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ABSTRACT 

We study a batch arrival single server queueing system, where the server (service channel) provides one by one general 

service to customers. It is assumed that the service channel goes through random failures from time to time.  As the 

result of a breakdown, the service of a customer in service is suspended, the service channel waits for the repairs to start 
and this waiting time termed as ‘delay time’ is assumed to be general.  Further, the repair process involves two phases of 

repairs with different general repair time distributions. We derive the queue size distribution as well as mean number of 

customers in the system at a random epoch under the steady state conditions. In addition, we discuss some particular 
cases and derive some known results known earlier.  
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RESUMEN 

Estudiamos el arribo de paquetes a un servidor de colas simple, donde el servidor (canal de servicio) provee de un 
servicio general a los clientes del tipo uno-a-uno. Se asume que el canal de servicio transita por fallos aleatorios de 

ocasión en ocasión como resultado de las interrupciones.  Como resultado de las interrupciones, el servicio al cliente se 

suspende, el canal de servicio se pone en espera de la reparación y el tiempo de espera, llamado tiempo de atraso, se 
asume como general.  Además, el proceso de reparación contiene dos fases de reparación con diferentes distribuciones 

de los tiempos de reparación. Derivamos la distribución del tamaño de la cola así como el número medio de clientes en 

el sistema en un periodo aleatorio bajo condiciones de fijas de estado. Adicionalmente , discutimos algunos casos 

particulares y derivamos algunos resultados conocidos previamente. 

 

1.  INTRODUCTION 

 

Sudden failure or a breakdown of a system or the service channel is common in many queueing 

situations. As a result of a sudden breakdown, the service of a customer or a unit undergoing service 

has to be suspended and the customers have to wait till the server returns to the system or the system 

becomes operable again. Consequently, such failures have a definite effect on the system, particularly 

on the queue length and customers’ waiting time in the system.   

Among some earlier papers on service interruptions, we refer the reader to Gaver [3], Avi-Itzhak and 

Naor [1], Thiruvengadan [11] and Madan [6]. Li et al. [5], Sengupta [9], Takine and Sengupta [10] and 

Towsley and Tripathy [12] have studied some queueing systems with service interruptions and Madan 

[8] has studied a queueing system with time-homogeneous server breakdowns and deterministic repair 

time. Dorda [2] has studied a finite single-server queueing system subjected to breakdowns where 

customers’ interarrival and service times follow the Erlang distribution defined with certain fixed 

parameters and the times of failures and repairs are exponentially distributed.  

Most of these and other systems assume single (one by one) arrivals and they further assume that as 

soon as the service channel fails, the repairs start instantly. We further assume that the repairs on the 

service channel do not start immediately after a breakdown. Rather, the service channel has to wait for 

the repairs to start, which is a much more realistic assumption in many real-life queueing situations. 

This delay in starting repairs may occur due to the non-availability of the repairmen or the necessary 

apparatus needed for the repairs. This type of delay time was earlier introduced by Madan [7] in an 

M/M/1 queue with random breakdowns, general delay time and exponential repair time. Choudhury 
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and Tadj [13] investigated an M/G/1 queuing system with Poisson arrival process, general service 

times and a second optional service channel subjected to general random breakdowns and general 

delayed repair times. Wang [14] studied an M/G/1 queue with an exponentially distributed second 

optional service and random breakdowns with generally distributed repair time but without delay time. 

However, in the present paper we attempt a wider generalization of the problem in which we assume 

that the system receives input of customers in batches of variable size and the service times as well as 

the delay times have general distributions. Recently Khalaf et al. [4] have studied such a system with 

general delay times and general repair times. However, the present paper is different from Khalaf et al. 

[4] in the scene that we consider two phases of repairs with different general repair time distributions 

and the most important new assumption is the time-homogeneous failures which means that the service 

channel can fail not only while working, it may also fail even when it is in the idle state. For such time-

homogeneous failure the reader is referred to Madan [8]. Thus all the four random variables namely, 

the service times, the delay times, repair times of phase 1 and the repair times of phase 2 follow general 

probability distributions. Further we denote our model as   1/,/)(/)(/ 21 RRGDGRBGM X
 

queue, where )(RBG  denotes general service with random breakdowns, )(DG  denotes general 

delay time and  21, RRG  denotes the two phases of different general repair times.   

