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             ABSTRACT 

Minimum Population Search is a new metaheuristic specifically designed for optimization of multi-modal problems. Its core 

idea is to guarantee full coverage of the search space with the smallest possible population. A small population increases the 
chances of convergence and the efficient use of function evaluations, but it can also induce the risk of premature convergence. 

To control convergence and provide diversification, thresheld convergence is used as a main component of this new 

metaheuristic. Computational results show that Minimum Population Search performs competitively against Particle Swarm 
Optimization, Differential Evolution, and Univariate Marginal Distribution Algorithm on a broad range of multi-modal 

problems.  
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RESUMEN 

Búsqueda de Población Mínima es una nueva metaheurística específicamente diseñada para la optimización de funciones multi-
modales. La idea fundamental consiste en garantizar la búsqueda en todas las dimensiones del espacio con la menor población 

necesaria. Una población pequeña aumenta las probabilidades de convergencia y el uso eficiente de las evaluaciones de la 

función objetivo, pero también aumenta el riesgo de una convergencia prematura. Para controlar la convergencia y promover la 
exploración la técnica de thresheld convergence constituye uno de los componentes fundamentales de esta metaheurística. Los 

resultados computacionales muestran que Búsqueda de Población Mínima es competitiva respecto a otros algoritmos en un 

amplio espectro de funciones multi-modales. 

 

1. INTRODUCTION 

From basic geometry, two points define a line, three points define a plane, and n points define an n-1 

dimensional hyperplane. If the population size (n) of an evolutionary algorithm is smaller than the 

dimensionality of the problem (d), then its population will define an n-1 dimensional hyperplane. New 

solutions generated strictly from the line segments formed among the population members (e.g. difference 

vectors, attraction vectors, mid-point crossover, etc) will “get trapped” inside this n-1 dimensional hyperplane 

which is a subset of the complete search space. This is an important consideration since line segments are a 

key aspect of many optimization techniques such as Nelder-Mead (NM) [12], Differential Evolution (DE) 

[18], and Particle Swarm Optimization (PSO) [3], [11]. 

In metaheuristics where the main search mechanisms are based on line segments, the population size needs to 

be larger than the dimensionality of the problem to avoid limiting search to an n-1 dimensional hyperplane. 

The Nelder-Mead algorithm is a clear example: a simplex of n = d+1 is required for a d-dimensional search 

space. In DE and PSO, the primary mechanisms of difference vectors and attraction vectors act within the n-1 

dimensional hyperplane defined by the n population members. If population size is smaller than the 
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dimensionality of the problem (n < d), then secondary search mechanisms become responsible for generating 

new solutions outside the hyperplane. In PSO, the secondary mechanism is the “random vectors” of ε1 and ε2. 

In DE, it is the use of a crossover operator which acts on the axial dimensions as opposed to the population’s 

hyperplane.  

To guarantee the effectiveness of the difference/attraction vectors, the recommended population size for these 

metaheuristics is usually larger than the dimensionality of the problem [14]. However, large populations may 

affect a metaheuristic’s scalability and/or its ability to converge with a limited budget of function evaluations 

(FEs). Conversely, if the population is too small, then the metaheuristic may be prone to premature 

convergence and may even be unable to cover the entire search space (i.e. when n < d as is often the case for 

large d). 

Minimum Population Search (MPS) has been specifically designed to address this issue of scalability [2]. 

Using a population size equal to the dimensionality of the problem (n = d), new solutions are generated using 

difference vectors to be in a d-1 dimensional hyperplane. Full coverage of the search space is then achieved 

by taking a subsequent step that is orthogonal to this hyperplane. Calculating a vector orthogonal to two or 

three vectors is simple, but the computational cost increases rapidly for higher dimensions. Building up from 

the original design of MPS in two dimensions, this paper analyzes how to alleviate the costs associated with 

calculating the orthogonal step and still maintain an effective and methodical search into the full 

dimensionality of a problem’s search space while using a relatively small population. In the process, 

Minimum Population Search is formally defined and introduced as a new metaheuristic. 

The next two sections present a background on population-based heuristics and the initial development of 

Minimum Population Search. In Section 4, several options to extend MPS from two dimensions are analyzed. 

The design and implementation of the final, recommended version is described in Section 5, and 

computational results are presented in Section 6. A discussion about the new metaheuristic is carried out in 

Section 7 before the paper is summarized in Section 8. 

