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ABSTRACT 

This paper presents the application of a Markovian decision process to define the optimal policy in the case of an orange farm 
management. 

The problem has been proposed to be solved with two approaches: policy iteration and linear programming, which have been formulated 

in first instance without discount factor and then applying various discount factors ranging from 0.5 to 0.9. The policy iteration 
methodology has been more efficient than linear programming, since it requires fewer calculations to achieve the optimal solution. 

In all cases the result has been that the optimal policy is to better take care the orange farm to maximize economic benefits, which would 

reach an amount of 431 Mexican pesos per orange tree each year. 
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RESUMEN 

Este trabajo presenta la aplicación de un proceso de decisión Markoviano para definir la política óptima en el caso del manejo de un 

huerto de naranjos. 

El problema se ha planteado para solucionarse con dos metodologías: iteración de política y programación lineal, que se han formulado 
en primera instancia sin descuento y luego aplicando varios factores de descuento en un rango de 0.5 a 0.9. La metodología de iteración 

de política ha resultado más eficiente que la programación lineal, pues requiere de un número menor de cálculos para alcanzar la 

solución óptima. 
En todos los casos el resultado ha sido que la política óptima es dar una buena atención al huerto de naranjos, a fin de maximizar los 

beneficios económicos, los cuales alcanzarían un monto de 431 pesos mexicanos por naranjo por año.    

   

1. INTRODUCTION 

 

Markovian decision processes can be used to find optimal operating policies of a given system, which once raised, 

can be solved by some of the optimization techniques of operations research like dynamic or linear programming. 

Their birth dates back to 1960, when Howard combined Markov chains with dynamic programming to find optimal 

policies for the system, he called this technique Markovian decision process (MDP). Likewise Howard (1960) 

helped finding solutions to problems of endless steps, leading to the policy iteration method, which is efficient 

finding a solution with few calculations. 

Later on, other researchers found that MDP could be solved with linear programming, however it is a less efficient 

methodology than the policy iteration technique. 

These processes have been applied in a variety of problems, such as finding optimal policies for replacement and 

maintenance of equipment, inventory management, animal breeding, cash flow management and administration of 

water tanks, among other applications (Taha 2010). 

In an orange orchard, a farmer faces a series of problems that are often out of control. Some of them are: the 

possibility of a climatic setback, such as a winter frost, summer drought or the risk of hail, but also the presence of 

pests that attack the fruit and / or tree, and, ultimately, the market conditions, which sometimes make the price of the 

fruit low. 
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In those circumstances, it’s up to the farmer to keep providing the proper attention to the orchard, since this will 

make the investment per tree to rise. However, with better care the production per tree increases, and if this is 

combined with a good market price at the time of sale, it can yield very beneficial economic results. 

It is precisely the aim of this paper to define an optimal policy for managing an orange farm, using a technique such 

as Markovian decision process. 

 

1.1 Literature Review 

 

There are many MDP applications in many diverse fields. Here are some of the most known in academia. 

White (1993) lists a number of applications of Markovian processes in many areas, the most common are equipment 

maintenance, water resources, agriculture, animal breeding, purchasing management, inventories, production 

programming, queues studies, sales promotion, finance and investment, epidemic control, lending, sports, space 

location, design of experiments and others. 

The author classifies them according to the following criteria: 

• The realism of application. If the case of study was something used to make any real decision or 

implementing any action as a result thereof, which means for White realism. 

• The horizon. The Markovian model can be finite or infinite. 

• Performance measures. Usually represented by an objective function to be optimized and can be a benefit, 

an income or an expected cost. 

• The underlying assumptions of the model. One of the biggest barriers is that model transition states be 

truly representative of a Markovian model. 

As mentioned before, the area where MDP is more frequently applied is in replacement and maintenance of 

machinery and equipment. Hernandez (2012) describes the application of MDP to replacement of equipment under a 

finite horizon, which is solved with dynamic programming to find the optimal replacement policy. Chen and Trivedi 

(2005) have applied MDP to define optimal policies for preventive maintenance of equipment. Goulionis (2010) 

introduced the use of MDP to obtain an optimal policy for predictive maintenance and long-term replacement of a 

system. Lisnianski and colleagues (2008) have applied it for evaluating the cost of maintenance contracts for older 

systems. 

