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ABSTRACT 

 
Estimation of variances of the estimated regression coefficients and their estimators is based on fitting a linear regression model. One 

method for allowing for clustering in fitting a linear regression model is to use a linear mixed model with two levels. It is probably 

suitable to ignore clustering and use a single level model if the intra-class correlation estimate is close to zero.  
 

In this paper, a two-stage survey is used to evaluate an adaptive strategy for estimating the variances of estimated regression coefficients. 
The strategy is based on testing the null hypothesis that random effect variance component is zero. If this hypothesis is accepted 

the estimated variances of estimated regression coefficients are extracted from the one-level linear model. Otherwise, the 

estimated variance is based on the linear mixed model, or, alternatively the Huber-White robust variance estimator is used. A 
simulation study is used to show that the adaptive approach provides reasonably correct inference in a simple case. 
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RESUMEN  

 
La estimación de las varianzas de los coeficientes de regresión estimados y sus estimadores se basan en el ajuste del modelo de regresión 

lineal. Un método para permitir el hacer un clustering al hacer el ajuste es usar un modelo o nivel si el coeficiente de correlación intra-

clase estimado esta cerca de cero. 
  

En este trabajo una encuesta de dos etapas es usada para evaluar una estrategia adaptativa para estimar las varianzas de los estimados 

coeficientes de regresión. La estrategia se basa en hacer una prueba de hipótesis sobre que el efecto aleatorio de la componente de 
varianza es cero. Si esta hipótesis es aceptada la varianza estimada de los coeficientes de regresión estimados son extraídos de un 

modelo lineal de un nivel. En otro caso la varianza estimada se basa en un modelo lineal mixto o, alternativamente en el estimador 

robusto de la varianza de Huber-White. Un estudio de simulación se usa para mostrar que el enfoque adaptativo provee de inferencias 
razonablemente correctas en el caso simple. 

1. INTRODUCTION  

1.1. Cluster and Multistage Sampling   

The basic idea in sampling is the inference about the population of interest based on the information 

contained in a sample. Good designs of sampling methods involve the use of probability methods, 

minimizing decision in the choice of survey units (Cochran, 1977).  

Two-stage sampling is one of the sampling methods.  It is used in many surveys of social, health, economic, 

and demographic topics (Kish, 1965).   

In multistage sampling, the population is divided into groups called primary sampling units (PSUs). A 

random sample from each considered PSU is then selected.  If all units within each considered PSU are 

selected then two-stage sampling is called cluster sampling (Cochran, 1977) 
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For example, PSUs might be schools and units might be students in schools, or PSUs might be households 

and units might be people, or PSUs might be geographic areas and units might be households (for example, 

see Cochran, 1977; Kish, 1965).  

Two-stage sampling is typically used because of the following: 

 When the list of elements not available, but the list of clusters available or can be easily configured. 

 The availability of time, effort and costs. 

 Easy to draw and easy to analyze. 

 Within-group correlations may be of interest. For example; the correlation between values for 

students in the same school might be of interest.  

A disadvantage of the two-stage that it gives estimates less accurate than other sampling techniques. The 

intra-class correlation (ICC),  , is a measure of the relationship between the observations of the personnel of 

the same PSU.  If the intra-class correlation is non-zero, the clustered nature of the design should be reflected 

in the analysis procedure.  This is done by fitting a multilevel model (MLM) (Goldstein, 2003).  In fact the 

intra-class correlation is often very small. Note that the intra-class correlation may take a negative value, but 

generally positive values. If all PSU in the population contains a number of units M, the smallest possible 

value of   is

 

1

1M




. This case occurs when the population is limited and non homogeneous within PSUs 

(Kish, 1965).  

 

In the case of a similar number of observations in each PSU,   is mostly less than 0.1 when PSUs are 

geographical areas and the final units are families in these areas (Verma et al., 1980). But if PSUs are 

families and the final units are people within families,   are usually between 0 and 0.2 (Clark and Steel, 

2002).  

 

The design effect (deff) is used to measure the increase in variance that happened when two-stage sampling is 

used. Kish (1965) defined deff as the ratio of the variance of an estimator under a specific design to the 

variance of the estimator under simple random sampling without replacement.  

For large number of PSUs with M units in each PSU and m sample size from each PSU, the deff for the 

sample mean is given by  

 1 ( 1)deff m    .                                                                                                                        (1.1) 

The deff cannot be expressed in terms of    when PSUs have unequal sample sizes. Hence, for a proposed 

design, Kish (1965) approximated the design effect by  

 1 ( 1)deff m    ,                                                                                                                        (1.2) 

where    stands for the average PSU sample size. 
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1.2 The Two-Level Linear Mixed Model 

1.2.1 The Model  

Multilevel models are a generalization of regression models, and as such can be used for a group of things, 

multilevel modeling is almost always an improvement, but to different degrees. Goldstein (2003) defined the 

two-level linear mixed model (LMM) as  

     =        +     +    , i=1, 2,…, c, j = 1, 2,…,   ,                                                                      (1..3) 

where     is the dependent variable of interest,     is a vector of covariates for unit j in the PSU i, c denotes 

the number of PSUs in the sample,    denotes the number of observations selected from PSU i,   is the 

vector of unknown regression coefficients,     (0,   
 ), and     is error term,  distributed as  ( 0,   

 ). Thus, 

      N (     ,   
 +   

 ), where   
 +   

  =   
  is the variance of y. We can estimate the variance of regression 

coefficient either by standard likelihood theory (West et al., 2007), or by using the robust Huber-White 

estimator (Huber, 1967; White, 1982). Also, we can use the maximum likelihood or restricted maximum 

likelihood methods to estimate the model parameters. 

 

A simple special case of Model (1.2) is the intercept-only model, which includes just a grand mean 

parameter, and it is defined by equating      to 1 for all i, j. 

                     =   +    +    ,    i=1, 2,…, c,      j = 1, 2,…,                                                                        (1.4)  

 

Model (1.2) can be generalized as 

 Y   N(X , V),                                                                                            (1.5)  

where X is the n × p design matrix, Y=    
      

    is the complete set of  n=   
 
    observations in the c 

groups,   =             
   is the observed vector for the     PSU, and V = diag (   , i= 1,…, c) as  

                    =   
    

 +    
    

 ,                                                                                                                    (1.6) 

where    
 is an   ×     matrix with all entries equal to 1, and    

 is the   ×     identity matrix.   is the 

vector of unknown regression coefficients (Sahai and Ojeda, 2005).   

