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ABSTRACT
The aim of this work is studying the use of copulas and vines in numerical optimization with Estimation of
Distribution Algorithms (EDAs). Two EDAs built around the multivariate product and normal copulas, and
other two based on pair-copula decomposition of vine models are studied. We analyze empirically the effect of
both marginal distributions and dependence structure in order to show that both aspects play a crucial role in the
success of the optimization process. The results show that the use of copulas and vines opens new opportunities
to a more appropriate modeling of search distributions in EDAs.
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RESUMEN
El objetivo de este trabajo es presentar un estudio acerca del uso de los modelos probabilísticos cópulas y vines
en el contexto de la optimización numérica utilizando algoritmos con estimación de distribuciones (EDAs). Se
estudian dos EDAs basados en las cópulas multivariadas producto y normal, además de otros dos algoritmos
basados en construcciones con cópulas bivariadas representadas mediante vines. Se realiza un analysis em-
pírico del efecto de las distribuciones marginales y la estructura de dependencia de la distribución multivariada,
mostrándose que ambos aspectos juegan un rol esencial en el proceso de optimización. Los resultados mues-
tran que el uso de cópulas y vines brinda nuevas alternativas para lograr un modelado más apropiado de las
distribuciones de búsqueda en los EDAs.

1. INTRODUCTION

Estimation of Distribution Algorithms (EDAs) [36, 38] are stochastic optimization methods characterized by the ex-
plicit use of probabilistic models. EDAs explore the search space by sampling a probability distribution (search distri-
bution) previously built from promising solutions. Most existing continuous EDAs are based on either the multivariate
normal distribution or derived models [11, 31]. However, in situations where empirical evidence reveals significant
departures from the normality assumption, these EDAs can construct incorrect models of the search space.

A solution comes with the copula function [39], which provides a way to separate the statistical properties of each
variable from the dependence structure: first, the marginal distributions are fitted using a rich variety of univariate
models available, and then, the dependence between the variables is modeled using a copula. However, the multivariate
copula approach has limitations. The number of multivariate copulas is rather limited, and usually these copulas have
only one parameter to describe the overall dependence. Thus, this approach is not appropriate when all pairs of
variables do not have the same type or strength of dependence. For instance, the t-copula uses a correlation coefficient
per each pair of variables, but has only one degree-of-freedom parameter to characterize the tail dependence of all
pairs of variables.
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An alternative approach to this problem is the pair-copula construction method (PCC) [8, 9, 29], which allows us to
built multivariate distributions using only bivariate copulas. PCC models of multivariate distributions are represented
in a graphical way as a sequence of nested trees called vines. These graphical models provide a powerful and flexible
tool to deal with complex dependences as far as the pair-copulas in the decomposition can be from different families.

In recent years, several copula-based EDAs have been proposed in the literature. The authors have studied the
behavior of these algorithms in test functions [14, 19, 44, 51, 55, 50, 23, 24] and real-world problems [52]. Indeed,
the use of copulas has been identified as one of the emerging trends in the optimization of real-valued problems using
EDAs [28]. In this work, various models based on copula theory are combined in an EDA: two models are built using
the multivariate product and normal copulas and other two are based on two PCC models called C-vine and D-vine.
We empirically evaluate the performance of these algorithms on a set of test functions and show that vine-based EDAs
are better endowed to deal with problems with different dependences between pair of variables.

The paper is organized as follows. Section ?? introduces the notion of copula and describes two EDAs based on
the multivariate product and normal copulas, respectively. Section ?? presents the notion and terminology of vines and
presents two EDAs based on C-vine and D-vine models, respectively. Section ?? reports and discuses the empirical
investigation. For the sake of completeness, we present in Section ?? a short review of representative EDAs based on
copulas, before presenting with the conclusions of our study in Section ??.

2. TWO CONTINUOUS EDAS BASED ON MULTIVARIATE COPULAS

We start with some definitions from copula theory [30, 39]. Consider n random variables X = (X1, . . . , Xn) with
joint cumulative distribution function F and joint density function f . Let x = (x1, . . . , xn) be an observation of X.
A copula C is a multivariate distribution with uniformly distributed marginals U (0, 1) on [0, 1]. Sklar’s theorem [49]
states that every multivariate distribution F with marginals F1, F2, . . . , Fn can be written as

F (x1, . . . , xn) = C (F (x1) , . . . , F (xn))

and

C (u1, . . . , un) = F
(
F

(−1)
1 (u1) , . . . , F (−1)

n (un)
)

where F (−1)
i are the inverse distribution functions of the marginals. If F is continuous then C (u1, . . . , un) is unique.

The notion of copulas separates the effect of dependence and margins in a joint distribution [32]. The copula C
provides all information about the dependence structure of F , independently of the specification of the marginal
distributions.

An immediate consequence of Sklar’s theorem is that random variables are independent if and only if their under-
lying copula is the independence or product copula CI, which is given by

CI (u1, . . . , un) = u1. . . . .un. (2.1)

The UMDA proposed in [36] assumes a model of independence of normal margins. Therefore, an EDA based on the
product copula is a generalization of the UMDA, which also supports other types of marginal distributions.

Besides UMDA, in [36] the authors also proposed an EDA based on the multivariate normal distribution called
Estimation of Multivariate Normal Algorithm (EMNA). It turns out that, indeed EMNA can be also reformulated
in copula terms: a normal copula plus normal margins. The Gaussian Copula Estimation of Distribution Algorithm
(GCEDA) proposed in [51, 3] uses the multivariate normal (or Gaussian) copula, which is given by

CN (u1, . . . , un;R) = ΦR
(
Φ−1 (u1) , . . . ,Φ−1 (un)

)
, (2.2)
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where ΦR is the standard multivariate normal distribution with correlation matrix R, and Φ−1 denotes the inverse of
the standard univariate normal distribution. This copula allows the construction of multivariate distributions with non-
normal margins. If this is the case, the joint density is no longer the multivariate normal, though the normal dependence
structure is preserved. Therefore, with normal margins, GCEDA is equal to EMNA, otherwise they are different. If the
marginal distributions are non-normal, the correlation matrix is estimated using the inversion of the non-parametric
estimator Kendall’s tau R̂ij = sin (π/2τ̂ij) for each pair of variables i, j = 1, . . . , n [39]. If the resulting matrix R̂ is
not positive-definite, the correction proposed in [43] can be applied.