 

2.  DESCRIPTION OF THE MATHEMATICAL MODEL  

 

We consider a batch arrival queueing system, where arrivals occur according to a compound Poisson 

process with the batch size random variable X. The server provides one by one service to customers on 

a first-come first-served basis, and the service time random variable S  of a customer follows a general 

probability law with distribution function )(xS , Laplace-Stieltjes Transform )(* S  and finite 

moments )( kSE , .1k   It is further assumed that the server is subject to random breakdowns such 

that dt  is the first order probability that the service channel will fail during the short interval of time 

],( dttt  . As soon as the server breaks down, it has to wait for the repairs to start. We define this 

waiting time as the delay time and assume that the delay time random variable D  follows a general 

probability law with distribution function )(xD , Laplace-Stieltjes Transform )(* D  and finite 

moments )( kDE , .1k   Next, we assume that the repair process comprises of two phases of 

repairs, the first phase followed by the second phase. Let the repair time random variables 1R  and 2R  

of the two phases of repairs follow different general probability law with distribution functions )(1 xR  

and )(2 xR , Laplace-Stieltjes transforms )(
*

1 R  and )(
*

2 R  and finite moments )(
1

k
RE  and 

)(
2

k
RE , respectively, .1k  As soon as the second phase of repairs is complete, the server begins 

serving units, starting with the unit whose service was interrupted due to the breakdown. Further, it is 

assumed that the inter-arrival time, the service time, the delay time, the first phase repair time and the 

second phase repair time are all mutually independent of each other. 

 

3.  STEADY STATE EQUATIONS GOVERNING THE SYSTEM 

 

In this section, we first set up the system state equations for the distribution of the queue size (the 

number of customers in the queue including the one being served, if any) at a random epoch by treating 

the elapsed service time, the elapsed delay time, the elapsed repair time of phase 1 and the elapsed 

repair time of phase 2 as supplementary variables. Then we solve these equations and derive the 

probability generating function (PGF) of the queue size. Assuming that the system is in the steady 

state, we define the following:  

 batch arrival rate, X batch size (a random variable), ka  Pr[ kX  ], 





1

)(
k

k

k azzX , 

the PGF of X, and )]1)...(1([][ ][  kXXXEXE k ,  the k-th factorial moment of X. 

Further, it may be noted that since )(xS , )(xD , )(1 xR  and )(2 xR  are distribution functions, we 

have 0)0( S , 1)( S , 0)0( D , 1)( D , 0)0(1 R , and 1)(1 R . Moreover, since 
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)(xS , )(xD , )(1 xR  and )(2 xR  are continuous at x=0, we see that 
)(1

)(
)(

xS

xSd
dxx


 , 

)(1

)(
)(

xD

xDd
dxx


 , 

)(1

)(
)(

1

1
1

xR

xdR
dxx


  and 

)(1

)(
)(

2

2
2

xR

xRd
dxx


  are the first order 

differential functions (hazard rates) of )(xS , )(xD , )(1 xR  and )(2 xR , respectively. 

At any time ''t , let )(tNQ be the queue size (including a customer in service, if any), )(
0

1 tS  be the 

elapsed service time at time ''t , )(0 tD be the elapsed delay time, )(0

`1 tR be the elapsed repair time of 

phase 1 and )(0

2 tR be the elapsed repair time of phase 2. For further development of this model, we 

use these supplementary variables to obtain bivariate Markov process )}(),({ tLtNQ , where )(tL  is 

defined as follows:   

 

)(tL















'.'),(

'.'),(

,''),(

,'',)(

,'',0

0

2

0

1

0

0

ttimeatrepairsunderisservertheiftR

ttimeatrepairsunderisservertheiftR

ttimeatstarttorepairsforwaitingisservertheiftD

ttimeatserviceprovidingbusyisservertheiftS

ttimeatidleisservertheif

 

 

For ,0x  define the following 

 

Pr)( tQ [ ,0)( tNQ 0)( tL ], 

Pr);( dxtxWn [ ,)( ntNQ  );()( 0 tStL   dxxtSx  )(0
], 1n , 

Pr);( dxtxF D

n [ ,)( ntNQ  );()( 0 tDtL   dxxtDx  )(0
], 0n , 

Pr);(1 dxtxF R

n [ ,)( ntNQ  );()(
0

1 tRtL   dxxtRx  )(
0

1 ], 0n , 

Pr);(2 dxtxF R

n [ ,)( ntNQ  );()(
0

2 tRtL   dxxtRx  )(
0

2 ], 0n . 