 

2. BACKGROUND 

Population size is a fundamental parameter in the performance of population-based heuristics. Larger 

populations promote exploration, but they also allow fewer generations, and this can reduce the chance of 

convergence. Searching with a small population can increase the chances of convergence and the efficient use 

of function evaluations, but it can also induce the risk of premature convergence [14]. The optimum size may 

depend on several factors such as the characteristics of the objective function, the dimensionality of the search 

space, or the underlying search strategy. When optimizing multi-modal functions, metaheuristics can benefit 

from the increased exploration of larger populations which helps them escape/avoid local optima. As 

dimensions increase, it is also common to increase the population size in order to cover more regions of the 

search space. Whether the metaheuristic relies on statistical methods, recombination of building blocks, or 

difference vectors will also influence the optimal population size. 

The selection of the population size has been extensively addressed in the literature, and a brief review of the 

previous work reveals that there are many differing recommendations. For example, on typical problem 

dimensions (e.g. d = 1-100), a simple guideline for Differential Evolution is to use a population size that is ten 

times the dimensionality of the search space [17]. One of the most popular standards for Particle Swarm 

Optimization [3] uses a constant population size of n = 50. Estimation of Distribution Algorithms (EDA) 

usually require much larger populations of up to 2000 members [13]. 

If the risk of premature convergence can be avoided, then a population-based heuristic could benefit from the 

efficiency and faster convergence rate of a smaller population. To avoid premature convergence, it is 

important to have a diversified population. By including techniques for explicitly increasing diversity and 

exploration, it is possible to have smaller populations with less risk of premature convergence. In Estimation 

of Distribution Algorithms, explicit techniques for preserving diversity such as over-selection allow it to 

achieve good results with small populations (e.g. n = 50 for d = 100) [10]. For PSO, the use of dynamic 

neighborhoods, restarts, and mutation can lead to good results with a population as small as n = 5 [4]. In 

multi-swarm systems, which have an explicit/separate diversification mechanism, good results can be 

obtained with a swarm size of n = 15 [1]. 

In Minimum Population Search [2], this approach is extended to its limit in order to increase efficiency in the 

use of FEs. MPS can use the minimum population size of n = 2 members (for d = 2) – the use of one 

population member would make a metaheuristic indistinguishable from a point-search technique. Thresheld 

convergence (TC) is specifically used in MPS to preserve diversity and avoid premature convergence through 
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the establishment of a minimum search step [5], [15]. By disallowing new solutions which are too close to 

members of the current population, TC forces a strong exploration during the early stages of the search while 

preserving the diversity of the (small) population. The minimum step (threshold) decays as the search 

progresses and convergence is thus “held” back until the last stages of the search process. 

 

3. MINIMUM POPULATION SEARCH FOR TWO DIMENSIONS 

In two dimensions, each iteration of MPS starts with the generation of “line points” along the subspace (line) 

determined by the two population members (x1 and x2). The “line points” are generated by adding the 

(normalized) difference vector formed by x1 and x2 to each population member xi (which acts as a parent once 

in each generation). The direction and size of the difference vector is determined by the scaling factor Fi (1),  

 

          
)( 21 xxFx=line iii                                                                                                                       

 

(1) 

Taking a step along the line segment formed by x1 - x2 will only generate solutions in the subspace (line) 

defined by the two population members. An orthogonal step to this subspace (line) allows the search process 

of MPS to cover the full dimensionality of the (2D) problem. The direction and size of this exploratory step is 

determined by the Ostep_i factor (2). 

 

          
orthOline=trial istepii  _                                                                               (2) 

Thresheld convergence forces new solutions to be a minimum (min_step) threshold distance away from the 

relevant parent solution(s). To ensure that the distance between a “line point” and its parent is smaller than the 

maximum allowed step (max_step), Fi is drawn with a uniform distribution from [-max_step, max_step] (note: 

the x1-x2 vector is normalized before scaling). To then ensure that the distance from the new trial solution 

(triali) to its parent solution (xi) stays within the [min_step, max_step] threshold range, the Ostep_i factor is 

selected with a uniform distribution from [min_orthi, max_orthi] (note: the orth vector is normalized before 

scaling). The min_orthi and max_orthi values are calculated by (3) and (4), respectively. Since the x1 - x2 

vector is normalized before scaling, the Fi factor represents the actual distance between the “line point” (linei) 

and its corresponding parent solution (xi). New solutions which fall outside the feasible search space are 

clamped back to the boundaries. The two best solutions from the current population and the new trial 

solutions survive into the next generation. 