Assume that    is uncorrelated with    , and that    and     for i     are uncorrelated. Therefore,  

 Var (   ) = Var (   ) + Var (   ) =     
 +   

  ,  Cov (         ) = Var (   ) =   
    for   j    ,            (1.7) 

and  

 Cov (         ) = 0           for  i     , (Rao, 1997). 

Assuming balanced data design, with i = 1, . . ., c and  (j    ) = 1,…, m,  Rao (1997) defined the intra-class 

correlation as 

                 = 
              

 

                     
 .                                                                                                      (1.8) 

Therefore, substituting (1.7) into (1.8), we obtain 

   = 
  
 

   
     

 .                                                                                                                                       (1.9) 

Notice that, under Model (1.4) the intra-class correlation is always greater than or equal to 0. Given estimates 

   
  and    

  of   
  and   

 , respectively, an estimator for   is 

    =  
   
 

   
     

  
.                                                                                                                                     (1.10) 
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1.2.2. Likelihood Theory Estimation of Model Parameters 

 

The variance components   
  and   

  are generally unknown, and are usually estimated by Restricted 

Maximum Likelihood (REML), giving estimates     of    .  

Patterson and Thompson (1971) is first introduced REML as a modification of maximum likelihood. The 

REML method is often presented as a technique based on maximization of the likelihood of a set of linear 

combinations of the elements of the response variable y, say   y, where k is chosen so that   y is free of fixed 

effects. One of the attractive aspects of REML is that it takes into account the degrees of freedom used up by 

the estimation of the fixed effects (Diggle et al., 1994). The restricted log-likelihood function is given by 

West et al. (2007, p.28) by the equation 

    =  
 

 
  (n-1) log (2 ) + log     + log           +      {I – X             }   Y],        (1.11) 

where V = diag (  ) and    are given by (1.6). Maximizing (1.11) with respect to   
  and   

  gives the REML 

estimates of these parameters. The REML estimate of     is given by 

     =                      =       
    

     
 
   

  
      

    
     

 
    .                        (1.12) 

The REML estimates, in the intercept-only model are defined by the following system of equations: 

  
   

   
  +  

   

  

 
       

 
2ˆ
i

 
    

    
 
   

 =  
        

   
  +  

2ˆ
i

im

 
                 , 

      
 
       

 
2ˆ
i

 
    

    
 
   

  =   2ˆ
i

 
                 ,                                                                  (1.13) 

      = 
    
 
        

    
 
   

 , 
2ˆ
i

im


 

(Sahai and Ojeda, 2005, p.106), where      is the mean of PSU i and MSE=
 

   
       

  
          

  
   , and    

= 
  

     
     

  
 =             

  , is the variance reciprocal of the mean of PSU i, and     = 
  

      
      

  
, is the estimate 

of   . The system of equations in (1.13) must be solved numerically with respect to    
  and    

 . In the 

balanced data case (  = m for all i), the REML estimates have a simpler form. Let MSA = 
 

   
        

 
   

  ..)2, the system of Equations (1.13) becomes: 

    
  = min       

   

   
      

   

   
          

  = 
 

 
 max (MSA – MSE, 0),    =     .  

(Sahai and Ojeda, 2005, p.40). 

 

1.2.3 Likelihood Theory Estimation of var (   )  

 

The estimated variance of the REML     is given by 

                          (   )=            =      
    

     
 
   

  
,                                                                           (1.14) 

where 

                        =     
    

 +    
    

.                                                                                                                 (1.15) 

In the balanced data case, where    = m, the variance estimator becomes 

                      (   ) = 
 

 
     

   
   
 

 
  .                                                                                                             (1.16) 

A confidence interval for   could be constructed using the equation  

                 (1  ) 100% CI ( ) =       
        

 

 
 
             .                                                                     (1.17) 
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Faes et al. (2009) suggested the following approximate confidence interval for the mixed models based on a 

scaled t-distribution: 

                (1  ) 100% CI ( ) =           
        

 

 
 
             ,                                                               (1.18) 

where  

               =  
 

          
,  =  

  

            
–     

   ,       = 1+  
   

              
                    ,                      (1.19)  

 

with            defined in (1.14), T =
   

           

 and the scale factor   was chosen so that the first two moments 

of     agreed with the moments of     . 

Faes et al. (2009) did not declare how to estimate      or               ; we use the parametric bootstrap to 

estimate               . Other approaches have been suggested; see for example Satterthwaite (1941) and 

Kenward and Roger (1997). The method of Faes et al. (2009) has the advantage that it extends naturally to 

non-Gaussian model, unlike the other approaches. 

 

1.2.4.   Huber-White Estimator of var (    

 

The generalized estimation equation (GEE) approach to linear modeling of clustered data can use either 

ordinary least squares (OLS) or generalized least squares (GLS).The OLS estimator for   is defined by  

       =          Y,                                                               (1.20) 

and  

 var (       =          VX        .                                                                       (1.21) 

In general, V is not known and it can be estimated by   , therefore the estimated variance for       is defined 

by  

     (       =              X       .                                                                 (1.22) 

The estimator           in (1.14) is approximately unbiased provided that the variance model (1.6) is correct. 

Otherwise,           is biased and the inference will be incorrect. An alternative to ML or REML estimates of 

var (     is the robust variance estimate approach described by Liang and Zeger (1986), this approach can be 

applied to the analysis of data collected using PSUs.  

This approach can be referred to as robust or Huber-White variance estimation (Huber, 1967; White, 1982). 

The method yields asymptotically consistent covariance matrix estimates even if the variances and 

covariance's assumed in Model (1.1) are incorrect. It is necessary to assume that observations from different 

PSUs are independent. In Equation (1.12) the variance of     is estimated by substituting REML estimates of  

  
  and    

  into   . An alternative estimator of    is    
   

=       
 , where     =        

    ,    
   

 is 

approximately unbiased for    even if (1.4) does not apply.  

Take the expectation of      
   

 to find that  

 E    
   

  = E        
      E          

            
                                                                 (1.23)  

Note that   

 var (     = var        
    

     
 
   

  
      

    
     

 
       

                                   
    

     
 
   

  
       

    
        

      
 
          

    
     

 
                                        (1.24) 
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One way to construct a robust estimator of var (     is to substitute the robust estimator    
   

 in (1.24) as 

follows (Liang and Zeger, 1986):  

                          =       
    

     
 
   

  
      

    
     

   
   
      

 
          

    
     

 
   

  
.                         (1.25) 

 

Using the intercept only model (   =1), (1.25) becomes:   

                          = 
    

  
                

 

         
 
   

 .                                                                         (1.26) 

Since    is constant, (1.26) reduces in the balanced data case (  = m), to:  

                          =  
 

      
                 

  
   .                                                                       (1.27) 

 

1.4. Testing     :   
  = 0 in the Linear Mixed Model Using RLRT 

 

The problem of testing   :   
 = 0 using the likelihood ratio test (LRT) is discussed by Self and Liang (1987) 

using ML estimators for the variance components. A best choice is to use REML estimators to derive the 

LRT statistic for testing   :   
 = 0. Self and Liang (1987) assumed that the true parameter values are on the 

boundary of the parameter space, and showed that the large sample distribution of the likelihood ratio test is a 

mixture of     distributions under nonstandard conditions provided that the response variables are iid.  