Now, to perform the analysis of the limiting behaviour of this queueing process at a random epoch with 

the help of Kolmogorov forward equations we assume that the following steady state probabilities exist 

and are independent of the initial state:  




t
LimQ )(tQ , 




t
n LimdxxW )( ,);( dxtxWn ,0x 1n , 




0

)( dxxWW nn , 




t

D

n LimdxxF )( ,);( dxtxF D

n ,0x 0n ,  



0

)( dxxFF D

n

D

n , 

     



t

R

n LimdxxF )(1  ,);(1 dxtxF R

n ,0x 0n ,  



0

)(11 dxxFF R

n

R

n , 

 

      



t

R

n LimdxxF )(2  ,);(2 dxtxF R

n ,0x 0n , 



0

)(22 dxxFF R

n

R

n . 

 

Then using the usual arguments for various transition probabilities of the system, we have the 

following set of Kolmogorov forward equations under the steady state conditions: 
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  



n

k

knknn xWaxWxxW
dx

d

1

),()()()(   ,0x  1n ,                                   (3.1) 

  



n

k

D

knk

D

n

D

n xFaxFxxF
dx

d

1

),()()()(   ,0x  1n ,                                   (3.2) 

  0)()()( 00  xFxxF
dx

d DD  , ,0x                                       (3.3) 

  



n

k

R

knk

R

n

R

n xFaxFxxF
dx

d

1

1 ),()()()( 111   ,0x  1n ,                              (3.4) 

  0)()()( 11

010  xFxxF
dx

d RR  , ,0x                                                (3.5) 

  



n

k

R

knk

R

n

R

n xFaxFxxF
dx

d

1

2 ),()()()( 222   ,0x  1n ,                             (3.6) 

  0)()()( 22

020  xFxxF
dx

d RR  , ,0x                                      (3.7) 

   
 


0 0

201 )()()()( 2 dxxxFdxxxWQ R  ,                                                          (3.8) 

where 0)(0 xW  occurring in equation (3.1).  

The above set of equations is to be solved under the following boundary conditions at x = 0: 

 




 
0

2

0

1 ,)()()()()0( 2 dxxxFdxxxWQaW R

nnnn   1n ,                                   (3.9) 

n

D

n WF )0( ,  1n ,  where 



0

)( dxxWW nn                                                           (3.10) 

QF D )0(0 ,                                                                                                                      (3.11) 

,)()()0(
0

1 


 dxxxFF D

n

R

n   0n  ,                                                                   (3.12) 

,)()()0(
0

1
12 



 dxxxFF R

n

R

n   0n  ,                                                                   (3.13) 

 

and the normalizing condition  

 

1)()()()(
0 00 0 0 01 0

21   








 









n

R

n

n n

R

n

D

n

n

n dxxFdxxFdxxFdxxWQ ,             (3.14) 

where 



0

)( dxxWW nn . 

 

4.  QUEUE SIZE DISTRIBUTION AT A RANDOM EPOCH 

 

Next, we define the following probability generating functions: 

 







1

),();(
n

n

n xWzzxW  x>0, 





1

),0();0(
n

n

nWzzW  1|| z ,                                            (4.1) 
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





0

),();(
n

D

n

nD xFzzxF  x>0, 





0

),0();0(
n

D

n

nD FzzF  1|| z ,                                        (4.2) 







0

),();( 11

n

R

n

nR xFzzxF x>0, 





0

),0();0( 11

n

R

n

nR FzzF  1|| z ,                                     (4.3) 







0

),();( 22

n

R

n

nR xFzzxF x>0, 





0

),0();0( 22

n

R

n

nR FzzF  1|| z ,                         (4.4) 







1

)(
n

n

nWzzW ,                       (4.5) 

 dxzxFzF DD





0

),()( ,                     (4.6) 

dxzxFzF RR





0

),()( 11 ,                     (4.7) 

dxzxFzF RR





0

),()( 22 .                    (4.8)  

 

We multiply equations (3.1) - (3.7) and (3.9) – (3.13) by suitable powers of z, use equations (4.1) 

through (4.4) and (3.8) and simplify. Thus, we obtain 

 