Other authors have used MDP for animal’s replacement, as Kristensen and Jorgensen (1995), who have applied 

policy iteration and linear programming in the replacement of milch-cows with insemination and veterinary 

treatment. Nielsen and colleagues (2010) have used MDP to find optimal policies for milch-cows replacement based 

on performance measures of milk produced daily. Pla et al (2004) have used a semi Markov model to design 

facilities for breeding piglets, which have produced a better result than that obtained with the classical methodology. 

Some authors have used MDP on medical issues, such as the assistance of patients with dementia when they wash 

their hands (Hoey et al 2007), or Shechter and colleagues (2008), who applied it as a means for programming 

medical therapies optimally. 

Other researchers have used MDP in the field of construction, as Farran and Zayed (2009) who present their 

application to determine the life cycle cost of rehabilitating a damaged tile in the Montreal subway, or Yang et al 

(2009), who presented a study in which they discuss the wide use of MDP in predicting the performance of bridge 

management systems and suggests some options to make them more reliable. 

In the administrative field, it is common to find multiple applications of MDP, as the work of Aviv and Pazgal 

(2005), who have used a partially observed MDP to price fashion items dynamically. In planning inventories, Yin 

and colleagues (2002) have applied it to the case of a major producer of paper, seeking to obtain an optimal policy 

for handling it. Pardo and De la Fuente (2010) have used it in the case of diffuse states to get the best policy 

decisions regarding advertising in queues and Higginson and Bookbinder (1995) have applied it in consolidation of 

shipments in a logistics strategy that combines two or more orders or shipments, so that you can send a larger 

amount in the same vehicle. By MDP they determine when to release the consolidated loads. 

Rong and Pedram (2006) have applied these models to maximize the usability of a power portable electronic system 

under latent periods and speed loss constraints. 

Song and Liu (2000) have used MDP in the electricity supply sector to find optimal policies for pricing of the 

market, which have been solved by policy iteration. 

2. PROBLEM STATEMENT 

 

The first thing to formulate a problem as a Markovian decision process is to define the number of states the system 

can be and the number of possible decisions that can be taken. 
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The next step is to define the transition matrix for each decision, which is denoted as P
i
, where i is the decision, 

which is defined by the following matrix expression: 
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Where K is the number of states of the system and each pij is the probability of moving from state i to j. 

Also it has to be defined for each transition matrix, the benefits matrix, which is expressed as follows: 
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Where rij is the corresponding benefit of moving from state i to j and 
k

iv  is the expected benefit from state i if 

decision k has been taken, which is calculated by the following equation: 
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An optimal policy is one that optimizes the performance of a system, denoted by S and can be interpreted as a 

guideline mandating a decision di(S) if the system is in state i, so that S can take different values, such as: 

 

   [d0(S), d1(S), d2(S),……, dK(S)]                                                                                                                                (4) 

 

The use of decision processes is formulated with two of the best known methodologies, such as policy iteration and 

linear programming. 

2.1 Policy iteration 

 

This methodology is solved by dynamic programming where the expected revenue is calculated recursively, keeping 

the optimal values of the previous stage and getting the value of the current stage by the following equation: 
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Where fn(i) is the expected optimum income in stage n, when i is the system state.  

The best decision for each state is reached, which optimizes the benefit and the process ends when the same policy is 

obtained in two successive iterations, which usually happens with a small number of iterations. 

In the case of using this methodology without a discount factor, a process of two steps is used (Taha 2010): 
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1. Determination of value. An S policy is chosen arbitrarily with the matrices P
s
 and R

s
, assuming an f value to 

solve the following equations system: 
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Which has as unknown variables E
s
 and (m-1) values of f, being E

s
 the expected income with policy S. 