 

Stram and Lee (1994) used the results of Self and Liang (1987) to prove that the asymptotic distribution of 

the LRT for testing   :   
 = 0 has an asymptotic 50:50 mixture of    with 0 and 1 degrees of freedom under 

   rather than the classical single    if the data are iid under the null and alternative hypotheses. From 

(1.11), the restricted likelihood ratio test is given by  

              =  2 log (RLRT) = 2 1

MAX

H    ( ,  
    

 )   2 0

MAX

H   ( ,  
    

 ).                                      (1.28) 

In the intercept-only model case (1.4) assuming balanced data, Visscher (2006) introduced the REML-based 

likelihood ratio test as  

 Ʌ= 
         

   

   
  

   

   
                              

                                                                                             
             (1.29) 

where F = 
   

   
. 

 

1.5.   Adaptive Procedures  

 

Adaptive sampling provides a fit solution to the problem estimate. One method is to fit mixed linear model in 

any case. Another method is to fit a linear model assuming independent observations, i.e.  = 0. But, if a large 

number of final units are selected from each PSU, variations resulting from the estimated linear mixed model 

can be much larger than those obtained from the linear model with independent observations, which would 

lead to broader confidence intervals; also linear mixed model is more complex than the simple linear model. 

 

Here, we will provide third alternative method for estimation, which depends on testing the null hypothesis, 

as   
  = 0. If the null hypothesis is not rejected we use the linear model for estimating the variances of the 

estimated regression coefficient    . Moreover, if the null hypothesis is rejected we use the estimated variance 

for   , either using the standard likelihood theory variance estimator for the LMM (       (  )) or the Huber-

White method (       (  )). 
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1.6. Skew Normal Distributions and Their Properties  

 
Normal distribution is the most popular distribution because of its many attractive properties and moreover 

there are two main reasons for its popularity: the first, is the effect of the central limit theorem, in most cases 

the distribution of observations is at least approximately normal; the second, the normal distribution and its 

sampling distribution are easily tractable.  

 

The idea of skew-normal distribution was first introduced by Azzalini (1985). It is an extension of the normal 

distribution through the shape parameter  . It is ended up with standard normal random variable for   = 0 and 

to half-normal when   approaches   . 

We know that the probability density function (pdf) and cumulative distribution function (cdf) of the standard 

normal random variable are given as follows  

     
 

   
 
   

              
 

  

                                  

where the product of      and     , gives another attractive class of random variables. It is called the skew-

normal distributions. (Azzalini (1985)), with skewness parameter  . 

The study of the skew normal distribution explores an approach for statistical analysis without the symmetry 

assumption for the underlying distribution.  

Let Y be a continuous random variable. Let   and   denote the standard normal density and corresponding 

distribution function, respectively. Then Y is said to have a skew-normal distribution with the parameter  , 

      ∞ if the density of Y is 

 ƒ(y;  ) = 2  (y)   (  ),           , y   ∞,                                                                                (1.30) 

where   and   denote the standard normal density and corresponding distribution function, respectively, i.e., 

Y   SN ( ). (Azzalini, 1985).  

The component   is called the shape parameter because it regulates the shape of the density function. As   

increases (in absolute value), the skewness of the distribution increases. 

The mean and the variance at the skew normal random variable Y are, respectively E(Y) =  
 

 
   , and Var(Y) 

= 1   
 

 
    , where  = 

 

       
. 

In practice, to fit real data we work with an affine transformation Z =   + Y, with   and    0. Then 

the density of Z can be written as:  

                (z; ,  ,   ) = 
 

 
     

   

 
      

   

 
   .                                                                                          (1.31) 

It can be written in abbreviation as Z   SN ( ,   ,   ).  

Azzalini (1985) showed the following properties: 

 As   tends to ∞, (1.29) becomes ƒ(y) =  (y), 0   y   ∞ which is the half-normal (folded 

normal) probability density function.  

 If Y  N (0; 1) and X  SN ( ), then both     and     have the same pdf. 

 If Y  SN ( ), then        
 .  
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 If Y SN ( ), then  Y  SN (  ).  

In this section, the methods based on fitting a linear mixed model are applied to data having skew-normal 

distribution. 

The skew-normal distribution refers to a parametric class of probability distributions which includes the 

standard normal as a special case.  

 

2.   ADAPTIVE STRATEGIES   

 

Two adaptive strategies are considered here. Both of them depend on the idea of testing the variance 

component   
  in Model (1.2). If we reject    :    

  = 0 in the first, the LMM estimators of          defined in 

Equation (1.14) will be used. The standard linear model with independent errors will be used if    is not 

rejected, as in this case    
  will be assumed to be zero.    

The robust Huber White estimator        (  ) will be used instead of        (  ) if    is rejected, as the 

second adaptive strategy.    

The two adaptive strategies (ADM) and (ADH) are defined as 

        (  ) =   
                                                                       

                                                                       
                                           (2.1) 

and 

          (  ) =  
                                                                        

                                                                   
                                           (2.2) 

 

The Huber-White variance estimator is approximately an unbiased.  For the intercept-only model, it is easy to 

show that   

             
               

        
  = 

    
 
    

 
      

  
   

    
 
    

 ,                                                                            (2.3) 

where    and          are given by (1.13) and (1.26), respectively. Hence, a bias-adjusted estimator is given 

by dividing (1.26) by the right hand side of (2.4), yields 

             = 
 

     
  
    

 
      

  
      

     
           

  
   .                                                           (2.4)  

The LMM 90% confidence intervals for   are given by  

 (1  ) 100% CI =           
        

 

 
 
             ,                                                       (2.5) 

where  = 
 

          
 ,   = 0.1 and the degrees of freedom (df) are defined to be:  

 

1, using .

1, using .