 

          
)0,max(min__ 22

iii Fstep=orthmin    
                                                                              (3) 
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iii Fstep=orthmax   

                                                                              (4) 

The min_step and max_step values are updated by a rule similar to that used in previous attempts to control 

convergence for PSO [5] and DE [15] in which an initial threshold is selected that then decays over the course 

of the search process. Equation (5) shows how min_step is calculated (note: max_step = 2 * min_step). In (5), 

α represents a fraction of the main space diagonal, FEs is the total available number of function evaluations, k 

is the number of function evaluations used so far, and γ is the parameter that controls the decay rate of the 

threshold. The implementation presented in [2] uses α = 0.3 and γ = 3. 

 

          
 )/]([_ FEskFEsdiagonal=stepmin i   

                                                                              (5) 

To ensure good spacing in the initial population, the initial points are selected to be on the diagonal of the 

search space. Assuming that the search space is bounded by the same lower and upper bound in each 

dimension (as in the used benchmark functions), the initial points are selected as x1 = (bound/2, bound/2) and 

x2 = (-bound/2, -bound/2). Figure 1 shows the search strategy of MPS in a two-dimensional search space. 
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4. EXTENDING TO HIGHER DIMENSIONS 

Minimum Population Search attempts to provide an efficient use of FEs by having a small population size. If 

the population size is smaller than the dimensionality of the search space, then the solutions generated through 

difference vectors will be constrained to the n-1 dimensional hyperplane. A smaller population size will lead 

to a more restricted subspace. With a population size equal to the dimensionality of the problem (n = d), the 

“line/hyperplane points” in MPS will be generated within a d-1 dimensional hyperplane. Taking a step 

orthogonal to this d-1 hyperplane will guarantee a complete search process that covers all the dimensions of 

the search space.  

The generation of “hyperplane points”, i.e. the solutions in the d-1 dimensional hyperplane, can be done by 

adding d-1 difference vectors to the parent solution (e.g. a difference vector between the parent and each of 

the other d-1 population members). A vector orthogonal to these d-1 difference vectors can then be used as 

the orthogonal step. A difficulty of this approach is obtaining the vector orthogonal to the d-1 dimensional 

hyperplane. This calculation has a high computational cost as it involves solving a system of linear equations 

(which often degenerates). 

To avoid this calculation, it is possible to simplify the algorithm. Instead of using all of the d-1 difference 

vectors, a subset of k difference vectors can be used to generate a “hyperplane point”. However, a low value 

for k causes information from only a small subset of the population to be taken into account. Conversely, 

larger values of k cause the cost of calculating the orthogonal vector to increase. Correctly tuning the value of 

k has proven to be a difficult task. 

Figure 1. Visualization of MPS search process in 2D. 

 

Figure 2. A comparison between using two difference vectors (left) and the centroid (right) for generating a new 

trial point in MPS. 
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An alternative which avoids the parameter k is to use the centroid (xc) of the population. The population of 

MPS is the result of global elitist selection leading to the best solutions among parents and offspring. This 

strong selection means that the current members are representatives of the best search regions, and the 

centroid captures all of this information in a single point. In the centroid version of MPS, the “hyperplane 

points” are obtained by adding to the parent solution the difference vector between the parent and the 

centroid. The orthogonal step is done using a vector orthogonal to the parent-centroid line. This simplification 

has a low computational cost, uses information from the entire population, and avoids the parameter k. 

Figure 2 shows a graphical comparison in d = 3 between the MPS version using a vector orthogonal to the d-1 

hyperplane and the centroid version. In the centroid version, the offspring solution (trial) can be on an entire 

plane (perpendicular to the centroid vector) as opposed to only a line that is perpendicular to the plane defined 

by x1, x2, and x3. The performance of both versions is compared in Table 1. As in the original MPS paper [2], 

results are presented for the Rastrigin Rotated, Weierstrass, Schaffers F7, and Composite Griewank-

Rosenbrock functions (more details on these functions are given in Section 6). It can be seen that the centroid 

version leads to better results for all four functions.As dimensions increase, the use of a subset of k difference 

vectors (k < d) becomes necessary to keep running times low. To compare the effectiveness of using k 

difference vectors vs. the centroid version, an experiment was performed using the same four functions on 

different dimensions (d = 5, 10, and 20) – see Table 2. For each problem size, the parameter k was set to 1, 2,  

and 3. Results reveal that despite being conceptually and computationally simpler, the performance of the 

centroid version is generally superior to using k difference vectors.  
 