2. Improving the policy. For each state i, the best policy is determined, corresponding to the optimal benefit. 
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This procedure stops when the policy of choosing the best decisions for each state does not change between the 

current and previous iteration, thus defining the optimal policy. 

For the case of including a discount factor α, determination of value is made by the following equation: 
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Which produces K unknown variables with the same number of equations. 

To improve the policy, the following expression is used: 
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2.2 Linear programming 

 

To express the system as a linear programming problem, it is convenient to define a new variable wik which is the 

joint probability that the system is in state i and the k decision is taken. 

With this approach without discount factor, the formulation is as follows (Taha 2010): 

Maximize the objective function, denoted as Z with the following equation: 
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The term 
k

ijp  is the element in row i and column j of transition matrix P
k
 if decision k is made and 

k

ijr  is the 

element of benefits matrix R
k
 located in row i and column j if k decision is taken. 

Meanwhile wik is the joint probability that being in state i, k decision is made. 

The constraints are: 
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The resulting model is linear in wik. Its optimal solution guarantees that 
k

iq  is 1 for one k of each i. 
k

iq  is obtained 

with the following expression: 
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There are M independent equations and M basic variables and wik must be positive and greater than zero for at least 

one k of each i. 

In case of including a discount, the linear programming approach is as follows: 
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Being bj a constant arbitrarily defined with a nonzero value. 

 

3. RESULTS 

 

3.1 Application to an orange farm 

 

This study applies a decision process to the case of an orange farm, which once formulated in terms of its economic 

benefits, which depend on the costs and revenues and its transition matrix, is solved by iteration policy and the 

simplex method of linear programming, to make a comparison of both techniques. In both cases it is calculated 

without discount factor and doing the same with a value of discount factor in the range between 0.5 and 0.9. 

The MDP is used in this case to define the optimal policy of orchard management, for which it is necessary to 

identify the states of the system, in this case a particular orange tree and the possible decision options. 

In the case of the states, in an orchard are identified 3, which are: 

 

Table 1. States in which an orange tree can be found. 

State Orange tree condition 

1 Good 

2 Medium 

3 Bad 

Source: Authors. 

 

The management decision options for each tree are: 

 

Table 2. Decision options in orchard management. 

Decision  Description 

1 Minimal care 

2 Medium care 

3 Good care 

Source: Authors. 

 

The care of the orchard includes activities such as land preparation, irrigation, fertilization, pruning, weed control, 

pest control and others, so that depending of the extent these actions are carried out, attention is good, normal or 

bad. 

Based upon the experience of 28 years of a farmer in the middle region of the state of San Luis Potosi, Mexico, 

information regarding benefits and costs of care of an orange tree has been obtained. With proper care, an adult 
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orange tree can produce up to 350 kilograms of fruit, being the normal production an amount ranging between 150 

and 200 kg. 

In a previous study, we applied strategic SWOT analysis (Strengths, Weaknesses, Opportunities and Threats) to the 

case of an orange orchard, concluding that one of the best strategies for success is the good care of the garden, 

consisting of a proper fertilization program (Izar-Landeta et al 2012). 

To obtain a given production, weather conditions influence largely on it, since adverse situations may occur in 

winter as frost, or hail and drought in the summer season. 

In order to put the results in Mexican pesos, the proposed values of economic benefits are based on historical 

average prices of fruit, which often vary depending on conditions of supply and market demand. 

With this perspective, the following three transition matrixes, P
k
 are proposed

1
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This means that if you take the second decision, of giving the normal care to an orange tree, and if it is found in fair 

condition, the probability of passing to good condition is 0.30, to stay in the same condition is 0.60, and passing to a 

bad condition is 0.10, just the values of the second row of the matrix P
2
. 

As it can be seen, the sum of transition probabilities of each row is one unit and the matrix correspondent to the first 

decision has an absorbing state, that of an orange tree in poor condition, which once reaching this state, must only be 

replaced by a new one. 