In this work, all margins used by the algorithms are always of the same type, either normal (Gaussian) or empirical
smoothed with a normal kernel. In particular, the estimation of the normal margin F̂i v N

(
xi; µ̂i, σ̂

2
i

)
requires the

computation of the mean µ̂i and variance σ̂i2 from the selected population. The empirical margin is estimated using
the normal kernel estimator given by

F̂i (t) =
1

N

N∑
j=1

Φ

(
t− yj
h

)
,

where the set {y1, . . . , yN} is the sample of the ith variable of X in the selected population with N individuals. The
bandwidth parameter h is computed according to the rule-of-thumb of [48]. In this paper, the subscripts g and e in the
name of the algorithms denote the use of Gaussian and empirical margins, respectively (e.g., UMDAg and GCEDAe).

The generation of a new individual in GCEDAg and GCEDAe starts with the simulation of a vector (u1, . . . , un)

from the multivariate normal copula [18]. In GCEDAg, the inverse distribution function xi = F̂−1i

(
ui; µ̂i, σ̂

2
i

)
is used

to obtain each xi of the new individual. In GCEDAe, xi is found by solving the inverse of the marginal cumulative
distribution using the Newton-Raphson method [4].

3. EDAS BASED ON VINES

This section provides a brief description of the C-vine and D-vine models and the motivation for using them to con-
struct the search distributions in EDAs. We also present CVEDA and DVEDA, our third and fourth algorithms.

3.1. From Multivariate Copulas to Vines

The multivariate copula approach has several limitations. Most of the available parametric copulas are bivariate and
the multivariate extensions usually describe the overall dependence by means of only one parameter. This approach
is not appropriate when there are pairs of variables with different type or strength of dependence. The pair-copula
construction method (PCC) is an alternative approach to this problem. PCC method was originally proposed in [29]
and this result was later developed in [8, 9, 29]. The decomposition of a multivariate distribution in pair-copulas is a
general and flexible method for constructing multivariate distributions. In PCC models, bivariate copulas are used as
building blocks. The graphical representation of these constructions involves a sequence of nested trees, called regular
vines. Pair-copula constructions of regular vines allows to model a rich variety of types of dependences as far as the
bivariate copulas can belong to different families.

3.2. Pair-Copula Constructions of C-vines and D-vines

Vines are probabilistic dependence models that allow us to decompose a multivariate distribution function f (x1, . . . , xn)
into bivariate copulas and marginal densities. A vine on n variables is a nested set of trees T1, . . . , Tn−1, where the
edges of tree j are the nodes of the tree j+ 1 with j = 1, . . . , n− 2. Regular vines constitute a special case of vines in
which two edges in tree j are joined by an edge in tree j + 1 only if these edges share a common node. Two instances
of regular vines are the canonical (C) and drawable (D) vines. In Figure 1, a graphical representation of a C-vine
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Figure 1: Four-dimensional C-vine (a) and D-vine (b). In a C-vine, each tree Tj has a unique node with n− j edges.
The node with n− 1 edges in tree is called the root. In a D-vine, no node is connected to more than two edges.

and D-vine for four dimensions is given. Each graphical model gives a specific way of decomposing the density. In
particular, for a C-vine, f (x1, . . . , xn) is given by

n∏
k=1

f (xk)

n−1∏
j=1

n−j∏
i=1

cj,,j+i|i,...,,j−1 (F (xj |x1, . . . , xj-1) , F (xj+i|x1, . . . , xj−1)) , (3.3)

and for a D-vine, the density is equal to

n∏
k=1

f (xk)

n−1∏
j=1

n−j∏
i=1

ci,i+j|i+1,...,i+j−1 (F (xi|xi+1, . . . , xi+j−1) , F (xi+j |xi+1, . . . , xi+j-1)) , (3.4)

where j identifies the trees and i denotes the edges in each tree.
Note that in (3.3) and (3.4) the joint density consists of marginal densities f (xk) and pair-copula densities eval-

uated at conditional distribution functions of the form F (x | v). In [29] it is showed that conditional distribution of
pair-copulas constructions are given by

F (x | v) =
∂Cxvj |v−j (F (x | v−j) , F (vj | v−j))

∂F (vj | v−j)
, (3.5)

where Cxvj |v−j is a bivariate copula distribution function, v is a n-dimensional vector, vj is the j components of v
and v−j denotes the remaining component. The recursive evaluation of F (x | v) yields the expression

F (x | v) =
∂Cxv (Fx (x) , Fv (v))

∂Fv (v)
.

For the special case (unconditional) when v is univariate, and x and v are standard uniform, F (x | v) reduces to

F (x | v) =
∂Cxv (x, v,Θ)

∂v
.

where Θ is the set of parameters for the bivariate copula of the joint distribution function of x and v. To facilitate de
computation of F (x | v), the function

h (x, v; θ) = F (x | v) =
∂Cxv (x, v; Θ)

∂v
, (3.6)

is defined. The inverse of h with respect to the first variable h−1 is also defined. The expressions of these functions of
the bivariate copulas used in this work are given in Appendix ??.
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3.3. Vine Estimation of Distribution Algorithms

Vine Estimation of Distribution Algorithms (VEDAs) [23, 50] are a class of EDAs that uses vines to model the search
distributions. CVEDA and DVEDA are VEDAs based on C-vines and D-vines, respectively. Now we describe the
particularities of the estimation and simulation steps of these algorithms.