1, using .

n LM Est

df v LMM Est

c Huber White Est




 
  

                                                                            (2.6) 

Degrees of freedom for adaptive strategies ADM and ADH are defined as 

 
0

0

1 if is not rejected

1 if is rejected,
ADM

n H
df

v H


 


                                                                (2.7) 

and 

 
0

0

1 if is not rejected

1 if is rejected,
ADH

n H
df

c H


 


                                                                (2.8) 



765 
 

where   represents the effective sample size, with    = 
 

           
. The effective sample size is the ratio of the 

sample size to the design effect of the    .  The degrees of freedom for the linear mixed model are only an 

approximation (Faes et al., 2009). However, the degrees of freedom of the linear model and Huber-White are 

exact (MacKinnon and White, 1985).  

The adaptive confidence intervals may not have the correct coverage rates as they might not incorporate the 

model selection uncertainty. The extent of this problem will be evaluated by simulation. An alternative 

approach would be to fit both the LM and LMM and base estimates and inference on model averaging of 

these two models (see for example Hoeting et al., 1999; Yuan and Yang, 2005). The adaptive method was 

tested by AL-Zoubi et at., 2010 for the normal data and by AL-Zoubi (2012) for exponential data.  

 

3 SIMULATION STUDY  

 

In this section, a simulation study is conducted to compare the adaptive and non-adaptive methods for 

estimating var (   ). Data are generated from the skew normal distribution, with   = m and an intercept only 

Model (1.4). The values of  , m and c are varied. The value of   is fixed to be 1. 1000 samples are generated 

in each case. The values of   
  and   

  are set to 
 

   
   and 1, respectively, to ensure that the intra-class 

correlation is  .  

For each sample the estimated regression coefficient     and the estimators of var (   ) are calculated for the 

LMM and LM models using the lme4 and lm packages (Pinheiro and Bates, 2000) in the R statistical 

environment (R Development Core Team, 2007). The true variance of     is determined by calculating the 

variance over all 1000 simulations.  

The two adaptive strategies ADM and ADH are defined by (2.2) and (2.3) and 90% confidence intervals are 

calculated for the LMM method using the method of Faes et al. (2009). Huber-White confidence intervals 

and the adaptive confidence intervals are calculated as discussed in Section 1.2.4. The hope is that the 

adaptive procedures give shorter confidence intervals as they will use the LM when     is not rejected and 

for small sample sizes these cases still have    away from zero.  As the sample size increases,    will only be 

not rejected when     is close to zero. 

The restricted likelihood ratio test described in Section 1.4 is evaluated for testing       
    The parameter 

  is varied over a range of values of 0, 0.01, 0.025, 0.05 and 0.1; c is varied over 2, 5, 10 and 25; and m is 

varied over 2, 5, 10, 15, 25 and 50. 

 

3.1. Simulation Results on Adaptive Confidence Intervals for   for Balanced Data 

 

A simulation study based on equal sized PSUs,   = m, and an intercept only model is conducted to compare 

the adaptive and non-adaptive methods for estimating var (   ). In this study we used the parametric bootstrap 

to estimate V (T) because the scale parameter   relies on V (T) (see Equation 1.19) and Faes et al. (2009) did 

not specify how V (T) can be estimated. 
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To apply the parametric bootstrap method to estimate var (T), 100 samples are generated from the intercept-

only model (1.4) with variances    
  and    

   For each sample, we estimated   and var (   ) to find the value of 

T = 
   

           

. The variance of the 100 values of T was calculated and used to estimate V (T). 

Another way to estimate var (T) is to estimate                 , and then substitute into (1.19), but Faes et al. 

(2009) also didn't specified how to estimate this parameter, therefore we have tried to do that using the 

parametric bootstrap. The same procedure above is used, but now we estimated var (   ) from the fitted model 

and then calculated the variance of the 100 estimated values of var (   ). Then      (T) was calculated by 

coding Equation (1.19) in R. However the method of estimating V (T) by calculating the variance of the 100 

estimated values of T performed better than the method uses                   , to estimate var (T).   

The hypothesis    :    
  = 0 is tested as described in Section 1.2 using the restricted likelihood ratio test 

defined in Equation (1.29). The two adaptive strategies ADM and ADH are as defined in Section 2. 90% 

confidence intervals are calculated for the LMM method using the method of Faes et al. (2009). Huber-White 

confidence intervals are calculated, and the adaptive confidence intervals are calculated as discussed in 

Section 2. 

Tables 1-5 show the ratio of the mean estimated variance of     and                         using the four 

strategies of estimation (ADM, ADH, LMM and Huber) with values of   equals to 0, 0.01, 0.025, 0.05 and 

0.1. In all tables we used   = 0 and significance level   = 0.1 for testing   
  = 0. The tables show the non-

coverage rates of 90% confidence intervals of   and the average lengths of these confidence intervals. The 

proportion of samples where    :    
  = 0 is rejected are also shown.   

 

3.2. Simulation Study of Skew-Normal Data in a Balanced Two-Stage Design 
 

A simulation study is conducted to compare the adaptive and non-adaptive methods for estimating           

and associated confidence intervals where data are skew-normally distributed. This study is based on equal 

sample sizes within PSUs. Data are generated from the intercept only Model (1.4) assuming that    has a 

skew normal with variance    
  = 

 

   
   and a skewness parameter   = 1, and      N (0, 1).  

These strategies are the linear model strategy, the linear mixed model strategy, the robust Huber-White 

variance estimator strategy and the two adaptive strategies, the LMM based and the Huber based adaptive 

strategies. The parameter   was varied over a range of values of 0, 0.01, 0.025, 0.05 and 0.1. The number of 

PSUs, c, is varied over a range of values of 2, 5, 10 and 25 and the PSU sample size is varied over a range of 

values of 2, 5, 10, 15, 25 and 50. 

The hypothesis   :    
  = 0 is tested as described in Section 1.2 using the restricted likelihood ratio test 

defined in Equation (1.29). The two adaptive strategies ADM and ADH are as defined in Section 2.2. 90% 

confidence intervals for   are calculated for the LMM method using the method of Faes et al. (2009). Huber-

White confidence intervals for   are calculated, and the adaptive confidence intervals for   are calculated as 

discussed in Section 2.2. 

For skew-normal distribution with one value of (  = 1), the results are summarized in Tables 1-5. Here, we 

assumed that the PSUs have the same number of observations, that is   = m, for all i=1, 2, . . . , c.  
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As in Subsection 2, the ratio of the estimated variance to the true variance of     ,                        is 

calculated. The tables also include the non-coverage rates for   as well as the average lengths of the 90% 

confidence intervals for  . The restricted likelihood ratio test probabilities of rejecting       
    are 

included in these tables as well. Four strategies of estimation are included in the tables, ADM, ADH, LMM 

and Hub. 