We must also define arrays of economic benefits, which are produced from the revenues minus the costs of 

management of the orchard, expressed in Mexican pesos per year per tree. These matrixes are arranged as follows
2
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What you do now is calculate 
k

iv  for each state i and decision k. This is illustrated for the case of the first stage (i = 

1) and the first decision (k = 1): 

5.135)90)(35.0()160)(65.0()320)(0(1

1 v  

If similar calculations are made for each decision and each state, the following results are obtained: 

 

Table 3. Values of 
k

iv  for each state and decision. 

State, i 1

iv  
2

iv  
3

iv  

1 135.5 293.5 496.0 

2 30.0 294.0 383.5 

3 -60.0 36.0 154.0 

Source: Authors. 

 

By raising the Markov process under the policy iteration method, applying equation (6) to the case without discount 

factor and beginning with the policy of giving minimal attention to an orange tree, regardless of its condition, S (1, 

1, 1), the following system of equations is obtained: 

                                                      
1
 The values in the matrixes were collected during a period of 28 years in a local orange orchard, taking into account yearly average values from 

1984.    
2
 The values in the matrixes were collected during a period of 28 years in a local orange orchard, taking into account 

yearly average values from 1984 updated for inflation.    
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If f(3) = 0 is arbitrarily chosen, the following values are obtained: 
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By applying the policy improving equation for the three states, the following results are obtained: 

 

Table 4. Values of benefits with policy improvement. 

State ν1 ν2 ν3 Optimum k 

1 135.5+0.65x112.5 

=208.625 

293.5+0.35x268.625 

+0.5x112.5=443.77 

496+0.6x268.625 

+0.35x112.5=696.55 

696.55 3 

2 30+0.2x112.5 

=52.5 

294+0.3x268.625 

+0.6x112.5=442.09 

383.5+0.5x268.625 

+0.45x112.5=568.44 

568.44 3 

3 -60+0 

=-60 

36+0.1x268.625 

+0.4x112.5=107.86 

154+0.2x268.625 

+0.65x112.5=280.85 

280.85 3 

Source: Authors. 

 

The best policy was the third decision, regardless of the condition of the tree, S (3,3,3), that being different than the 

previous one, it implies at least another iteration. 

Repeating the procedure for determining whether this policy values are repeated and according to the equation (6) 

for the benefit of the third decision, it is obtained: 
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If again f (3) is zero, the equations system yields the following results: 
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By applying the policy improvement of equation (7), the results of Table 5 are obtained, which being the same that 

the previous iteration, it means that the optimal solution has been reached. 

 

Table 5. Values of benefits in this iteration. 

State ν1 ν2 ν3 Optimum k 

1 135.5+0.65x296.667 

=328.33 

293.5+0.35x421.667 

+0.5x296.667=589.42 

496+0.6x421.667 

+0.35x296.667=852.83 

852.83 3 

2 30+0.2x296.667 

=89.33 

294+0.3x421.667 

+0.6x296.667=598.5 

383.5+0.5x421.667 

+0.45x296.667=727.83 

727.83 3 

3 -60+0 

=-60 

36+0.1x421.667 

+0.4x296.667=196.83 

154+0.2x421.667 

+0.65x296.667=431.17 

431.17 3 

Source: Authors. 

If you use the method with a discount factor α of 0.9, starting again with the policy of giving minimal care to the 

orange tree in whatever condition it is, S (1,1,1), and implementing determination of benefits of equation (8), the 

following system of equations is obtained: 

 
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It yields the following results: 
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Then the benefits are calculated using equation (9) and the results are: 

 

Table 6. Values of benefits. 

State ν1 ν2 ν3 Optimum k 

1  

135.5+0.9[0.65 

(-490.24)+0.35 

(-600)]=-340.29 

293.5+0.9[0.35 

(-340.29)+0.5 

(-490.24)+0.15 

(-600)]=-115.3 

 

496+0.9[0.6(-340.29) 
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130.82 
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(-340.29)+0.45 
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4.82 
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=-600 
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(-600)]=-441.11 

154+0.9[0.2(-340.29) 
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(-600)]=-275.05 

 

-275.05 

 

3 

Source: Authors. 