  0),()()(),(  zxWxzXzxW  ,                                            (4.9) 

  0),()()()(  zxFxzXxF DD  ,                                            (4.10) 

                   

  0),()()()( 11

1
 zxFxzXxF RR  ,                     (4.11) 

  0),()()()( 22

2  zxFxzXxF RR  ,                                           (4.12) 

   



0

)(),(1)(),0( dxxzxWzQzXzWz  + 


0

2 )(),(2 dxxzxFz R  ,             (4.13) 

)(),0( zWQzF D   ,                                                                                                     (4.12)                                                             

,)(),(),0(
0

1 


 dxxzxFzF DR   0n  ,                                                                             (4.15) 

,)()(),0(
0

1
12 



 dxxxFzF RR   0n .                                                             (4.16) 

 

Next, we integrate equations (4.9) – (4.12) between the limits 0 and x and obtain 

 

  







 

x

dttxzXzWzxW
0

)()(exp),0(),(  ,               (4.17) 

  







 

x

DD dttxzXzFzxF
0

)()(exp),0(),(  ,               (4.18) 

  







 

x

RR dttxzXzFzxF
0

1 )()(exp),0(),( 11  ,                (4.19) 
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  







 

x

RR dttxzXzFzxF
0

2 )()(exp),0(),( 22  .                  (4.20) 

 

We again integrate equations (4.17) to (4.20) with respect to x by parts and get 

 

 


















)(

)(1
),0()(

*

zX

zXS
zWzW  ,                              (4.21) 

 

where   )()(
0

))((* xdSezXS xzX




   is the Laplace–Steiltjes is transform of the 

service time,  

 

 














)(

)(1
),0()(

*

zX

zXD
zFzF DD




,                 (4.22) 

 

where   )()(
0

))((* xDdezXD xzX




   is the Laplace –Steiltjes transform of the delay times, 

 

 



















)(

)(1
),0()(

*
1

1

zX

zXR
zFzF DR




,                                (4.23) 

 

where   )()( 1

0

))((*

1 xdRezXR xzX




   is the Laplace –Steiltjes transform of the phase 1 repair 

time, and  

 

 



















)(

)(1
),0()(

*

222

zX

zXR
zFzF RR




,                 (4.24) 

 

where   )()( 2

0

))((*

2 xRdezXR xzX




   is the Laplace –Steiltjes transform of the phase 2 repair 

time. 

Now, we shall determine the integrals ,)(),(
0




dxxzxW  ,)(),(
0




dxxzxF D   




0

1 )(),(1 dxxzxF R  , and 


0

2 )(),(2 dxxzxF R   appearing in the right side of equations (4.13), 

(4.15) and (4.16). For this purpose, we multiply equations (4.17) to (4.20) by 

)(x , )(x , )(1 x and )(2 x respectively, integrate with respect to x and obtain 

 

  


)(),0()(),( *

0

zXSzWdxxzxW ,                (4.25) 

 )(),0()(),( *

0

zXDzFdxxzxF DD  


,                 (4.26) 
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 )(),0()(),(
*

1

0

1
1 zXRzFdxxzxF

RR  


,                (4.27) 

 )(),0()(),(
*

2

0

2
22 zXRzFdxxzxF RR  



.                 (4.28) 

 

Now using equations (4.25) to (4.28) in equations (4.13) to (4.16), we get on simplifying 

 

 

      )(),0()(),0()( *

2

* 2 zXRzFzQzzXzWzXSz R    ,          (4.29) 

 

 )(),0(),0( *1 zXDzFzF DR    ,                  (4.30) 

 )(),0(),0( *

1
12 zXRzFzF RR   .                   (4.31) 

 

Next we use )(),0( zWQzF D   from (4.14) into (4.30) and obtain 

 

   )()(),0( *1 zXDzWQzF R   .                (4.32) 

 

Then using    )()(),0( *1 zXDzWQzF R    from (4.32) into (4.31) we get 

 

     )()()(),0( *
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Next substituting the value of ),0(2 zF R
from (4.33) into equation (4.29) and obtain on simplifying 
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Next, we use equation (4.34) in (4.21) and simplify. Thus we obtain 
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We note that (4.35) gives the PGF of the probability that the server is busy providing service.  

Then we substitute )(),0( zWQzF D   from (4.14) into (4.22) and get  
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where W (z) is given by (4.35). Note that (4.36) gives the PGF for the probability that the server is 

down and waiting for repairs to start. 

