESUMEN 

En este trabajo se construyen gráficos de control del tipo CUSUM para la distribución binomial negativa cero-truncada (ZTNBD) y para 

la cero-truncada distribución geométrica (ZTGD): El largo de la racha promedio (ARL) es estudiada para diferentes valores de los 
parámetros de ambas distribuciones. El método de Johnson (1961) es utilizado para construir los gráficos  CUSUM. 

 

1. INTRODUCTION 
 

Poisson distribution plays an important role in statistical quality control process through modeling random counts or 

control of defects per unit. Various types of processes can generate distributions of counts which can be modeled 

suitably by distributions different than Poisson distribution. Such processes include situations where counts tend to 

occur in clusters or where the intensity rate of the counts varies randomly over time. The negative binomial 

distribution (NBD) is a natural and more flexible extension of the Poisson distribution which allows for over-

dispersion compared to the Poisson distribution (Hoffman, 2003). The application of NBD has been demonstrated in 

accident statistics, econometrics, quality control and biometrics. It is a well-known fact that geometric distribution 

(GD) is a special form of NBD. For detailed description, refer to Johnson et al. (2005), Khurshid et al. (2005) and 

Ryan (2011) among others.  

Cumulative sum (CUSUM) control charts are widely used monitoring processes with the objective of improving 

process quality and productivity (Luceno and Puig-Pey, 2000). The pioneering work on CUSUM control charts is 

attributed to Page (1954). Lucas (1985) described the design and implementation procedure for count data 

(accidents) through CUSUM chart to detect increase or decrease in the count level. Several different types of control 

charts based on Poisson distribution are available in the literature. When the objective of any sampling plan of 

statistical quality control is to continue sampling until a certain number of successes has been achieved, then the 

number of items sampled will follow a NBD. Unfortunately, the literature on the control charts for the NBD and GD 

is scanty (Kaminsky et al., 1992; Ma and Zhang, 1995; Xie and Goh, 1997; Hoffman, 2003; and Schwertman, 2005). 

For a comprehensive overview of CUSUM charts for numerous distributions, see Hawkins and Olwell (1998).  
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In many cases, however, the entire distribution of counts is not observed. In particular, more often the zeros are not 

observed or sometimes a large number of zeros are contained in the data. In recent years, researchers have provided 

new complementary models which are obtained by modifying the existing well known models. These 

complementary models are generally divided into two categories; zero-truncated and zero-inflated.  

Zero-truncated models are the ones when the number of individuals falling into zero class can not be determined, or 

the observational apparatus becomes active only when at least one event occurs. Chakraborty and Kakoty (1987) and 

Chakraborty and Bhattacharya (1989, 1991) have constructed CUSUM charts for zero-truncated Poisson 

distribution, doubly truncated GD and doubly truncated binomial distribution respectively. Recently, Chakraborty 

and Khurshid (2011, 2012) have constructed CUSUM charts for zero-truncated binomial distribution and doubly 

truncated binomial distribution respectively. Inflation occurring at any of the support point and zero-inflation 

indicates that a data set contains an excessive number of zeros. Chen et al. (2008) have proposed generalized zero-

inflated Poisson distribution to construct attribute control chart. See also Xie et al. (2001). 

Accordingly, distributions of negative binomial type often arise in practice where zero group is truncated. The main 

objective of this paper is to construct control charts for zero-truncated negative binomial distribution (ZTNBD) and 

its special case zero-truncated geometric distribution (ZTGD). Cumulative sum (CUSUM) control charts proposed 

by Page (1954, 1961) have been constructed for controlling the parameters of the above distributions. Control charts 

based on these truncated distribution are studied and Average Run Length (ARL) computed accordingly alongside 

developing different expressions. 

 

2. ZERO-TRUNCATED NEGATIVE BINOMIAL DISTRIBUTION (ZTNBD) 

 

We consider a negative binomial distribution truncated at 0x . The probability mass function of the ZTNBD is  
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where ....,,2,1 nx   Here ),;( pkxf  denotes the probability that there are x  failures preceding the k -th success 

in the )( kx   trials. The last trial must be a success, the probability of which is p  and in the remaining 

)1(  kx  trials we must have )1( k  success, the probability of which is given by the binomial probability law 

by the expression 
xk qp

xk

kx 1

!)!1(

)!1( 




. Therefore, by compound probability theorem, ),;( pkxf  is given by the 

product of two probabilities (Biswas, 1992) i.e.,  
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for ....,,2,1,0 nx   More formally, suppose that a box contains np  non-defective items and nq  defective items. 

Items are drawn at random with replacement, the probability that exactly )( kx   trials required to produce k  non-

defective items is 
xkqp
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. Thus k  and p  are the parameters of the negative binomial distribution, 

where the parameters satisfy 10  p  and ...,3,2,1k . 