3.3.1. Estimation

The estimation procedures of C-vines and D-vines proposed and developed in [1] consist of the following main steps:
selection of a specific factorization, choice of the pair-copula types in the factorization, and estimation of the copula
parameters. Next we describe these steps according to our implementation.

1. Selection of a specific factorization:

The selection of a specific pair-copula decomposition implies to choose an appropriate order of the variables,
which can be obtained by several ways: given as parameter, selected at random, chosen by greedy heuristics.
We use greedy heuristics for detecting the most important bivariate dependences.

Assumed a specific factorization, the first step of the estimation procedure consist in assigning weights to the
edges. As weights we use the absolute value of the empirical Kendall’s tau between pair of variables [39]. The
next step consist in determining the appropriate order of the variables of the decomposition, which depends on
the type of pair-copula decomposition:

• In a C-vine, the tree that maximizes the sum of the weights of one node (the root node) to the others is
chosen by the greedy heuristic as the appropriate factorization.

• In a D-vine, the first tree is selected by maximizing the weighted sequence of the original variables. Since
the first tree of the vine is a chain of variables, this problem can be transformed into a traveling salesman
problem (TSP) instance where one must find a cycle that visits all the cities (i.e. variables) starting from
an initial dummy node with zero weight on all edges to the other nodes – see [12] for the details of this
transformation. For efficiency reasons, we use the cheapest insertion heuristic, an approximate solution
of TSP presented in [42]. In a D-vine, the structure of remaining trees is completely determined by the
structure of the first tree.

A pair-copula decomposition has n − 1 trees and requires to fit n(n−1)/2 copulas. Assuming conditional in-
dependence might simplify the estimation step, since if X and Y are conditionally independent given V, then
cxy|v

(
Fx|v (x | v) , Fy|v (y | v)

)
= 1. This property is used by a model selection procedure proposed in [12],

which consists in truncating the pair-copula decomposition at specific tree level, fitting the product copula in
the subsequent trees. For detecting the truncation tree level, this procedure uses either the Akaike Information
Criterion (AIC) [2] or the Bayesian Information Criterion (BIC) [47], such that the tree Tj+1 is expanded if
the value of the information criteria calculated up to the tree Tj+1 is smaller than the value obtained up to the
previous tree. Otherwise, the vine is truncated at tree level Tj .
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2. Choice of the pair-copula types in the factorization and estimation of the copula parameters.

(a) Determine the pair-copula types to use in tree 1 using the original data by applying a goodness of fit test.

(b) Compute observations – i.e. conditional distribution functions – using the copula parameters from tree 1
and the h (.) function.

(c) Determine the pair-copula types in tree 2 in the same way as in tree 1, using the observations from (b).

(d) Repeat (b) and (c) for the following trees.

Selection of pair-copulas is accomplished in different ways [22]. In this work, the Cramér-von Mises statistics

SN =

N∑
i=1

(CE(ui,vi)− CΘ(ui, vi))
2 (3.7)

is minimized. N is the sample size, Θ is the set of parameters of a bivariate copula CΘ, and CE is the empirical
copula. We first test the product copula [21]. If there is enough evidence against the null hypothesis of indepen-
dence (at a fixed significance level of 0.1) it is rejected. If this is the case, the copula CΘ that minimizes SN is
chosen.

We combine different types of bivariate copulas: normal, Student’s t, Clayton, rotated Clayton, Gumbel and
rotated Gumbel. The normal copula is neither lower nor upper tail dependent while the Student’s t copula is
both lower and upper tail dependent. The Clayton and rotated Clayton copulas are lower tail dependent while
the Gumbel and rotated Gumbel copulas are upper tail dependent.

The parameters of all these copulas, but the Student’s t, are estimated using the inversion of Kendall’s tau [20].
The correlation coefficient for the Student’s and normal copulas are computed similarly. The degrees of freedom
of the Student’s t copula are estimated by maximum likelihood with the correlation parameter held fixed [15].
We consider an upper bound of 30 for the degrees of freedom because for this value the bivariate Student’s t
copula becomes almost indistinguishable from the bivariate normal copula [17].

3.3.2. Simulation

Simulation from vines [7, 8, 33] is based on the conditional distribution method described in [16]. The general
algorithm for sampling n dependent uniform [0, 1] variables is common for C-vines and D-vines. First, sample n
independent uniform random numbers wi ∈ (0, 1) and then compute

x1 = w1

x2 = F−12|1 (w2|x1)

x3 = F−13|1,2 (w3|x1, x2)
...
xn = F−1n|1,2,...,n−1 (wn|x1, . . . , xn−1) .

To determine F (xj | x1, x2, . . . , xj−1) for each j, the expressions (3.5) and (3.6) are used for both structures, although
the choice of the vj in (3.5) is different (see (3.3) and (3.4)). For details about the sampling algorithms, see [1].
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4. EMPIRICAL INVESTIGATION

This section outlines the experimental setup and presents the numerical results. The experiments aim to show that both
the marginal distributions and the dependence structure are crucial for the optimization using EDAs. For the empirical
study we use the statistical environment R [41] and the tools provided by the packages copulaedas [25, 27] and
vines [26].

4.1. Experimental Design

The well known Sphere, Griewank, Ackley and Summation Cancellation test functions [10] are considered as bench-
mark problems in n = 10 dimensions. The definition of these functions for x = (x1, . . . , xn) is given below:

fSphere(x) =

n∑
i=1

x2i

fGriewank(x) = 1 +

n∑
i=1

x2i
4000

−
n∏
i=1

cos

(
xi√
i

)

fAckley(x) = −20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2

− exp

(
1

n

n∑
i=1

cos (2πxi)

)
+ 20 + exp (1)

fSummation Cancellation(x) =
1

10−5 +
∑n
i=1 |yi|

, y1 = x1, yi = yi−1 + xi

Sphere, Griewank and Ackley are minimization problems that have global optimum at x = (0, . . . , 0) with eval-
uation zero. Summation Cancellation is a maximization problem that has global optimum at x = (0, . . . , 0) with
evaluation 105.

