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ABSTRACT 

Usually, the theory of probability has been made the foundation for the theory of statistics. But the physical significance of 

the concept of Probability is problematic, with no consensus. It would seem better to make the descriptive statistics of 

physical data the foundations of physical probability. This will answer a question posed by Hilbert in his Sixth Problem, the 

axiomatization of Physics. It is based on the auto-correlation function of time series. Almost all trajectories of a linear 

dynamical system (with sufficiently many degrees of freedom) are approximately equal, no matter their initial conditions, 

even when the system is not ergodic, as conjectured by Khintchine in 1943. 
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RESUMEN 

Hay que esbozar como las probabilidades  cuentan como la fundación de la teoría matemática de las estadísticas. Pero la 

significación física de las probabilidades matenáticas son oscuros, muy poco entendidos. Parecería màs claro que las 

probabilidades físicas estgán fundadas en las estadísticas descriptivas de datos físicos. Se trata de una teoría que así 

responde a la cuestión  propuesta por  Hilbert en el Problema Número Seis, la axiomatización de la Física. Esta está basada 

en la auto-correlación de las series temporales. Casi todas de las funciones de auto-correlación de las trayectorias de un 

sistema dinámico lineal (para el cual el número de sus grados de libertad es bastante grande) son todas aproximadamente 

iguales, no importan las condiciones iniciales, aun si el sistema no es ergòdico, como conjeturó Khintchine en 1943. 

 

 

1. INTRODUCTION 

 

Hilbert‘s Sixth Problem [1] was the Axiomatization of Physics. He had in mind not only the 

axiomatization of true physical theories, but as well the axiomatization of false theories which would bear 
an interesting resemblance to, along with instructive differences from, the real world. Because of the 

contemporary controversies about the logical relation between Analytical Mechanics and 

Thermodynamics precipitated by the work of Maxwell and Boltzmann, which involved both Poincare and 

Zermelo, Hilbert explicitly pointed to the need for logical foundations for the theory of probability. With 

Quantum Mechanics‘s Born rule‘s having placed probability at an even more central location in the 

foundations of physical theory, Hilbert‘s prescience is remarkable. Readers younger than Hilbert little 

realize that for Hilbert and his generation, Probability was not a branch of Mathematics; it was a branch 

of Physics1. Hilbert realized that as a preliminary to this, one would have to bring the theory of 

probability into mathematics proper by axiomatizing it in such a way as to clarify its relationships to 

Arithmetic or Geometry. Frèchet, Wiener, and Kolmogoroff did precisely this, but Kolmogoroff well 

knew that this did not solve the problem of clarifying the logical foundations of what is nowadays called 

―physical probability.‖ He returned to this more difficult and more important part of Hilbert‘s Sixth 
Problem several times in his later career [3]. 

                                                             
1  This point is illustrated by Corry: he found in the G¨ottingen archives the list of topics for a course Hilbert taught: ―In 1905 he 

taught a course on the axiomatic method where he presented for the first time a panoramic view of various physical disciplines from 

an axiomatic perspective: mechanics, thermodynamics, probability calculus, kinetic theory, insurance mathematics, lectrodynamics, 

psychophysics.‖ [2] 

 



174 
 

In Dirac‘s formulation of the axioms of Quantum Mechanics, we find the typical physicist‘s approach to 

this problem. ―If the experiment is repeated a large number of times it will be found that each particular 

result will be obtained a definite fraction of the total number of times, so that one can say there is a 

definite probability of its being obtained any time the experiment is performed.‖ [4]. 

This is not a definition at all. Such notions have been insightfully criticized in print by Burnside [5], 

Littlewood [6], and Kolmogoroff [7], all three accomplished probabilists. In an address to a math club, 

Littlewood explained at length ―The Dilemma of Probability Theory.‖  

―Now [it] cannot assert a certainty about a particular number n of throws, such as ‗the proportion of 6‘s 

will certainly be within p± for large enough n . 

It can only say ‗the proportion will lie within p ±  with at least such and such probability (depending on  
and no) .  