 

It is conventional in statistical literature to express the negative binomial distribution given (2.1) in terms of 

parameters 
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where ,...2,1x . The mean and variance of the above distribution are as follows: 
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2.1 CUSUM Control Chart for ZTNBD 

Let nxxx ,...,, 21  be i.i.d. random variables, each distributed with probability mass function defined in (2.2). To test 

the null hypothesis 00 : PPH   and alternative hypothesis )(: 011 PPPH   assuming k  as known, we use the 

likelihood ratio of (2.2) as 
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The continuation region of the sequential probability ratio test (SPRT) discriminating between the two hypotheses is 

given by 
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where   and   are the probabilities of type I and type II errors respectively. 

 

Considering the right hand side inequality of (2.3) we get 
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which gives  

 

.
)(

)(
log

1

1
log

1
loglog

001

110

1

0

10

01

1

































 
















PQQ

PQQ
kn

Q

Q
n

QP

QP
x

k

kn

i

i



 

 

For a very small value of   (Johnson, 1961), we have 
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For constructing the CUSUM chart (as shown in Figure 1) we plot the sum 



n

i

im xS
1

 against the number of 

observation n . Suppose that O  is the last plotted point, P  is the vertex and the point Q  is obtained by drawing a 

perpendicular to the line OP . The change in the value of P  from 
0P  to 

1P  is detected if any plotted point falls 

below the line PQ . In this case the parameters of the mask namely the lead distance OPd   and the angle of the 

mask OPQ  is given by  

 











































)(

)(
log

1

1
log

log

110

001

0

1

PQQ

PQQ
k

Q

Q
d

k

k


                                                             (2.4) 

 

and  

 

.
)(log)(log

)(

)(
log

1

1
log

tan
1001

110

001

0

1

1

























































QPQP

PQQ

PQQ
k

Q

Q
k

k

                                               (2.5) 

 

 
 

  

  
  

  

  

  

       
  

                          

                    O       d                   P   

                                        .                     
                                                          

Cumulative   

  sum                                          .   

    
 

 
m 

i 
i m x S 

1 
                                  .   

                                  . .     

                                .          Q   

    

                             .               

        
                                               Sample number   m   

  

                                 Figure 1: Cumulative sum control chart   



199 

 

2.2 Average Run Length (ARL) 

 

Following Johnson (1961) (see also Johnson and Leone, 1962), the approximate formula for the average run length 

(ARL) for detecting a shift for the parameter P  from 
0P  to 

1P  for known k  is given by,  
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Values of the lead distance d , angle of the v-mask and average run length (ARL) of one-sided CUSUM chart are 

calculated for a number of combinations of the values of ,P  k  and   for controlling the parameters P  when k  

is known. These values are shown in Tables 2.1 to 2.3. 

 

Table 2.1: Values of d  for controlling the parameter P  

 

(a) When 1k  

                                   

0P  1P  0.05 0.025 0.01 0.005 0.001 

1 2 4.32 5.32 6.64 7.64 9.97 

1 3 2.73 3.36 4.19 4.82 6.29 

1 4 2.16 2.66 3.32 3.28 4.98 

1 5 1.86 2.29 2.86 3.29 4.29 

 

(b) When 2k  

                                   

0P  1P  0.05 0.025 0.01 0.005 0.001 

1 2 3.05 3.76 4.70 5.40 7.04 

1 3 1.86 2.29 3.52 4.05 5.29 

1 4 1.44 1.77 2.21 2.55 3.32 

1 5 1.22 1.50 1.87 2.16 2.81 

 

(c) When 3k  

                                   

0P  1P  0.05 0.025 0.01 0.005 0.001 

1 2 2.28 2.81 3.51 4.04 5.26 

1 3 1.36 1.68 2.10 2.41 3.14 

1 4 1.04 1.28 1.60 1.84 2.40 

1 5 0.87 1.08 1.34 1.55 2.02 
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Table 2.2: Values of   (in degrees) for controlling the parameter P  

 

 1k  

 
1P  

0P  2 3 4 5 

1 67.47 69.72 71.28 72.40 

 

 2k  

 
1P  

0P  2 3 4 5 

1 73.68 75.86 77.26 78.25 

 

 3k  

 
1P  

0P  2 3 4 5 

1 77.65 79.57 80.73 81.56 

 

Table 2.3: Values of ARL  for controlling the parameter P  

 

(a) When 1k  

    

0P  1P  0.05 0.025 0.01 0.005 0.001 

1 2 17.64 21.72 27.12 31.20 40.68 

1 3 5.73 7.05 8.80 10.13 13.20 

1 4 3.11 3.83 4.78 5.50 7.17 

1 5 2.06 2.53 3.16 3.64 4.75 

 

(b) When 2k  

    

0P  1P  0.05 0.025 0.01 0.005 0.001 

1 2 9.55 11.76 14.68 16.89 22.02 

1 3 3.04 3.74 4.67 5.38 7.01 

1 4 1.63 2.01 2.51 2.88 3.76 

1 5 1.07 1.32 1.65 1.89 2.47 

 