To ensure a fair comparison between the algorithms, we find the minimum population size required by each
algorithm to reach the global optimum of the function in 30 of 30 independent trials. This critical population size
is determined using a bisection method [40]. The algorithm stops when either the global optimum is found with a
precision of 10−6 or after 500, 000 function evaluations. A truncation selection of 0.3 is used [37] and no elitism.

In the initial population, each variable is sampled uniformly in a given real interval. We say an interval is symmetric
if the value thatXi takes in the global optimum of the function is located in the middle of the given interval. Otherwise,
we call it asymmetric. The symmetric intervals used in the experiments are: [−600, 600] in Sphere and Griewank,
[−30, 30] in Ackley, and [−0.16, 0.16] in Summation Cancellation. The asymmetric intervals are: [−300, 900] in
Sphere and Griewank, [−15, 45] in Ackley, and [−0.08, 0.24] in Summation Cancellation.

4.2. Effect of the Marginal Distributions

In this section we investigate the effect of the marginal distributions under two assumptions: independence and joint
normal dependence. The results obtained with UMDA and GCEDA in symmetric and asymmetric intervals are given
in Tables 1–4. We summarize the results in the following four points.
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Table 1: Results of UMDA and GCEDA in Sphere.

Algorithm Success Population Evaluations Best Evaluation

Xi ∈ [−600, 600], i = 1, . . . , 10

UMDAg 30/30 86 3, 996.1±89.5 6.9E− 07± 1.9E− 07

UMDAe 30/30 82 5, 466.6± 164.4 7.0E− 07± 1.7E− 07

GCEDAg 30/30 325 13, 769.1±248.5 6.6E− 07± 1.6E− 07

GCEDAe 30/30 259 14, 581.7± 403.2 7.1E− 07± 2.0E− 07

Xi ∈ [−300, 900], i = 1, . . . , 10

UMDAg 30/30 118 5, 502.7±125.8 6.4E− 07± 1.9E− 07

UMDAe 30/30 83 5, 513.9± 180.6 7.4E− 07± 1.9E− 07

GCEDAg 24/30 2000 171, 666.6± 166, 976.4 3.0E + 01± 8.4E + 01

GCEDAe 30/30 522 29, 023.2±541.4 7.2E− 07± 2.3E− 07

Table 2: Results of UMDA and GCEDA in Griewank.

Algorithm Success Population Evaluations Best Evaluation

Xi ∈ [−600, 600], i = 1, . . . , 10

UMDAg 30/30 113 5, 179.1±210.0 7.2E− 07± 1.7E− 07

UMDAe 30/30 475 27, 961.6± 1, 387.5 7.0E− 07± 1.8E− 07

GCEDAg 30/30 304 12, 798.4±351.1 6.6E− 07± 1.7E− 07

GCEDAe 30/30 324 17, 895.6± 536.0 6.7E− 07± 1.7E− 07

Xi ∈ [−300, 900], i = 1, . . . , 10

UMDAg 30/30 110 5, 261.6±284.6 6.7E− 07± 2.1E− 07

UMDAe 30/30 449 26, 580.8± 1, 003.3 7.3E− 07± 1.7E− 07

GCEDAg 22/30 2000 201, 333.3± 183, 220.5 1.3E− 01± 2.5E− 01

GCEDAe 30/30 588 32, 438.0±860.9 8.0E− 07± 1.5E− 07

1. As the asymmetry of the interval grows the performance of all the algorithms deteriorate. This effect is larger
with normal margins.

We illustrate this point through the analysis of the UMDA behavior. With symmetric intervals, UMDAg outper-
forms UMDAe, which is particularly notable in the Griewank function. As example, Figure 2 illustrates that the
variance of the normal margin shrinks faster than the variance of the normal kernel margin. The larger variance
of the empirical margin can be explained by the existence of global and local optima, all of which are captured
by the normal kernel margins. Figure 3-(left) shows several peaks located near the values that the variable takes
in the global and local optima, while in Figure 3-(right) the peak of the normal density lies in the middle of the
interval regardless of the shape of the data. For this same reason, with symmetric interval, the algorithms behave
better with normal margins than with empirical.

2. With asymmetric intervals, GCEDA with normal kernel margins is much better than with normal margins.

With symmetric intervals, UMDA and GCEDA with normal margins behave better than with normal kernel
margins. However, if the initial population is sampled asymmetrically, this situation changes, which is more
remarkable in GCEDA (even GCEDAg might not converge). This situation is illustrated in the optimization
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Table 3: Results of UMDA and GCEDA in Ackley.

Algorithm Success Population Evaluations Best Evaluation

Xi ∈ [−30, 30], i = 1, . . . , 10

UMDAg 30/30 88 5, 426.6±127.2 8.2E− 07± 1.0E− 07

UMDAe 30/30 94 8, 024.4± 210.1 8.6E− 07± 8.4E− 08

GCEDAg 30/30 325 18, 178.3±207.8 8.0E− 07± 1.5E− 07

GCEDAe 30/30 303 21, 866.5± 338.3 8.1E− 07± 1.4E− 07

Xi ∈ [−15, 45], i = 1, . . . , 10

UMDAg 30/30 95 5, 959.6±111.3 7.7E− 07± 1.1E− 07

UMDAe 30/30 91 7, 995.8± 183.1 8.3E− 07± 1.1E− 07

GCEDAg 30/30 782 45, 460.2± 532.8 8.0E− 07± 1.2E− 07

GCEDAe 30/30 357 26, 013.4±493.7 8.5E− 07± 8.2E− 08

Table 4: Results of UMDA and GCEDA in Summation Cancellation.