―The vicious circle is apparent.‖ 
―It is natural to believe that if (with the natural reservations) an act like throwing a die is repeated n times 

the proportion of 6‘s will, with certainty, tend to a limit, p say, as n. (Attempts are made to sublimate 
the limit into some Pickwickian sense—‗limit‘ in inverted commas. But either you mean the ordinary 

limit, or else you have the problem of explaining how ‗limit‘ behaves, and you are no further. You do not 

make an illegitimate conception legitimate by putting it into inverted commas.) . . . 

―It is generally agreed that the frequency theory won‘t work. But whatever the theory it is clear that the 

vicious circle is very deep-seated: certainty being impossible, whatever [it] is made to state can be stated 

only in terms of ‗probability‘. One is tempted to the extreme rashness of saying that the problem is 

insoluble (within our current conceptions). More sophisticated attempts than the frequency theory have 

been made, but they fail in the same sort of way.‖ 

Kolmogoroff, in a chapter [7] meant for a broad scientific audience, analyzed this logical circularity in the 

same way, and ten years later, having despaired of the possiblity of fixing the frequency theory, began 

developing his theory of algorithmic complexity as the logical foundation for probability. 
However, we can answer Littlewood‘s objection by, indeed, carefully defining a new kind of limit, which 

we will call the thermodynamic limit, which evades the logical circle of the naive frequency theory but 

still has physical meaning and close contact with the kind of physical content which physicists like about 

the frequency theory, in spite of its logical shortcomings. 

The well known logician and computer scientist Prof. Jan von Plato, of Helsinki University, succeeded in 

giving a definition of probability for ergodic systems [8]. His definition is rather different from the one 

which will be given here, cannot be made to work for quantum systems [9], and because it does not use 

Khintchine‘s conjectures about the thermodynamic limit, is restricted to ergodic classical systems. 

 

2. A SEQUENCE OF DYNAMICAL SYSTEMS 

 
Suppose given a sequence Mn of dynamical systems, each one with n degrees of freedom, and equipped 

with a flow x  xt and an invariant measure under the flow, μn. Suppose given an observable (i.e., a 

measurable function) fn on each Mn. To simplify notation, if vn  Mn is a perhaps implicitly fixed initial 
condition, we write fn(t) for fn((vn)t), the change in f due to the flow. The motivation is that we are 

interested in {Mn} when in some sense they are all ‗the same‘ kind of physical system, only the number of 

degrees of freedom increases without bound, and fn is ‗the same‘ physical quantity, e.g., momentum. We 

will, inspired by a conjecture of Khintchine‘s, define the limit of Mn which, when it exists, is independent 

of the substitution of the μn by any other μ`n absolutely continuous with respect to μn. 

For f a measurable function of time, Wiener studied the auto-correlation function 

 

 
 

When one views f as an observable on Mn, it is a set of data, a time series, and its auto-correlation 

function is a descriptive statistic of this set of data. Wiener further defined the higher correlation functions 

for any positive integer m, 

 
 

There is no dependence on the notion of probability. In the literature, there is a conflicting definition of 

the auto-correlation function R( ) of a time series, which only applies to a time series which is not data, 
but really a stochastic process. That is, suppose given a probability space P with probability measure μ, 

and for each P, suppose that f(P), is a time series in the usual sense. Then the phase auto-correlation 



175 
 

function was defined by Khintchine several years after Wiener‘s work to be R(t,  ) =Pf(P), f(t+)dμ, 
and is independent of t if the process is stationary (the notion of stationary seems to have been introduced 

by Khintchine at the same time). The whole point here is to avoid using it, since that might seem to re-

introduce the logical circle Littlewood complained about. 

The whole point of thermodynamics is to convert a sequence of deterministic dynamical systems into a 

stochastic process by passing to whatever kind of thermodynamic limit one has defined. Ours will be a 

new kind, not the same as the usual one. Balian has called for the creation of new kinds of 

thermodynamic limits, each one tailored for the application at hand. 

Definition. In the setting above, the sequence {(Mn, μn), fn} is said to have a thermodynamic limit if for 

every choice of a compact subset K of the time-axis, a positive , and a positive integer M, there exists an 

integer N so large that for every n  N, there exists a subset Nn of Mn with μn(Mn \ Nn) <  such that for 

any two initial conditions v and wNn, 

| < 

for all ti K and all m < M. Here, is the m-point auto-correlation function of fv(t) =fn(vt), and similarly 

for . The trajectories (or, equivalently, their initial conditions) belonging to Nn are called normal and 

Nn is called a normal cell. 