Next we use    )()(),0( *1 zXDzWQzF R    from equation (4.32) into 

equation (4.23), we get  
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where W (z) is given by (4.35). Note that this gives the PGF for the probability that the server is in 

phase 1 repairs. 

Then we use      )()()(),0( *

1

*2 zXRzXDzWQzF R   from equation (4.33) 

into equation (4.24) we get 
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 where W (z) is given by (4.35). Note that this is the PGF for the probability that server is in phase 2 

repairs. 

In order to determine the only unknown quantity Q, we would use the normalizing condition (3.14), 

which is equivalent to 1)1()1()1()1( 21  RRD FFFWQ . 

Now from (4.35) we obtain 
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Using (4.39) into (4.36) to (4.38) we obtain  
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Next, using (4.39) to (4.42) into the normalizing condition 

1)1()1()1()1( 21  RRD FFFWQ , and simplifying we obtain 
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where 
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Note that (4.44 a) is the stability condition under which the steady state solution exists. 

Next, if we substitute for Q  from (4.44) into (4.39) – (4.42), we obtain the following probabilities. 

The probability that the service channel is in the operating state, 
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Note that (4.45) also gives the utilization factor of the system.  

The probability that the service channel is in the failed state, waiting for repairs to start,  
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The probability that the service channel is in the failed state and is under phase 1 repairs, 

 

  )()()(1

)(
)1(

21

11

REREDE

RE
F R







,                                    (4.47) 

 

The probability that the service channel is in the failed state and is under phases 2 repairs 
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Now, we define the probability generating function of the queue size distribution at a random epoch 

irrespective of the state of the system as follows: 

 

)()()()()( 21 zFzFzFzWQzP RRD  ,               (4.49) 

 

which can be obtained by adding equations (4.35) to (4.38) and (4.43) and simplifying.  

 

5. THE AVERAGE SYSTEM SIZE 

 

Let L  denote the mean system size at a random epoch. Then using the PGF )(zP  in equation (4.49) 

and after somewhat heavy algebra and simplification, we obtain  
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where )( RXE = 
 

)(2

)1(

XE

XXE 
 is the mean residual batch size. 

 

 6. SOME PARTICULAR CASES 

 

Case 1: One by one arrivals, exponential service times, exponential delay times, exponential 

repair times of phase 1 and exponential repair times of phase 2. 
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 1/),(/)(/)(/ 21 RRMDMRBMM   

 

The results for this case can be obtained from the main results obtained in sections 4 and 5 above by 
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            (6.4) 

where )(zW is given by (6.1).  
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where the stability condition is  
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Stability condition is  
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Case 2: No Second Phase Repairs   1/)(/)(/)(/
1

RGDGRBGM X
 

 

The results corresponding to this case can be obtained by substituting   1)(*

2  zXR    in the 

main results of section 4 and by putting, 0)( 2

2 RE  in (5.1).  

 

 Case 3: No Delay in Repairs to Start   1/),(/)(/ 21 RRGRBGM X
 



56 

 

The results corresponding to this case can be obtained by substituting   1)(*  zXD    in the 

main results of section 4 and by putting, 0)( 2 DE  in (5.1).  

 

 

Case 4: No Breakdowns  1//GM X
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where 
)(2

)(
)(

2

SE

SE
SE R   is the mean residual service time. 

The results in (6.18), (6.19) agree with the results of Gaver [6] for the ordinary 1// GM X
 queuing 

system without server breakdowns. 

 

7.  NUMERICAL EXAMPLES 

 

      
2

  )1(W  

1 4 0 1 0.25 

  1
    S.C. q

L  L  Q  )1(DF  )1(1RF  )1(2RF  

1 2 0.00 0.25 0.08 0.33 0.75 0.00 0.00 0.00 

5 10 0.00 0.25 0.08 0.33 0.75 0.00 0.00 0.00 

6 1 0.00 0.25 0.08 0.33 0.75 0.00 0.00 0.00 

0.2 2 0.00 0.25 0.08 0.33 0.75 0.00 0.00 0.00 

100 7 0.00 0.25 0.08 0.33 0.75 0.00 0.00 0.00 

10 25 0.00 0.25 0.08 0.33 0.75 0.00 0.00 0.00 

Table 1: When the failure rate 0 , the above table gives the results of an ordinary M/M/1 queue 

without breakdowns. Obviously the delay parameter   and the completion of the two phases of 

repairs parameters 1  and 2 have no effect. 