5. MPS-CENTROID 

In two dimensions, the two population members were initialized on the search space diagonal. In higher 

dimensions, each population member is initialized using (6): sk is the k
th

 population member, rsi are random 

numbers which can be -1 or 1, and bound is the lower and upper bound on each dimension. This initialization 

method leads to a better distribution of the initial solutions in the search space than did uniform random 

solutions. 

          
)2/*  ...,  ,2/*  ,2/*( 2 boundsrboundsrboundsr=s nik                                                                      

(6) 

At each generation, MPS-centroid (or simply MPS) performs a simple set of operations. First, the threshold 

values are updated (5) and the centroid is calculated. Then, each member is used as a parent solution to 

generate an offspring. The mechanism used to generate the new solutions is similar to the two-dimensional 

MPS, but the centroid is used instead of the other population member. The “hyperplane points” are obtained 

by adding the parent-centroid difference vector to the parent solution. The orthogonal step is made taking a 
 

Table 2. Comparison among different MPS versions 

F15: Rastrigin Rotated F17: Schaffers F7 

d MPS_1DV MPS_2DV MPS_3DV MPS_C d MPS_1DV MPS_2DV MPS_3DV MPS_C 

5 4.18e+0 3.07e+0 3.46e+0 1.71e+0 5 4.78e−4 4.78e−4 4.78e−4 1.15e−5 

10 1.72e+1 7.59e+0 7.29e+0 4.58e+0 10 2.70e−2 2.44e−3 7.48e−4 1.54e−3 

20 4.70e+1 2.58e+1 2.77e+1 8.76e+0 20 2.18e−1 1.13e−2 1.45e−2 1.05e−2 

F16: Weierstrass F19: Composite Griewank−Rosenbrock 

d MPS_1DV MPS_2DV MPS_3DV MPS_C d MPS_1DV MPS_2DV MPS_3DV MPS_C 

5 1.34e−1 2.37e−2 6.22e−2 5.37e−1 5 1.67e−1 1.24e−1 1.61e−1 1.78e−1 

10 1.10e−1 6.50e−2 5.89e−2 5.71e−1 10 3.30e−1 2.85e−1 3.26e−1 2.30e−1 

20 7.66e−1 4.17e−1 5.60e−1 1.64e+0 20 1.79e+0 4.99e−1 5.33e−1 4.92e−1 

 

Table 1. Comparison between orthogonal and centroid MPS for d=3 

Function  MPS_O MPS_C 

Rastrigin Rotated  2.01e−1 8.13e−2 

Weierstrass  1.89e−2 1.33e−3 

Schaffers F7  2.07e−2 1.16e−5 

Griewank-Rosenbrock  1.94e−2 9.64e−3 

 



90 
 

random vector orthogonal (orth) to the parent-centroid difference vector. This two-step process for generating 

the new trial solutions (triali) is represented in (7). 

 

          
orthOxxFx=trial istepciiii  _)(                                                                              (7) 

In (7), xi and xc are the parent and the centroid, respectively. The Fi factor is drawn with a uniform distribution 

from [-max_step, max_step] (xi-xc is normalized before scaling). The Ostep_i factor is selected with a uniform 

distribution from [min_orthi, max_orthi] (the orth vector is also normalized). The min_orthi and max_orthi 

values are calculated as in the two-dimensional version using (3) and (4). Once the new solutions are created, 

clamping is performed if necessary, and the best n solutions among the parents and offspring survive into the 

next generation. The parameters for the threshold function are α = 0.3 and γ = 3. A detailed pseudo-code is 

presented in Algorithm 1. 

 

6. COMPUTATIONAL RESULTS 

A set of experiments has been designed to test the effectiveness of MPS. The experiments have been 

performed using the Black-Box Optimization Benchmark (BBOB) minimization functions [8]. There are 24 

BBOB functions divided into five sets. Since MPS is explicitly designed for multi-modal search spaces, this 

paper focuses on Set 4-multi-modal functions with adequate global structure and Set 5-multi-modal functions 

with weak global structure. In Table 3, the names of these functions are given. 