It is obvious that there then exists a function  defined for all time such that limn

 n converges to  

with uniform convergence on compact sets, provided n is chosen to have an initial condition from Nn. 

Similarly for . The invariance under replacing μn by any vn absolutely continuous with respect to μn is 

also obvious. 

Lévy‘s philosophy was that in order to study a stochastic process, it suffices to study R( ), its 
autocorrelation function (in the sense of Khintchine) [10]. A Gaussian stationary centered stochastic 

process is determined up to equivalence by R. Wiener has also remarked [11] that even a non-Gaussian 
one is still determined up to some sort of equivalence by the knowledge of all its higher m-point auto-

correlation functions Rm. 

Since we have a set of suitable m-point correlation functions, we would be able to define a limit object of 

a sequence that has a thermodynamic limit: the stochastic process whose auto-correlation functions in the 

sense of Khintchine are equal to the limits of the descriptive statistics of the elements of our sequence. 

But we do not need to define some sort of limit object such as this for our immediate purposes. For now, 

we will regard  and f as the limit. One would also like to define a suitable equivalence relation on the 
space of sequences which possess limits and study the space of equivalence classes. Like some other 

Hilbert problems, the solution to the Sixth opens up many avenues for further research. 

 

3. THE DEFINITION OF EVENT AND OF PROBABILITY  

 

The mathematical axiomization of probability theory has taught us that it is just as important to precisely 
specify what an event is as it is to associate a number to an event. This, indeed, is a foundational point 

difficult for engineers or physicists to appreciate; they tend to feel that every subset is measurable. In fact, 

the definition of Lebesgue measure formalizes an intuition about what a ‗physically constructible‘ subset 

of Euclidean space should be, so in a sense, non-measurable sets cannot have any physical significance. 

In Quantum Mechanics, there has been the intuition that probabilities arise from the necessity of 

amplifying a microscopic event up to the macroscopic level (e.g., Feynman in [12]). In Classical 

Mechanics, there has been the intuition that probability arises in the thermodynamic limit of deterministic 

systems. (There have also been rival intuitions but we will not touch on them here.) It follows from this 

that we should formally define an ‗event‘ to be something that only arises in this way, when two 

contrasting scales are being compared. In particular, neither points nor subsets of a fixed Mn are events. 

(And for this reason, neither Lebesgue measure nor Liouville measure nor μn are interpreted as probability 

measures.) Taking our cue from Quantum Mechanics, only the result of a measurement is defined to be an 
event. 

The quantum case was already treated, in the special case of the two slit experiment, in [13] and [14]. 

There, ‗event‘ was defined as the thermodynamic limit of the result of an interaction with an amplifying 

apparatus: in that limit, Planck‘s constant goes to zero and the amplifying apparatus becomes a classical 

system. 

In the classical case, in Statistical Mechanics, as remarked by Wiener [15], Guelfand [16], and Pauli [17], 

a measurement of an observable f on M is really a long-time average, modelled or approximated by the 

infinite time average 
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where the dependence on the initial condition vo  Mn has been suppressed. The same applies to any 
function of f, for example, the variance f22. However, this dependence on the initial condition prevents us 

from turning this idea into an exact definition of event, and this is the reason we pass to the 

thermodynamic limit. As the number of degrees of freedom grows without bound, almost all initial 

conditions give approximately the same answer, the expectation of f, and (0) for the variance. We also 

obtain all the higher moments of the limit of f, and so a random variable f can be rigorously defined (as 

usual, its probability space M is taken to be the unit interval [0,1] with Lebesgue measure). 

Physically, f is an idealisation which is a good approximation to the properties the vast majority of the 

,  etc., each of which is a descriptive statistic of some concrete data. 

Suppose given a sequence {(Mn, μn), fn} which has a thermodynamic limit, with its associated , f, etc., 
as above. 