We base the following numerical examples on the results of particular case 1 in order to check the 

validity of our results and to see the effect of various parameters  involved in our model (namely the 

failure rate  , the delay parameter   and the completion of the two phases of repairs parameters 1  

and 2 ) on the utilization factor   and on  probabilities of various states of the system, namely 

probabilities of the idle state, the working state and the failure state waiting for  repairs to start, under 

repairs of phase 1 and under repairs of phase 2. We assume the fixed values of the arrival rate 1  
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and the service rate 4  and arbitrarily choose values of the other various parameters such that the 

stability condition (6.6) of the particular case 1 is not violated. We obtain the following numerical 

values which depict results as expected. 

 

        
1
  )1(W  

1 4 0.4 0.2 0.7 0.25 

2
    S.C. q

L  L  Q  )1(DF  )1(1RF  )1(2RF  

1 2.97 0.99 21.50 21.75 0.00 0.50 0.14 0.10 

1.1 2.94 0.99 21.17 21.42 0.00 0.51 0.15 0.09 

2 2.77 0.95 19.77 20.02 0.02 0.53 0.15 0.05 

20 2.59 0.91 18.43 18.68 0.03 0.56 0.16 0.01 

50 2.58 0.90 18.35 18.60 0.03 0.56 0.16 0.00 

200 2.57 0.90 18.31 18.56 0.03 0.56 0.16 0.00 

Table 2: For fixed values of ,   and 1 , we note that as 2  increases, the probability of the idle 

state Q increases and the average queue length L decreases. 

      
1
  

2
  )1(W  

1 4 1 3 2 0.25 

    S.C. q
L  L  Q  )1(DF  )1(1RF  )1(2RF  

0.5 2.83 0.97 8.09 8.34 0.01 0.52 0.09 0.13 

0.6 2.50 0.90 6.09 6.34 0.04 0.48 0.10 0.14 

1 1.83 0.77 2.98 3.23 0.10 0.35 0.12 0.18 

2 1.33 0.67 1.42 1.67 0.18 0.21 0.14 0.21 

50 0.85 0.57 0.56 0.81 0.29 0.01 0.18 0.27 

200 0.84 0.57 0.54 0.79 0.29 0.00 0.18 0.27 

Table 3: For fixed values of , 1  and 2 , we note that as   increases, the probability of the idle 

state Q increases and the average queue length decreases. 

      1
  

2
  )1(W  

1 4 5 5 5 0.25 

    S.C. q
L  L  Q  )1(DF  )1(1RF  )1(2RF  

0.1 0.06 0.28 0.11 0.36 0.69 0.02 0.02 0.02 

0.5 0.30 0.40 0.20 0.45 0.52 0.08 0.08 0.08 

1 0.60 0.52 0.32 0.57 0.38 0.13 0.13 0.13 

2 1.20 0.70 0.57 0.82 0.20 0.18 0.18 0.18 

3.5 2.10 0.88 0.96 1.21 0.07 0.23 0.23 0.23 

4.9 2.94 0.99 1.32 1.57 0.00 0.25 0.25 0.25 

Table 4: For fixed values of  , 1  and 2 , we note that as   increases, the probability of the idle 

state Q decreases and the average queue length L increases. 
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      
1
  

2
  

1 1 2 3 3 

    S.C. q
L  L  Q  )1(DF  )1(1RF  )1(2RF  )1(W  

2.3 1.17 0.96 1.59 2.02 0.03 0.23 0.15 0.15 0.43 

3 1.17 0.79 1.30 1.64 0.13 0.23 0.15 0.15 0.33 

4 1.17 0.63 1.13 1.38 0.21 0.23 0.15 0.15 0.25 

6 1.17 0.45 0.99 1.16 0.29 0.23 0.15 0.15 0.17 

10 1.17 0.29 0.90 1.00 0.36 0.23 0.15 0.15 0.10 

15 1.17 0.20 0.87 0.93 0.39 0.23 0.15 0.15 0.07 

Table 5: For fixed values of ,  , 1  and 2 , we note that as   increases, the probability of the 

idle state Q increases, the utilization factor   decreases and the average queue length L decreases. 
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