Algorithm Success Population Evaluations Best Evaluation

Xi ∈ [−0, 16, 0, 16], i = 1, . . . , 10

UMDAg 0/30 2000 500, 000.0± 0, 0 6.9E + 02± 5.0E + 02

UMDAe 0/30 2000 500, 000.0± 0, 0 1.0E + 03± 1.2E + 03

GCEDAg 30/30 325 38, 848.3±327, 6 1.0E + 05± 1.2E− 07

GCEDAe 30/30 1525 213, 144.1± 1, 907.3 1.0E + 05± 1.0E− 07

Xi ∈ [−0, 08, 0, 24], i = 1, . . . , 10

UMDAg 0/30 2000 500, 000.0± 0.0 5.6E + 02± 3.8E + 02

UMDAe 0/30 2000 500, 000.0± 0.0 1.9E + 03± 1.9E + 03

GCEDAg 4/30 2000 467, 000.0± 85, 577.5 1.3E + 04± 3.4E + 04

GCEDAe 30/30 1525 215, 330.0±1, 621.8 1.0E + 05± 1.1E− 07

of the Griewank function with GCEDAg and GCEDAe. Figure 4 shows both the normal and normal kernel
densities of the first variable, which are estimated at generations 10, 15, 20, 25 and 30. We recall that the zero
value corresponds to the value of the variable in the global optimum. In Figure 4-(top), note that with normal
margins the zero is located at the tail of the normal density, thus, it is sampled with low probability. As the
evolution proceeds, the density moves away from zero. In Figure 4-(bottom), the normal kernel margins capture
more local features of the distribution and it is more likely that good points are sampled.

3. In problems where UMDA exhibits good performance, the introduction of correlations by GCEDA seems to be
harmful.

Sphere, Griewank and Ackley can be easily optimized by UMDA as far as the marginal information is enough
for finding the global optimum. GCEDA requires to compute many parameters and larger populations are
needed to estimate them reliably. Figure 5 illustrates this issue in the Sphere function. We run UMDAg with
its critical population. For GCEDAg we use different population sizes, including the critical population of these
two algorithms (86 and 325, respectively). The box-plot shows that GCEDAg achieves the means and variances
of UMDAg but uses larger populations.
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Figure 2: Box-plots illustrating the evolution of the first variable of Griewank in the selected population of UMDAg
(top) and UMDAe (bottom) for 15 generations.

4. UMDA is not capable of optimizing Summation Cancellation.

Summation Cancellation has multivariate linear interactions between the variables [11]. As far as this informa-
tion is essential for finding the global optimum, UMDA fails to optimize this function with both normal and
kernel margins, while GCEDA is successful, though this algorithm is also sensitive to the effect of asymmetry.

Summarizing, we can say that both aspects – the statistical properties of the marginal distributions and the depen-
dence structure – play a crucial role for the success of EDA optimization. In the following sections we deal with the
latter aspect in more detail.

4.3. Effect of the Dependence Structure

This section reports the most important results of our work. We investigate the effect of combining different copulas,
applying the truncation strategy, and selecting the structure of C-vines and D-vines in the performance of VEDA.

4.3.1. Combining Different Bivariate Copulas

In this section we assess the effect of using different types of dependences when all the marginal distributions are nor-
mal. The experimental results obtained with CVEDA and DVEDA in Sphere, Griewank, Ackley and Summation Can-
cellation are presented in Tables 5–8, respectively. The studied algorithms are CVEDA9, greedy, g and DVEDA9, greedy, g.
The sub-indexes mean that they perform a complete construction of the vines (9 trees), use greedy heuristics to repre-
sent the stronger dependences in the first tree, and all margins are normal.
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Figure 3: Histograms of the first variable of the Griewank function in the selected population of the second generation
with UMDAe (left) and UMDAg (right). The empirical and normal densities are superposed, respectively.

Table 5: Results of VEDA in Sphere with Xi ∈ [−600, 600], i = 1, . . . , 10.

Algorithm Success Population Evaluations Best Evaluation

CVEDA9, greedy, g 30/30 188 8, 033.8± 170.5 6.8E− 07± 2.1E− 07

DVEDA9, greedy, g 30/30 207 8, 818.2± 192.9 7.0E− 07± 1.8E− 07

In the investigated problems the following hold:

1. CVEDA and DVEDA exhibit a good performance in problems with both strong and weak dependences between
the variables.

While UMDA uses the independence model and GCEDA assumes a linear dependence structure, CVEDA and
DVEDA do not assume the same type of dependence across all pairs of variables. The estimation procedures
used by the vine-based algorithms select among a group of candidate bivariate copulas, the one that fits the data
appropriately. CVEDA and DVEDA perform, in general, between UMDA and GCEDA in terms of the number
of function evaluations.

2. CVEDA exhibits better results than DVEDA in easy problems for UMDA (Sphere, Griewank and Ackley).

The model used by DVEDA allows a more freely selection of the bivariate dependences that will be explic-
itly modeled, while the model used by CVEDA has a more restrictive structure. These characteristics enable
DVEDA to fit in the first tree a greater number of bivariate copulas that represent dependences. This may explain
why DVEDA requires larger sample sizes than CVEDA, and thus more function evaluations.
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Figure 4: Marginal distributions of the first variable of Griewank with GCEDAg (top) and GCEDAe (bottom) in the
generations 10, 15, 20, 25 and 30.

Table 6: Results of VEDA in Griewank with Xi ∈ [−600, 600], i = 1, . . . , 10.

Algorithm Success Population Evaluations Best Evaluation

CVEDA9, greedy, g 30/30 213 9, 151.9± 452.6 6.5E− 07± 1.8E− 07

DVEDA9, greedy, g 30/30 225 9, 630.0± 309.2 6.9E− 07± 1.5E− 07

3. CVEDA has much better results than DVEDA in Summation Cancellation.

Summation Cancellation reaches its global optimum when the sum in the denominator of the fraction is zero.
The i-th term of this sum is the sum of the first i variables of the function. Thus, the first variables have a greater
influence in the value of the sum. The selected populations reflect these characteristics including stronger asso-
ciations between the first variables and the next ones. A C-vine structure provides a more appropriate modeling
of this situation than a D-vine structure, since it is possible to find a variable that governs the interactions in
the sample. However, as it was pointed out before, here the interesting issue is the success of GCEDA. The
explanation is simple. On one hand, Summation Cancellation has multivariate linear interactions between the
variables [11]. On the other hand, the multivariate normal distribution is indeed, a linear model of interactions.
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Figure 5: Mean and variance of each variable in the selected population at 10th generation with GCEDAg and UMDAg
in Sphere. GCEDAg requires larger populations than UMDAg.