Definition. Let the probability space P be the direct image under f of the probability space (M, dx). 
Then the events of the thermodynamic limit of {(Mn, μn), fn} are the measurable subsets of P and the 

probability of an event F is its measure. 

The definition of limit we have introduced is modelled closely on the equilibrium statistical mechanics 

and work of Ford, Kac, and Mazur [18]. For this reason, the measurement yields one value with 
probability unity, because the system is in equilibrium.  

In fact, this limit was tailor-made for measurements of f, but it will apply as well to any function of f. If f 

models the coin-toss (or cast of a die) dilemma of Littlewood,3 then f will be assumed to take only the 

values ±1/2 , and be centered. Composing f with the indicator function of a small neighbourhood of 1/2, 

we get g (or, just put g = f + 1/2 ). 

Then  the frequency of heads.4 This frequency might be zero, if the initial condition is perverse. 

Putting g = f + 1/2 , all the moments of g follow from those of f. In particular, the expectation of g, 
which is our definition of the probability that f takes the value ―heads,‖ depends only on the equivalence 

class of the sequence {(Mn, μn), fn}. 

The physical meaning is that if the sequence was defined shrewdly, then it is a good approximation to 

 it (a physically meaningful function) unless the initial condition does not belong to Nn, which is 

a determinate statement with concrete physical meaning. Of course the limit of the sequence does not 

change, and hence hg1iμ does not change, if any finite number of  are replaced by ridiculous 

counterfeits, and this includes . In this case, the statement will be useless for any practical 

purpose, but still physically meaningful. The same applies if the initial condition is, in fact, in . 

The statement will be meaningful but useless for this particular case. Many have already suspected that 

the true meaning of probability is an approximate one with a certain range of validity, and when used 

outside the limits of that range, will lead to paradoxes or practically useless † For us, frequency is not 

equal to probability. What is measured is frequency. The frequency is related in a subtle way to the 

probability, just as time averages are related to phase averages statements. And the point of the Hilbert 

problem is only to tidy the logical structure of probability statements, not to impose a tidiness on the 

world that does not exist. 

Ever since the work of Wiener, physicists and engineers have had the intuition that a time series whose 
auto-correlation function has an absolutely continuous power spectrum is ―random.‖ This can be made 

precise in the context of our definition. If the coin-tosses result from {(Mn, μn), fn}, as above, then we can 

use the auto-correlation of a sequence of unit pulses as a measure of how random the sequence is. If its 

auto-correlation function is normal, i.e., approximately equal to that of all the others from Nn, then the 

sequence is approximately random. Thus, the auto-correlation function can be used instead of ideas 

of algorithmic complexity. 

The assertion that the probabilities in the thermodynamic limit are good approximations to the real 

situation of  is testable, by experiment. In principle, one should, in many concrete cases of this 

limit, be able to calculate how large n has to be. If the predictions based on calculations using the limit are 

falsified by an experimental run, then vo Nn. That said, the practical purpose of using thermodynamic 

                                                             
2
 In the author‘s view, and in the views just cited, time averages model measurements and phase averages model probabilities. Prof. 

von Plato, following Einstein and in agreement with Landau, defines probabilities as infinite time averages. 

 
3
 If one were to construct the obvious stochastic process from the idea of repeated coint-tossing, the process would not be stationary 

in continuous time. But in our use of descriptive statistics, there is no assumption of stationarity. 

 
4 For us, frequency is not equal to probability. What is measured is frequency. The frequency is related in a subtle way to the 

probability, just as time averages are related to phase averages. 
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limits is precisely to avoid having to make calculations about Mn, which are practically impossible, 

substituting for them calculations about M, which are easier. 
 

4. A CLASS OF EXAMPLES 

 

We will show that this definition is not vacuous by studying an interesting class of examples: 

Hamiltonian systems of linearly coupled harmonic oscillators. These systems are completely integrable, 

but in the limit, they exhibit the kind of very very weak ergodicity conjectured by Khintchine in 1943 [19] 

for a (hopefully) much larger class of dynamical systems (he did not concretely specify which class). The 

first point is that the systems are simple enough that the calculations for Mn can be carried out. The 
second point is that ergodicity is usually associated with non-linearity, but here are linear systems which 

on the macro-level are practically indistinguishable from ergodic systems. 