The best policy is to give the best care in any given condition of the tree, and being this policy different than the 

former one, therefore another iteration must take place with the policy S(3,3,3). If equation (8) is applied, it yields 

the following equations system: 

 
 
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Solving for the system, the following results are obtained: 
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With these values, the benefits of each decision for each state are: 

 

Table 7. Values of benefits with the new policy. 

State ν1 ν2 ν3 Optimum k 

1 3879.69 4128.63 4384.95 4384.95 3 

2 3657.20 4136.57 4261.32 4261.32 3 

3 3515.20 3752.32 3972.44 3972.44 3 

Source: Authors. 

 

Since it has been the same policy, it means that it is the optimum. 

If this procedure is repeated for discount factor values from 0.5 to 0.9, the results are the same: best policy is to give 

good care to the orchard, regardless of the condition of the tree. 

If the problem is posed as linear programming without discount, according to equation (10) the equations system 

would be: 

 

Maximize 

333231232221131211 15436605.383294304965.2935.135 wwwwwwwwwZ   

Subject to 

1  333231232221131211  wwwwwwwww  

0)2.01.05.03.06.035.0( 333223221312131211  wwwwwwwww  
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0)65.04.045.06.02.035.05.065.0( 3332232221131211232221  wwwwwwwwwww  

0)15.05.005.01.08.005.015.035.0( 333231232221131211333231  wwwwwwwwwwww

Solving by the simplex method it yields the solution: 

w11 = 0, w12 = 0, w13 = 0, w21 = 0, w22 = 0, w23 = 0, 

w13 = 0.5370, w23 = 0.4074, w33 = 0.0556, 

Z = 431.17 

It can be noted that, regardless of the condition of the tree, the best decision is the third, namely to give good care to 

the tree, which coincides with the solution obtained by policy iteration, yielding thus profits for 431.17 pesos 

annually per orange tree. 

If this problem is solved using a discounted value α of 0.9 and using values bj of 1, the approach is: 

 

Maximize 

333231232221131211 15436605.383294304965.2935.135 wwwwwwwwwZ   

Subject to 

1)2.01.05.03.06.035.0(9.0 333223221312131211  wwwwwwwww  

1)65.04.045.06.02.035.05.065.0(9.0 3332232221131211232221  wwwwwwwwwww  

1)15.05.005.01.08.005.015.035.0(9.0 333231232221131211333231  wwwwwwwwwwww

Whose solution is: 

w11 = 0, w12 = 0, w13 = 0, w21 = 0, w22 = 0, w23 = 0, 

w13 = 15.17, w23 = 12.25, w33 = 2.58, 

Z = 12,618.7 

In this case the Z value represents nothing, since it depends on the values arbitrarily selected for bj; what is important 

is that the values of wik are different than zero, which being exactly the same as in the case without discount, it 

indicates that the best policy is to give good care to the trees regardless of its condition. 

If the same calculations are made, using other values for the discount factor, ( in this case the values used were from 

0.5 to 0.9), the solution is the same: take the third decision in any state of the system. 

 

4. CONCLUSIONS 

 

It is interesting that the results obtained are the same with or without considering discount factor and this conclusion 

is valid for a wide range of values of α factor. This has been identical with the two most common methodologies for 

solving Markovian decision processes. 

There is a considerable utilization of much less calculations when policy iteration methodology is used compared to 

linear programming. With this methodology, the problem was solved using Lindo software and the solution was 

achieved in five iterations. 

In the application to the orange farm, the best policy is to give good care regardless of the condition of the trees, 

which is basically due to the fact that with good care the amount of fruit produced per tree is significantly higher, 

leading to markedly improved profits, since the wholesale price of the fruit outweighs largely the cost invested per 

tree. Moreover, this is even further favored by the use of new agricultural technologies that have emerged in the last 

two decades, as the micro sprinkler irrigation, organic fertilization and biological pest control. 

This problem has been formulated as a Markovian decision process with a simple solution, confirming its 

application in a wide variety of fields.  
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