 

3.3.Variance Estimation  

 

Based on Tables 1-5 we can conclude that:   

1. The variance estimators are generally approximately unbiased, as all ratios are approximately 1. 

However, there are some exceptions for variance estimator using the LMM strategy, where , variance 

estimators are tended to be biased as 

a) For   = 0 when there are 10 or less sample PSUs with all numbers of observations per PSU except when 

there are 10 sample PSUs with 5 observations per PSU.  

b) For    = 0.01, when there are 2 and 5 sample PSUs with all numbers of observations per PSU and when 

there are 10 sample PSUs with 5,10,15 and 25 observations per PSU.  

c) For   = 0.025, 0.0 when there are 2 and 5 sample PSUs with all numbers of observations per PSU except 

when there are 5 sample PSUs with 50 observations per PSU. It also tended to be biased when there are 

10 sample PSUs with 2 and 50 for   = 0.025 and 5 for   = 0.05 observations per PSU.  

d) For   = 0.1, when there are 2 sample PSUs with observations   25 per PSU , when there are 5 sample 

PSUs with 2 and 5 observations per PSU and when there are 10 sample PSUs with 2 and 25 observations 

per PSU.  

2. The other exception where the ADM and the ADH variance estimators are tended to be biased in the 

cases:  

a) For   = 0, when there are 2 and 5 sample PSUs with all numbers of observations per PSU except when 

there are:  

 5 sample PSUs with 2 and 5 observations per PSU.  

 10 sample PSUs with 15 and 50 observations per PSU. 

 25 sample PSUs with 2 and 5 observations per PSU.  

b) For   = 0.01, when there are:  

 2 Sample PSUs with observations    25 per PSU. 

 5 sample PSUs with 5 observations per PSU.  

 10 sample PSUs with 5, 10 and 25 observations per PSU.  

c) For   = 0.025, when there are 2 sample PSUs with 10 or less observations per PSU and when there are 5 

sample PSUs with 5 observations per PSU.     

d) For   = 0.05 when there are 2 sample PSUs with 2 and 5 observations per PSU and when there are 5 

sample PSUs with 2 observations per PSU.  

e) For   = 0.1 when there are 2 sample PSUs with 10 observations per PSU and when there are 5 sample 

PSUs with 5 observations per PSU. 
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3.4.  Confidence Intervals  

 

1. The tables show that the non-coverage rates of confidence intervals for   are almost around the nominal 

rate ( =10%) when   = 0, for all methods. Also, it close to the nominal rate when   = 0.01 and 0.025, 

when there are 5 or less sample PSUs with 5 or less units per PSU and when c =10 with m= 2. For   = 

0.05, they are close to the nominal rate when there are 5 or less sample PSUs with 2 observations per 

PSU. But they are far from the nominal rate (10%) for other values of   . 

2. The ADH average lengths of confidence intervals for   are almost always shorter than its counterpart 

based on the Huber–White variance estimation for all values of   . When there are 2 and 5 sample PSUs 

it is very obvious that the ADH average lengths of confidence intervals for   are much shorter than 

Huber average lengths of confidence intervals for   for all numbers of observations per PSU as follows:   

a) With orders 40-55% for    = 0 and 0.01 when there are 2 sample PSUs with all numbers of   

 observations per PSU.  

b) With order of 7-12% for   = 0 when there are 5 sample PSUs with all numbers of observations per 

 PSU.  

c) For   = 0.01 and 0.1 when there are 5 sample PSUs with orders 5-15%.  

d) For   = 0.01, 0.025, 0.05 and 0.1 when there are 10 sample PSUs with orders 2-8%.   

e) With    = 0.025 and 0.05 when there are 2 sample PSUs with orders 37-53%.   

f)  When there are 5 sample PSUs with orders 7-16%.  

g)  For   = 0.1 when there are 2 sample PSUs with orders 25-48%.  

3. The ADM average lengths of confidence intervals for   are almost always shorter than the LMM average 

lengths of confidence intervals for   for all values of   . When there are 2 and 5 sample PSUs it is very 

obvious with all numbers of observations per PSU that the ADM average lengths of confidence intervals 

for   are much shorter than LMM average lengths of confidence intervals for   as:  

a) With orders 7-10% for    = 0 when there are 2 sample PSUs with all numbers of observations per 

PSU. 

b)  For   = 0 and 0.01, the ADM average lengths are shorter for   = 0.01, 0.025, 0.05 and 0.1 when 

there are 2 sample PSUs with orders 7-12%. 

c)  For   = 0.025, 0.05 and 0.1 and when there are 5 sample PSUs with orders 2-7%.   

 

4. CONCLUSIONS   

   

Based on results obtained we may conclude the following:   

For each value of   , the Huber-White variance estimators are unbiased. For all values of  , the length of the 

ADH average lengths of confidence intervals for   are shorter than the Huber-White confidence intervals for 

 .  

When    = 0, non-coverage rates are approximately around the nominal rate ( =10%). LMM average lengths 

of confidence intervals for   are nearly wider than the ADM average lengths of confidence intervals for   

regardless the value of  .  

The ADM, adaptive based on LMM variance estimator for   as alternative, confidence intervals are shorter 

than the LMM confidence intervals in designs with 5 or less sample PSUs with all average numbers of 

observations per PSU for all values of intra-class correlation  . The ADM confidence intervals are a bit 

shorter for designs with 5 sample PSUs with all average numbers of observations per PSU for all values of 

intra-class correlation   . The ADM confidence intervals are shorter for designs with number of sample 
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PSUs, c =10 and m=2 and 50 when   = 0 and 0.01, respectively. Also, c = 10 with 10 or more observations 

per PSU when   = 0.025, and with 25 or less observations per PSU when   = 0.05 and 0.1. The ADM 

confidence intervals are shorter for these designs with 2-12%. Otherwise, ADM and LMM confidence 

intervals performance are approximately the same.  

 

The ADH, adaptive based on Huber-White variance estimator for   as an alternative, confidence intervals are 

much shorter than the Huber-White confidence intervals in designs with 2 and 5 sample PSUs with, 

approximately all average numbers of observations per PSU for all values  . The ADH confidence intervals 

are shorter for designs with 10 sample PSUs with m   25 for   =0, 0.05 and 0.1, also with all average 

numbers of observations per PSU for  =0.01 and 0.025.  The ADH confidence intervals are shorter for these 

designs with 5-55%. There were no significant differences, otherwise. 