(c) When 3k  

    

0P  1P  0.05 0.025 0.01 0.005 0.001 

1 2 6.23 7.68 9.58 11.03 14.38 

1 3 1.98 2.44 3.05 3.51 4.57 

1 4 1.07 1.31 1.64 1.88 2.46 

1 5 0.70 0.86 1.08 1.24 1.62 
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3. ZERO-TRUNCATED GEOMETRIC DISTRIBUTION (ZTGD) 

 

It is known that for ,1k  the NBD is reduced to the geometric distribution which can be used as an alternative to 

the Poisson distribution for describing the number of defects or other counting data. Thus, for 1k  the ZTNBD 

becomes zero-truncated geometric distribution (ZTGD). The probability mass function of the ZTGD for each i.i.d. 

random variables nxxx ,...,, 21  is  
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where p  is the probability of success in each trial.  

Suppose that we have a series of independent trials or repetitions and in each trial the probability of success p  
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 where 

pq 1 , and p  is lying between 0 and 1. 

For   ...,2,1;11
1

),;(
1


























 


 x
Q

P

Q

P
Q

x

kx
pkxf

kx

k
the pmf of ZTGD becomes 
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3.1 CUSUM Control Chart for ZTGD 

 

The parameters of the v-mask i.e., the lead distance d  and angle of the mask   of the CUSUM chart (following 

Johnson, 1961) for ZTGD are given by  
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whereas ARL is given by 
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For Equation (3.2), the parameters of the v-mask i.e., the lead distance d  and angle of the mask   are given by  
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and average run length (ARL) for Equation (3.2) is  
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Tables (3.1), (3.2) and (3.3) show the values of d ,   and ARL for different combinations of 0p , 1p  and .  It is 

to be noted that the numerical values of the Equations (3.6), (3.7) and (3.8) are the same as those shown in Tables 

(2.1), (2.2) and (2.3): 

 

Table 3.1: Values of d  for controlling the parameter p  under ZTGD 

 

                                   

0p  1p  0.05 0.025 0.01 0.005 0.001 

0.2 0.3 5.56 6.84 8.54 9.82 12.82 

0.2 0.4 3.05 3.76 4.70 5.40   7.04 

0.2 0.5 2.16 2.66 3.32 3.82   4.98 

0.2 0.6 1.67 2.06 2.57 2.96   3.86 

 

 

Table 3.2: Values of   (in degrees) for controlling the parameter p  under ZTGD 

 

 
1p  

0p  0.3 0.4 0.5 0.6 

1 76.09 73.65 71.27 68.85 

 

Table 3.3: Values of ARL for controlling the parameter p  under ZTGD 

 

                                   

0p  1p  0.05 0.025 0.01 0.005 0.001 

0.2 0.3 31.91 39.29 49.05 56.43 73.57 

0.2 0.4 11.45 14.10 17.60 20.25 26.41 

0.2 0.5   6.71   8.27 10.32 11.87 15.48 

0.2 0.6   4.71   5.80   7.23   8.32 10.85 
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4. CONCLUSIONS 

 

It is evident from the Table 2.1 that for fixed  , and fixed k , the values of d  decrease as the difference 

)( 01 PP   increases, whereas for the fixed difference )( 01 PP  , the values of d  increases as   decreases. It is 

also observed from Table 2.1(a, b, c), that the values of ARL decrease as we go on increasing the values of k . 

Table 2.2 shows that the angle of the mask increases as the difference between 1P  and 0P  increases and also for 

fixed difference, i.e., angle of the mask increases as the value of k  increases. Thus from the Tables (2.1 and 2.2), 

we can conclude that as the lead distance d  decreases, the angle of the v-mask increases where the difference is 

increased. 

Table 2.3 shows the values of ARL (average number of observations required to detect the shift of the process 

parameter) for different combinations P , k  and  . It is evident from the Table 2.3 (a, b and c) that for fixed  , 

the ARL decreases as the shift from 0P  to 1P  increases and for fixed )( 01 PP  , the ARL increases as   

decreases. But for fixed change and  , the ARL decreases if k  increases. 

Table 3.1 shows the values of d  of the Equation (3.3) (Though numerically, the calculated values are negative, but 

as distance can not be negative, we have considered the positive values of the distance d ): Here, it is observed that 

for fixed  , the values of d  decrease as the difference )( 01 pp   increases, whereas for fixed difference 

)( 01 pp   the values of d  increase as   decreases. 

From the Table 3.2 it is observed that as the difference )( 01 pp   increases, the angle   the mask decreases. 

Table 3.3 shows that for fixed  , the value of ARL decreases as the difference between 1p  and 0p  increases 

whereas for fixed difference the value of ARL increases as   decreases. 
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