4. Combining normal and non-normal copulas worsens the results of the vine-based algorithms in Summation
Cancellation.

Since the multivariate linear interactions of Summation Cancellation are readily modeled with a multivariate
normal dependence structure, GCEDA has better performance than vine-based EDAs, which can fit copulas
of different families (Tables 4 and 8). We repeated the experiments using only product and normal copulas.
The results show similar performance of CVEDAN, 9, greedy, g, DVEDAN, 9, greedy, g and GCEDA, being CVEDA
slightly better than DVEDA.

Regarding the results presented in this section, we can summarize that EDAs using pair-copula constructions
exhibit a more robust behavior than EDAs using multivariate product or normal copula in the given set of benchmark
functions.

4.3.2. Truncation of C-vines and D-vines

In order to reduce the number of levels of the pair-copula decompositions – and hence simplify the models – we apply
two different approaches: the truncation level is given as a parameter or it is determined by a model selection procedure
based on AIC or BIC (see Section 3.3.1.). We study the effect of both strategies in the Sphere and Summation
Cancellation functions, as examples of problems with week and strong correlated variables. The following algorithms
are compared:
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Table 7: Results of VEDA in Ackley with Xi ∈ [−30, 30], i = 1, . . . , 10.

Algorithm Success Population Evaluations Best Evaluation

CVEDA9, greedy, g 30/30 213 11, 984.8± 184.9 7.9E− 07± 1.5E− 07

DVEDA9, greedy, g 30/30 213 11, 920.9± 197.6 7.9E− 07± 1.3E− 07

Table 8: Results of VEDA in Summation Cancellation with Xi ∈ [−0, 16, 0, 16], i = 1, . . . , 10.

Algorithm Success Population Evaluations Best Evaluation

CVEDA9, greedy, g 30/30 625 84, 958.3± 786.0 1.0E + 05± 1.1E− 07

CVEDAN, 9, greedy, g 30/30 319 43, 373.3± 539.5 1.0E + 05± 1.3E− 07

DVEDA9, greedy, g 30/30 1400 161, 840.0± 1, 352.5 1.0E + 05± 9.3E− 08

DVEDAN, 9, greedy, g 30/30 488 58, 494.9± 457.3 1.0E + 05± 1.3E− 07

• CVEDA3, greedy, g and DVEDA3, greedy, g truncate the vines at the third tree.

• CVEDA6, greedy, g and DVEDA6, greedy, g truncate the vines at the sixth tree.

• CVEDAAIC, greedy, g and DVEDAAIC, greedy, g determine the required number of trees using AIC.

• CVEDABIC, greedy, g and DVEDABIC, greedy, g determine the required number of trees using BIC.

The results of the experiments in Sphere and Summation Cancellation are presented in Tables 9 and 10, respectively.
The main results are summarized in the following points:

1. The algorithms that use the truncation strategy based on AIC or BIC exhibit a more robust behavior.

The necessary number of trees depends on the characteristics of the function being optimized. In the Sphere
function, a small number of trees is quite enough, while in Summation Cancellation it is preferable to expand
the pair-copula decomposition completely. In both functions the better results are obtained when the truncation
level is determined by a model selection procedure based on AIC or BIC, since cutting the model arbitrarily
could cause that important dependences are not represented. The latter was the strategy applied in [45], where
a D-vine with normal copulas was only expanded up to the second tree. A combination of both strategies could
be an appropriate solution.

2. For VEDA the truncation method based on AIC is preferable than the truncation based on BIC.

In the Sphere function, the vine-based EDAs that use truncation based on BIC perform better than those based
on AIC. The opposite occurs in Summation Cancellation, where DVEDABIC, greedy, g fail in the 30 runs. Both
situations are caused by the term that penalizes the number of parameters in these metrics. BIC prefers models
with less number of copulas than AIC [12], which is good for Sphere, but compromises the convergence of the
algorithms in Summation Cancellation. The algorithms using AIC have a good performance in both functions.
Specifically, in Sphere the number of trees was never greater than three with CVEDA and four with DVEDA; in
Summation Cancellation both algorithms perform complete construction of the vines (nine trees).

In the following section, we study the importance of the selection of the bivariate dependences explicitly modeled in
the first tree of C-vines and D-vines.
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Table 9: Results of VEDA with truncation in Sphere with Xi ∈ [−600, 600], i = 1, . . . , 10.

Algorithm Success Population Evaluations Best Evaluation

CVEDA3, greedy, g 30/30 175 7, 536.6± 151.9 6.5E− 07± 2.2E− 07

CVEDA6, greedy, g 30/30 191 8, 174.8± 176.6 6.7E− 07± 1.9E− 07

CVEDAAIC, greedy, g 30/30 163 7, 106.8± 139.3 6.6E− 07± 2.0E− 07

CVEDABIC, greedy, g 30/30 113 5, 017.2± 134.6 6.8E− 07± 1.6E− 07

DVEDA3, greedy, g 30/30 191 8, 149.3± 161.2 6.5E− 07± 1.8E− 07

DVEDA6, greedy, g 30/30 207 8, 818.2± 128.6 6.9E− 07± 1.8E− 07

DVEDAAIC, greedy, g 30/30 163 6, 992.7± 144.2 6.5E− 07± 1.9E− 07

DVEDABIC, greedy, g 30/30 138 6, 026.0± 127.2 7.0E− 07± 2.2E− 07

Table 10: Results of VEDA with truncation in Summation Cancellation with Xi ∈ [−0, 16, 0, 16], i = 1, . . . , 10.