 

ADH non-coverage rates are smaller than Huber-White non-coverage rates in designs with all sample PSUs 

with all numbers of observations per PSU when   = 0 and ADH non-coverage rates are larger than Huber-

White non-coverage rates except in designs with c = 2, 15 and 25 with   = 3 and c = 5 and 10 with    = 3 and 

10 when  =0.025. ADH non-coverage rates are larger than Huber-White non-coverage rates except in 

designs with c = 2 and 10 with    = 3 when   = 0.1  

 

ADM non-coverage rates are larger than LMM non-coverage rates in designs with c = 2 with all numbers of 

observations per PSU for all values of   , with c = 5 with     = 3 when   = 0, with c = 5 with all numbers of 

observations per PSU and with    = 3 and 25 when   = 0.025 and 0.1, respectively. The ADM and ADH 

confidence intervals are shorter than LMM and Huber-White confidence intervals in designs with c   5 with 

all numbers of observations per PSU for all values of   . There are no relevant differences, otherwise.  

 

Table 1: Simulation results of inferences about β, and testing   : 
2

0 : 0bH    using RLRT with ρ = 0, using skew- normal 

data with γ= 1 based on balanced samples 

  
                        Non- Coverage of CI for β (%) 

Pr 
(Rej   ) 

(%) 
Confidence Interval Length 

c m ADM ADH LMM Hub ADM ADH LMM Hub RLRT ADM ADH LMM Hub 

2 2 1.283 1.283 1.502 1.111 8.4 8.4 11.0 10.6 10.5 4.985 3.026 5.453 5.188 

2 5 1.169 1.169 1.401 0.934 9.4 9.0 10.0 9.7 5.2 1.194 1.459 1.284 3.065 

2 10 1.175 1.175 1.427 0.983 11.0 11.0 10.6 8.9 4.8 0.849 1.018 0.941 2.274 

2 15 1.201 1.201 1.457 1.008 10.9 10.9 10.4 8.2 4.4 0.696 0.825 0.767 1.880 

2 25 1.222 1.223 1.592 1.106 8.7 8.7 9.1 9.0 6.0 0.558 0.690 0.612 1.470 

2 50 1.198 1.198 1.451 0.987 9.4 9.4 10.3 9.5 4.6 0.378 0.454 0.417 1.012 

5 2 1.031 1.031 1.147 0.982 10.2 10.1 10.2 9.9 10.3 1.190 1.199 1.212 1.295 

5 5 1.071 1.071 1.186 0.959 10.8 10.8 10.9 11.6 9.0 0.725 0.732 0.744 0.796 

5 10 1.124 1.124 1.259 1.024 8.8 8.8 9.0 10.1 7.6 0.505 0.510 0.520 0.573 

5 15 1.114 1.114 1.216 0.963 9.5 9.5 10.2 12.1 7.7 0.412 0.417 0.417 0.456 

5 25 1.146 1.146 1.284 1.039 8.4 8.4 8.8 8.1 6.2 0.311 0.314 0.322 0.358 

5 50 1.160 1.160 1.206 1.061 10.4 10.4 9.4 9.3 6.8 0.223 0.225 0.231 0.256 

10 2 1.072 1.072 1.156 1.031 8.4 8.4 9.0 8.5 10.5 0.786 0.786 0.792 0.802 

10 5 1.012 1.012 1.069 0.937 10.2 10.3 11.2 11.6 7.0 0.487 0.488 0.486 0.500 

10 10 1.042 1.042 1.101 0.965 9.4 9.4 9.9 9.9 7.7 0.346 0.346 0.346 0.357 

10 15 1.098 1.098 1.159 1.006 9.4 9.4 10.8 11.2 8.0 0.282 0.282 0.281 0.289 

10 25 1.057 1.057 1.119 0.984 9.9 9.8 10.7 9.9 8.9 0.218 0.219 0.219 0.227 

10 50 1.118 1.118 1.193 1.035 9.2 9.2 9.0 9.2 6.7 0.153 0.153 0.155 0.159 

25 2 1.088 1.088 1.136 1.051 10.2 10.1 10.6 10.1 9.4 0.480 0.481 0.478 0.479 

25 5 1.088 1.088 1.098 1.030 8.8 8.8 9.9 10.0 9.3 0.304 0.303 0.300 0.302 

25 10 1.034 1.034 1.044 0.994 10.0 10.0 11.0 9.9 9.1 0.214 0.214 0.211 0.215 

25 15 1.017 1.017 1.024 0.955 9.5 9.5 10.7 10.2 8.6 0.175 0.175 0.172 0.174 

25 25 1.068 1.068 1.081 1.025 10.0 10.0 10.2 10.3 9.0 0.135 0.135 0.134 0.136 

25 50 1.064 1.064 1.095 1.018 9.0 9.0 9.3 10.0 9.0 0.096 0.096 0.095 0.096 
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Table 2: Simulation results of inferences about β, and testing 
2

0 : 0bH    using RLRT with ρ = 0.01, using skew- normal 

data with γ= 1 based on balanced samples 

  
                        Non- Coverage of CI for β (%) 

Pr 

(Rej   ) 