The third point is that from the standpoint of the foundations of Physics, only Quantum Mechanics is 

truly important, not Classical Mechanics, and quantum systems are linear Hamiltonian systems. So we 

will study the general class of linearly coupled harmonic oscillators as in [20]. 

Obviously not every sequence of systems Mn, even if possessing a limit, will exhibit weakly ergodic 

behaviour even if n, the dimension of the space, increases without bound. The intuition from equilibrium 

statistical mechanics is that each Mn must be composed of many identical parts (or, more generally, a 

fixed number of different types of parts with the number of parts of the same type increasing without 

bound), and there must be a coupling between the parts. Furthermore, a natural hypothesis to make is that 

the interaction between part i and part j only depends on the relative situation of i and j, so that if k and l 

constitute a parallel pair, their interaction term should be the same. This leads naturally to the study of an 
interaction matrix An which is cyclic (and, of course, symmetric). 

We will generalize the result of [20], which in turn was a generalization of the results of Ford, Kac, and 

Mazur [18]. The main point here is only to show how the new definition of probability and event applies 

in this situation. The main interest is that the same kind of definition of probability and event works for 

classical physics as was used earlier, in [13] and [14], for the quantum mechanical measurement of a two-

state system by an amplifying apparatus in a state of negative temperature. The second point of interest is 

that we will have introduced the notion of probability without relying on imposing a particular probability 

distribution on Mn. This opens the way, in the future, to studying systems in a negative temperature state, 

where the usual notion of probability distribution cannot be used. 

Notation. If n is even, choose Mn to be the same as Mn-1. From now one, assume n is odd, and equal to 2N 

+ 1. All indices will run from −N to N, except angles, which will run from epsilon above − to epsilon 

below : we put l = 2/n for l = −N, . . . ,N. 
Mn is a Hamiltonian dynamical system (or, rather, the restriction of one to a surface of constant energy, 

see later) with canonical co-ordinates pi, qi and Hamiltonian Hn 
 

 
where A is a symmetric n × n square real matrix with positive eigenvalues wl

2  satisfying 

 

 
This is obviously symmetric if we make a simple assumption on the wl‘s. 

We have 

 
Putting  ans similarly for  this becomes 

 

                                                                              (1) 

 

Furthermore, the auto-correlation function of po is 
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and the higher auto-correlation functions vanish for an odd number of points and, for an even number of 
points, are trigonometric polynomials with more or less the same coefficients. 

We will take po as our observable fn, and the restriction of Liouville measure to any surface of constant 

energy E as our invariant measure μn. The dynamical system Mn will be the surface of constant energy. 

The energy level En is defined for traditional reasons, and to make the comparison with traditional results 

convenient, to be that energy level which is most probable according to the Maxwell distribution: it is 

n/kT , where k is Boltzmann‘s constant and T is the absolute temperature in degrees Kelvin. 

To implement the notion that the Mn are the same but different, we will suppose that their eigenvalues are 

taken from the same function w but evaluated at different points. 

Suppose that we know the eigenvalues wl for the real system  which we are given. 

Regarding wl as a function of l , write it as w(l) = wl. But now regard w as a continuous 
function on (−π,π) by interpolating the given values in some sensible fashion. (One that 

makes intuitive physical sense.) 

For any n, define the Hamiltonian of Mn by putting . Then the sums in 

Equation 1 become Riemann sums for the improper integrals 
 

 
Now the same methods of proof of the theorem of [20] show that  

Theorem. Suppose that w is a continuous function on (−π,π) such that the Riemann 

integrals 

 
converge for every m and every small positive . Using w, define {(Mn, μn), fn} as above. 
Then this sequence has a thermodynamic limit, and 

 
Corollary. In fact, since the coefficients are more or less the same for all the higher multi-point auto-

correlation functions as they are for the ordinary one ', the proof shows more. It shows the uniformity in 

M of our estimates, and hence, this sequence satisfies a stronger condition than is necessary for the 

definition of limit: the conclusion holds for all m simultaneously. 

We omit the details of the proof of the corollary. 
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