Algorithm Success Population Evaluations Best Evaluation

CVEDA3, greedy, g 0/30 2000 500, 000.0± 0.0 2.6E + 03± 3.4E + 03

CVEDA6, greedy, g 0/30 2000 500, 000.0± 0.0 3.7E + 04± 3.2E + 04

CVEDAAIC, greedy, g 30/30 650 90, 003.3± 1, 262.8 1.0E + 05± 1.2E− 07

CVEDABIC, greedy, g 30/30 800 108, 506.6± 1, 647.3 1.0E + 05± 9.8E− 08

DVEDA3, greedy, g 0/30 2000 500, 000.0± 0.0 8.4E + 04± 2.5E + 04

DVEDA6, greedy, g 10/30 2000 412, 133.3± 12, 8711.1 9.9E + 04± 1.7E + 02

DVEDAAIC, greedy, g 30/30 1300 152, 750.0± 1, 404.1 1.0E + 05± 1.0E− 07

DVEDABIC, greedy, g 26/30 2000 285, 000.0± 100, 221.0 9.9E + 04± 6.9E− 03

4.3.3. Selection of the Structure of C-vines and D-vines

The aim of this section is to assess the importance of selecting an appropriate ordering of the variables in the pair-
copula decomposition for the optimization with vine-based EDAs.

Here we repeat the experiments with Sphere and Summation Cancellation, but this time the variables in the first
tree in the decomposition are ordered randomly instead of representing the strongest bivariate dependences. The
instances of the algorithms selected in these experiments are those that showed the best performance in the truncation
experiments of the previous section. The results are presented in Tables 11 and 12.

In the Sphere function, the algorithms that use a random structure exhibit a better performance, since the number
of product copulas that are fitted is greater. In this case, the estimated model resembles independence model used by
UMDA, which indeed exhibits the best performance with the Sphere function. The opposite occurs with Summation
Cancellation, where the use of a random structure in the first tree causes that important correlations for an efficient
search are not represented, which deteriorates the performance of the algorithms in terms of the number of function
evaluations. The main conclusion of this part is that it is necessary to make a careful selection of the structure of the
pair-copula decomposition. The representation of the strongest dependences is important in order to construct more
robust vine-based EDAs.
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Table 11: Results of VEDA with a random selection of the structure of the first tree of the vines at each generation in
Sphere with Xi ∈ [−600, 600], i = 1, . . . , 10.

Algorithm Success Population Evaluations Best Evaluation

CVEDABIC, random, g 30/30 100 4, 523.3± 100.6 6.9E− 07± 1.8E− 07

DVEDABIC, random, g 30/30 100 4, 526.6± 114.2 6.6E− 07± 1.6E− 07

Table 12: Results of VEDA with a random selection of the structure of the first tree of the vines at each generation in
Summation Cancellation with Xi ∈ [−0, 16, 0, 16], i = 1, . . . , 10.

Algorithm Success Population Evaluations Best Evaluation

CVEDAAIC, random, g 30/30 775 110, 360.0± 2, 020.9 1.0E + 05± 1.1E− 07

DVEDAAIC, random, g 30/30 1500 255, 900.0± 5, 205.7 1.0E + 05± 1.2E− 07

5. RELATED WORK

For the sake of completeness, we present in this section a short review of representative EDAs based on copulas, with
particular attention to EDAs based on copula factorizations because of their relevance to this paper.

The research on EDAs based on multivariate copulas has been focused on the use of multivariate elliptical copulas
and Archimedean copulas. The algorithms described in [51, 3, 6] are based on the multivariate normal copula with
differences in the estimation of the marginal distributions and the use of additional techniques such as variance scaling.
An EDA based on the bivariate normal copula and normal marginal distributions is presented in [55], being an alter-
native formulation of EMNA. On the other hand, the algorithms presented in [54, 19] use exchangeable Archimedean
copulas.

Several EDAs based on factorized copulas – such as empirical factorizations, nested Archimedean copulas and
pair-copula constructions – have been studied. The EDA introduced in [44] constitutes an extension of the Mutual
Information Maximization for Input Clustering (MIMIC) algorithm for continuous domains [34, 35] that uses bivariate
copulas instead of bivariate normal distributions in the chain structure. Building from nested Archimedean copulas,
an EDA that uses a representation of hierarchically nested Archimedean copulas based on Lévy subordinators is
presented in [56]. Also, the use of bivariate empirical copulas and a multivariate extension of Archimedean copulas is
investigated in [14].

The class of VEDAs studied in this paper is introduced in [50, 23] with two instances based on C-vines and D-
vines, respectively. The algorithm presented in [45] also uses a D-vine model, but only normal copulas are fitted in
the first two trees and conditional independence is assumed in the rest of the trees – i.e. the D-vine is always truncated
at the second tree. Although it is stated in [45] that for practical purposes it is not necessary to build the complete
D-vine, it was illustrated in Section 4.3.2. that the arbitrary selection of the number of trees in the vines compromises
the convergence of the EDA. In [45], the selection of the structure of the D-vine is based on the minimization of the
Kullback-Leibler divergence between the true unknown density function and the density function estimated using the
truncated D-vine factorization.

The algorithm presented in [46] constitutes an extension to the continuous domain of the EDA based on discrete
dependency trees described in [5]. This EDA employs a dependency tree along with bivariate copulas. The algorithm
selects the copula that best fits a bivariate sample among six candidate copulas. The strategy followed to learn the tree
structure is in the same spirit of [44] – i.e. to minimize the Kullback-Leibler divergence. This is achieved by finding
the tree that results in the highest pairwise mutual information through a minimum spanning tree.
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6. CONCLUSIONS

This paper presents an study of a class of EDAs called VEDAs. In particular, two algorithms of this class are inves-
tigated: CVEDA and DVEDA, which model the search distributions using C-vines and D-vines, respectively. The
copula EDAs based on vines are more flexible than those based on the multivariate product and normal copulas, be-
cause the PCC models can describe a richer variety of dependence patterns. Our empirical investigation confirms the
robustness of CVEDA and DVEDA in both strong and weak correlated problems.