(%) 
Confidence Interval Length 

c m ADM ADH LMM Hub ADM ADH LMM Hub RLRT ADM ADH LMM Hub 

2 2 1.186 1.186 1.290 1.016 8.0 8.0 11.7 9.2 10.9 5.287 3.050 5.835 5.103 

2 5 1.142 1.142 1.276 0.918 9.9 9.5 11.2 11.2 4.9 1.238 1.474 1.236 3.047 

2 10 1.075 1.075 1.285 0.863 12.8 12.8 14.5 12.0 4.9 0.857 1.037 0.933 2.223 

2 15 1.153 1.153 1.408 0.985 12.3 12.3 12.6 10.4 4.8 0.699 0.837 0.774 1.900 

2 25 1.085 1.085 1.232 0.962 14.2 14.2 15.1 10.8 7.0 0.563 0.721 0.633 1.545 

2 50 1.038 1.038 1.275 1.006 19.9 19.9 18.2 8.2 9.1 0.431 0.582 0.492 1.223 

5 2 1.008 1.008 1.114 0.939 11.5 11.4 12.1 12.4 10.3 1.188 1.198 1.205 1.277 

5 5 1.123 1.123 1.253 1.036 10.7 10.7 12.6 11.4 8.2 0.718 0.723 0.739 0.806 

5 10 1.019 1.019 1.155 0.962 12.6 12.6 12.8 11.7 8.9 0.512 0.518 0.535 0.591 

5 15 1.060 1.060 1.184 0.986 13.7 13.5 13.5 13.6 9.9 0.421 0.427 0.434 0.484 

5 25 1.028 1.028 1.146 0.983 17.1 17.0 15.3 14.2 11.1 0.329 0.334 0.342 0.386 

5 50 1.005 1.005 1.124 0.993 21.1 20.7 20.6 17.9 16.0 0.245 0.249 0.257 0.288 

10 2 0.984 0.984 1.058 0.944 10.8 10.5 11.4 11.8 10.8 0.785 0.787 0.790 0.802 

10 5 1.080 1.080 1.141 1.017 12.4 12.2 12.9 13.9 9.6 0.496 0.497 0.496 0.512 

10 10 1.089 1.089 1.156 1.050 12.6 12.4 12.8 12.1 11.2 0.352 0.353 0.356 0.370 

10 15 1.019 1.019 1.084 0.978 19.3 19.2 19.3 18.1 12.9 0.291 0.291 0.295 0.305 

10 25 1.103 1.103 1.184 1.105 20.2 20.0 20.2 17.2 15.2 0.228 0.228 0.232 0.244 

10 50 0.935 0.935 1.008 0.972 32.4 32.1 30.8 27.5 23.5 0.170 0.171 0.176 0.185 

25 2 1.007 1.007 1.053 0.979 11.4 11.4 12.6 11.2 10.4 0.480 0.481 0.479 0481 

25 5 1.098 1.098 1.106 1.050 16.0 15.9 16.8 16.6 12.7 0.306 0.306 0.302 0.305 

25 10 1.033 1.033 1.047 1.021 21.2 21.2 22.0 20.9 15.0 0.219 0.218 0.217 0.222 

25 15 0.984 0.984 0.998 0.993 27.3 27.2 28.1 25.8 14.6 0.178 0.178 0.177 0.183 

25 25 0.998 0.998 1.014 1.016 37.6 37.6 37.6 36.3 23.7 0.143 0.142 0.142 0.147 

25 50 0.982 0.982 1.023 1.030 55.7 56.1 54.1 52.4 39.2 0.107 0.106 0.109 0.111 

 

Table 3: Simulation results of inferences about β, and testing 
2

0 : 0bH    using RLRT with ρ = 0.025, using skew- normal 

data with γ= 1 based on balanced samples 

  
                        Non- Coverage of CI for β (%) 

Pr 

(Rej   ) 

(%) 
Confidence Interval Length 

c m ADM ADH LMM Hub ADM ADH LMM Hub RLRT ADM ADH LMM Hub 

2 2 1.235 1.235 1.462 1.074 7.5 7.5 11.7 10.1 11.2 5.578 3.083 6.097 5.137 

2 5 1.134 1.134 1.274 0.996 11.6 11.2 11.2 9.1 7.1 1.223 1.638 1.439 3.324 

2 10 1.148 1.148 1.418 1.019 14.4 14.4 14.4 11.0 6.5 0.891 1.129 1.002 2.400 

2 15 1.019 1.019 1.226 0.892 16.5 16.5 16.4 12.5 7.3 0.753 0.972 0.831 2.003 

2 25 0.998 0.998 1.204 0.946 21.6 21.6 19.4 11.2 9.9 0.625 0.858 0.703 1.702 

2 50 1.019 1.019 1.220 1.027 26.7 26.7 22.0 10.6 13.4 0.502 0.733 0.569 1.275 

5 2 1.089 1.089 1.206 1.025 10.2 10.1 10.4 10.0 8.8 1.192 1.200 1.220 1.294 

5 5 1.060 1.060 1.180 1.018 14.4 14.4 13.4 11.4 11.6 0.751 0.757 0.774 0.857 

5 10 1.058 1.058 1.185 1.024 14.9 14.8 16.0 13.2 12.3 0.531 0.539 0.551 0.619 

5 15 0.996 0.996 1.135 0.989 21.2 20.9 19.5 16.6 10.9 0.430 0.435 0.452 0.511 

5 25 0.964 0.964 1.096 1.014 26.1 25.8 23.4 17.6 19.0 0.360 0.368 0.384 0.438 

5 50 0.909 0.909 1.010 0.964 31.6 31.0 29.1 22.5 31.8 0.290 0.298 0.309 0.346 

10 2 1.016 1.016 1.088 0.966 11.7 11.7 12.6 12.5 12.0 0.791 0.793 0.796 0.803 

10 5 0.961 0.961 1.018 0.933 16.3 16.1 17.1 15.7 11.0 0.501 0.503 0.503 0.526 

10 10 0.927 0.927 0.993 0.929 22.7 22.5 23.1 19.9 16.7 0.365 0.366 0.372 0.390 

10 15 0.980 0.980 1.062 1.015 27.9 27.7 26.9 23.7 18.0 0.302 0.302 0.311 0.328 

10 25 0.888 0.889 0.951 0.930 35.9 35.4 34.5 30.0 30.0 0.250 0.251 0.257 0.272 

10 50 1.066 1.066 1.127 1.123 43.7 44.1 40.3 38.2 50.9 0.205 0.206 0.212 0.220 

25 2 0.948 0.948 0.991 0.925 17.1 17.3 17.8 17.9 11.6 0.483 0.483 0.481 0.484 

25 5 0.966 0.966 0.978 0.960 26.2 26.0 27.8 25.4 13.9 0.310 0.309 0.307 0.315 

25 10 0.954 0.954 0.978 0.984 37.7 38.0 38.4 36.2 21.4 0.225 0.224 0.225 0.233 

25 15 1.009 1.009 1.013 1.051 47.9 48.3 48.7 46.6 28.8 0.189 0.188 0.190 0.196 

25 25 0.990 0.990 1.004 1.031 59.5 60.3 59.5 58.6 47.5 0.158 0.156 0.158 0.162 

25 50 0.907 0.907 0.921 0.927 73.3 74.5 73.0 73.9 78.8 0.128 0.128 0.129 0.130 
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Table 4: Simulation results of inferences about β, and testing 
2

0 : 0bH    using RLRT with ρ = 0.05, using skew- normal 

data with γ= 1 based on balanced samples 

  
                        Non- Coverage of CI for β (%) 

Pr 

(Rej   ) 

(%) 
Confidence Interval Length 

c m ADM ADH LMM Hub ADM ADH LMM Hub RLRT ADM ADH LMM Hub 

2 2 1.097 1.097 1.284 0.951 9.7 9.7 13.9 9.7 10.6 5.400 3.042 5.884 5.274 

2 5 1.179 1.179 1.423 1.037 12.9 12.8 12.6 9.9 7.9 1.238 1.730 1.452 3.421 

2 10 1.022 1.022 1.269 0.980 17.7 17.7 14.5 11.1 9.2 0.943 1.295 1.081 2.656 

2 15 1.073 1.073 1.229 1.067 20.3 20.3 17.9 10.9 10.4 0.822 1.149 0.946 2.314 

2 25 1.035 1.035 1.202 1.004 27.7 27.7 24.8 13.4 15.3 0.748 1.118 0.826 1.923 

2 50 0.944 0.944 1.089 0.982 34.1 34.1 27.8 14.4 22.7 0.663 1.064 0.745 1.677 

5 2 1.126 1.126 1.250 1.080 10.5 10.5 11.9 11.2 12.2 1.215 1.222 1.239 1.219 

5 5 1.022 1.022 1.153 1.011 17.2 17.2 15.6 13.8 13.1 0.763 0.772 0.798 0.882 

5 10 1.026 1.026 1.169 1.054 21.7 21.6 20.4 15.9 17.4 0.565 0.574 0.601 0.671 

5 15 0.976 0.976 1.093 1.017 28.4 28.0 27.1 21.5 21.1 0.475 0.486 0.501 0.571 

5 25 0.970 0.970 1.076 1.028 32.4 31.7 28.1 21.2 32.8 0.419 0.429 0.448 0.496 

5 50 0.957 0.957 1.020 1.005 35.6 34.2 33.3 27.4 52.0 0.374 0.383 0.393 0.424 

10 2 1.051 1.051 1.134 1.016 13.7 13.7 14.7 13.7 11.1 0.804 0.806 0.812 0.823 

10 5 1.055 1.055 1.132 1.065 23.4 23.1 22.8 20.3 15.6 0.517 0.519 0.525 0.552 

10 10 0.939 0.939 1.010 0.979 28.6 29.0 27.4 24.9 24.9 0.388 0.388 0.399 0.420 

10 15 0.878 0.878 0.943 0.922 38.0 38.0 36.2 33.2 31.4 0.330 0.330 0.341 0.358 

10 25 0.995 0.995 1.044 1.039 42.6 42.7 40.9 39.0 52.2 0.296 0.296 0.304 0.315 

10 50 0.887 0.887 0.905 0.906 50.2 49.5 49.8 48.1 79.1 0.260 0.258 0.264 0.266 

25 2 0.982 0.982 1.032 0.972 23.3 23.3 23.4 23.9 11.4 0.490 0.490 0.491 0.495 

25 5 0.990 0.990 1.005 1.008 38.4 38.6 38.3 36.6 22.4 0.321 0.321 0.320 0.330 

25 10 1.059 1.059 1.077 1.112 55.2 56.3 55.9 53.1 37.6 0.241 0.240 0.241 0.251 

25 15 0.996 0.996 1.011 1.040 62.5 63.7 62.2 62.0 53.7 0.210 0.208 0.211 0.216 

25 25 0.991 0.991 0.998 1.008 75.2 75.4 75.0 74.4 81.0 0.185 0.183 0.186 0.186 

25 50 1.055 1.055 1.056 1.057 85.5 85.7 85.4 85.7 96.9 0.161 0.160 0.161 0.160 

 

Table 5: Simulation results of inferences about β, and testing 
2

0 : 0bH    using RLRT with ρ = 0.1, using skew- normal 

data with γ= 1 based on balanced samples 

  
                        Non- Coverage of CI for β (%) 

Pr 

(Rej   ) 

(%) 
Confidence Interval Length 

c m ADM ADH LMM Hub ADM ADH LMM Hub RLRT ADM ADH LMM Hub 

2 2 1.003 1.003 1.209 0.904 12.2 12.2 15.5 12.2 10.9 5.228 3.031 5.829 5.322 

2 5 1.064 1.064 1.297 0.996 16.3 16.0 15.3 11.4 10.4 1.421 1.927 1.564 3.724 

2 10 1.103 1.103 1.229 1.100 24.0 24.0 20.5 13.2 14.6 1.082 1.677 1.230 3.009 

2 15 0.989 0.989 1.142 0.973 28.2 28.0 25.2 12.7 16.6 0.993 1.543 1.102 2.617 

2 25 1.052 1.052 1.198 1.097 33.3 33.2 28.0 11.6 24.1 0.965 1.585 1.073 2.468 

2 50 0.955 0.956 1.038 0.987 38.7 38.5 31.9 12.7 34.7 0.980 1.627 1.063 2.187 

5 2 1.061 1.061 1.179 1.017 14.6 14.5 14.5 13.4 13.3 1.226 1.238 1.264 1.237 

5 5 1.102 1.102 1.235 1.114 21.2 21.0 18.5 15.4 18.2 0.814 0.829 0.856 0.946 

5 10 0.944 0.944 1.049 0.991 31.8 31.0 29.0 21.4 28.0 0.632 0.647 0.668 0.749 

5 15 0.907 0.907 0.996 0.964 35.4 33.9 30.7 24.5 38.0 0.577 0.592 0.612 0.678 

5 25 0.949 0.949 1.003 0.988 35.5 33.9 32.4 26.0 55.4 0.543 0.554 0.567 0.606 

5 50 0.882 0.883 0.901 0.897 37.6 36.1 36.1 32.7 74.2 0.524 0.527 0.535 0.551 

10 2 1.068 1.068 1.156 1.063 18.5 18.3 19.1 19.1 13.9 0.830 0.832 0.842 0.862 

10 5 0.975 0.975 1.054 1.025 31.5 32.0 29.0 26.2 24.9 0.555 0.555 0.572 0.600 

10 10 0.933 0.933 0.991 0.982 40.2 39.9 39.6 35.2 42.7 0.436 0.438 0.448 0.470 

10 15 0.951 0.951 0.995 0.995 43.5 43.9 42.1 40.1 60.0 0.406 0.405 0.419 0.429 

10 25 1.059 1.059 1.083 1.085 52.2 51.7 51.0 49.3 76.9 0.373 0.372 0.379 0.385 

10 50 1.037 1.037 1.041 1.041 55.7 56.3 55.1 55.6 94.8 0.351 0.348 0.352 0.350 

25 2 0.984 0.984 1.036 0.989 36.7 36.3 36.7 36.2 18.5 0.503 0.504 0.507 0.512 

25 5 0.956 0.956 0.977 1.008 57.2 57.8 57.2 55.6 37.0 0.343 0.340 0.344 0.356 

25 10 0.977 0.977 0.987 1.005 73.3 73.3 73.2 72.3 71.2 0.279 0.276 0.280 0.283 

25 15 0.957 0.957 0.961 0.968 80.4 81.2 80.3 80.6 89.0 0.255 0.252 0.255 0.255 

25 25 1.023 1.023 1.024 1.025 85.7 85.5 85.7 85.5 98.2 0.231 0.230 0.231 0.230 

25 50 1.008 1.009 1.008 1.009 91.9 91.6 91.9 91.6 100.0 0.210 0.209 0.210 0.209 
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