We have found that building the complete structure of the vine is not always necessary. However, cutting the
model at a tree selected arbitrarily could cause that important dependences are not represented. A more appropriate
global strategy could be to combine setting a maximum number of trees with a model selection technique, such as
the truncation method based on AIC or BIC. We also found that it is important to make a conscious selection of the
pairwise dependences represented explicitly in the model.

Our findings show that both the statistical properties of the margins and the dependence structure play a crucial
role in the success of optimization. The use of copulas and vines in EDAs represents a new way to deal with more
flexible search distributions and different sources of complexity that arise in optimization.

As future research we consider to extend the class of VEDAs with regular vines. Our algorithms have been used in
the optimization of test functions, such as the ones proposed in CEC-2005 benchmark [53]. In general, these functions
display independence or linear correlations. In the future, we will seek problems with relevant dependences to the vine
models studied in this work.

7. *APPENDICES

A EXPRESSIONS OF THE H AND H−1 FUNCTIONS OF VARIOUS BIVARIATE COPULAS

The pair-copulas used in this work are product, normal, Student’s t, Clayton, rotated Clayton, Gumbel and rotated
Gumbel. This appendix contains the definition of these copulas and the h and h−1 functions required to use this
copulas in pair-copula constructions.

The Bivariate Product Copula

An immediate consequence of Sklar’s theorem is that two random variables are independent if and only if their under-
lying copula is CI (u, v) = uv. For this copula hI(x, v) = x and h−1I (u, v) = u.

The Bivariate Normal Copula

The distribution function of the bivariate normal copula is given by

CN(u, v; ρ) = Φρ(Φ
−1(u),Φ−1(v)),

where Φρ is the bivariate normal distribution function with correlation parameter ρ and Φ−1 is the inverse of the
standard univariate normal distribution function. For this copula the h and h−1 functions are

hN (x, v; ρ) = Φ

(
Φ−1 (x)− ρΦ−1 (v)√

1− ρ2

)
,

h−1N (u, v; ρ) = Φ
(

Φ−1 (u)
√

1− ρ2 + ρΦ−1 (v)
)
.

The derivation of these formulas are given in [1].
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The Bivariate Student’s t Copula

The distribution function of the bivariate Student’s t copula is given by

Ct(u, v; ρ, ν) = tρ,ν(t−1ν (u), t−1ν (v)),

where tρ,ν is the distribution function of the bivariate Student’s t distribution with correlation parameter ρ and ν
degrees of freedom and t−1ν is the inverse of the univariate Student’s t distribution function with ν degrees of freedom.
For this copula the h and h−1 functions are

ht (x, v; ρ, ν) = tν+1

 t−1ν (x)− ρ t−1ν (v)√(
ν+(t−1

ν (v))
2
)
(1−ρ2)

ν+1

 ,

h−1t (u, v; ρ, ν) = tv

t−1v+1 (u)

√√√√(ν +
(
t−1ν (v)

)2)
(1− ρ2)

ν + 1
+ ρ t−1ν (v)

 .

The derivation of these formulas are given in [1].

The Bivariate Clayton Copula

The distribution function of the bivariate Clayton copula is given by

CC (u, v; θ) =
(
u−θ + v−θ − 1

)−1/θ
, (A8)

where θ > 0 is a parameter controlling the dependence. Perfect dependence is obtained when θ → ∞, while θ → 0
implies independence. For this copula the h and h−1 functions are

hC (x, v; θ) = v−θ−1
(
x−θ + v−θ − 1

)−1−1/θ
,

h−1C (u, v; θ) =
((
uvθ+1

)−θ/(θ+1)
+ 1− v−θ

)−1/θ
.

The derivation of these formulas are given in [1].

The Bivariate Rotated Clayton Copula

The bivariate Clayton copula, as defined in (A8), can only capture positive dependence. Following the transformation
used in [12], we consider a 90 degrees rotated version of this copula. The distribution function of the bivariate rotated
Clayton copula is obtained as

CRC(u, v; θ) = u− CC(u, 1− v;−θ),

where θ < 0 is a parameter controlling the dependence and CC denotes the distribution function of the bivariate
Clayton copula. For this copula the h and h−1 functions are

hRC(x, v; θ) = hC(x, 1− v;−θ)

and
h−1RC (u, v; θ) = h−1C (u, 1− v;−θ),

where hC and h−1C denote the expressions of the h and h−1 functions for the bivariate Clayton copula.
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The Bivariate Gumbel Copula

The distribution function of a bivariate Gumbel copula is given by

CG(u, v; θ) = exp

(
−
(

(− log u)
θ

+ (− log v)
θ
)1/θ)

,

where θ ≥ 1 is a parameter controlling the dependence. Perfect dependence is obtained when θ → ∞, while θ = 1
implies independence. The h function is

hG (x, v; θ) = CG (x, v; θ)
1

v
(− log v)

θ−1
[
(− log x)

θ
+ (− log v)

θ
]1/θ−1

,

but h−1G cannot be written in closed form; therefore, we obtain it numerically using Brent’s method [13]. The derivation
of these formulas are given in [1].

The Bivariate Rotated Gumbel Copula

The bivariate Gumbel copula can only represent positive dependence. As for the bivariate Clayton copula and follow-
ing the transformation used in [12], we also consider a 90 degrees rotated version of the bivariate Gumbel copula. The
distribution function of the bivariate rotated Gumbel copula is defined as

CRG(u, v; θ) = u− CG(u, 1− v;−θ),

where θ < −1 is a parameter controlling the dependence and CG denotes the distribution function of the bivariate
Gumbel copula. For this copula the h and h−1 functions are

hRG(x, v; θ) = hG(x, 1− v;−θ)

and
h−1RG(u, v; θ) = h−1G (u, 1− v;−θ),

where hG and h−1G denote the expressions of the h and h−1 functions for the bivariate Gumbel copula.
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