The experiments include comparisons to other population-based metaheuristics with distinctive search 

strategies such as the Univariate Marginal Distribution Algorithm (UMDA), DE and PSO; as well as the 

simplex-based method Nelder-Mead. The UMDA algorithm is a standard implementation using Gaussian 

density functions and truncation selection [13]. PSO is a standard version with ring topology [3], zero initial 

velocities [7] and “Reflect-Z” for particles that exceed the boundaries of the search space [9]. The DE method 

is the highly common and frequently effective variant labeled DE/rand/1/bin [18]. The Nelder-Mead 

implementation is based on the fminsearch method in MATLAB. 

Algorithm 1 Minimum Population Search 

MPS (α, γ, maxFEs) 

X ← InitialPopulation()       // Equation (6) 

while FEs < maxFEs 

 min_step ← UpdateThreshold(α, γ)     // Equation (5) 

 max_step ← min_step*2 

 xc ← CalculateCentroid() 

 for i = 1 : popsize 

  Fi ← UniformRandom(-max_step, max_step) 

  orthi ← OrthogonalVector(xi- xc)     // normalized vector 

  orth_step ← UniformRandom(min_orth, max_orth)   // Equations (3) and (4) 

  triali ← xi + Fi*(xi - xc) + orth_step*orthi    // clamping if necessary  

 endfor 

 X ← BestSolutions(X, trial) 

endwhile 

 

Table 3. BBOB functions 

Set F Function Name Set F Function Name 

4 

15 Rastrigin, rotated  20  Schwefel 

16 Weierstrass  21  Gallagher’s Gaussian 101-me Peaks 

17 Schaffers F7 5 22  Gallagher’s Gaussian 21-hi Peaks 

18 Schaffers F7, moderately ill-conditioned  23  Katsuura 

19 Composite Griewank-Rosenbrock F8F2  24  Lunacek bi-Rastrigin 
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6.1 Searching with small populations 

Population size is an important parameter in the performance of population-based metaheuristics. The 

population size is directly related to the efficient use of FEs, convergence rate, and exploration. Searching 

with smaller populations increases the efficiency, but it can also decrease exploration and induce the risk of 

premature convergence. 

In Table 4, the mean performance of several population-based metaheuristics (UMDA, DE, PSO, NM, and 

MPS) is presented using different population sizes (n = 100, 80, 60, 40, 20, and 10) for problems with d = 20 

and a budget of 5000*d FEs. Among the 24 BBOB functions, F15 (Rastrigin Rotated), F16 (Weierstrass), F17 

(Schaffers), and F19 (Composite Griewank-Rosenbrock) were selected to show the efficiency in performance 

vs. the size of the population. These functions are characterized as multi-modal, good global structure, and no 

ill-conditioning. 

It can be seen that the optimum population size is algorithm dependent. Based on statistical methods, UMDA 

has its best performance using the largest tested population size of n = 100. PSO and DE have their best 

performance on population sizes ranging from n = 40 to n = 100. In general, the performance of UMDA, DE, 

and PSO can vary greatly when their population sizes are changed. On the other hand, MPS appears to be 

much more robust to changes in population size. The use of thresheld convergence and the orthogonal step 

allow MPS to perform well with a population size as small as n = 10. From these results, the rest of the 

experiments in this paper use a population size of n = 100 for UMDA, n = 50 for PSO and DE, and n = d for 

MPS. 

6.2 Optimizing Multi-modal Problems  

Results in [2] show that MPS performs well on multi-modal functions for d = 2 and d = 3. The new MPS-

centroid allows optimizing functions of any dimensionality. Tables 5 and 6 show the results of MPS for 

increasing dimensionality (d = 5, 10, 15, and 20) using all of the functions in BBOB Set 4 and 5 (multi-modal 

functions with and without adequate global structure). In Table 5, performance is measured with a reduced 

budget of function evaluations, i.e. FEs = 1000*d. Table 6 shows performance with the standard budget of 

FEs = 5000*d [8]. 

The results of MPS are compared against those of UMDA, DE, PSO, and NM. With a reduced budget of 

evaluations (i.e. FEs = 1000*d in Table 5), MPS performs best in 22 of 40 cases (passing a t-test with p < 

0.05). In functions with adequate global structure (i.e. Set 4 in Tables 5 and 6), Minimum Population Search 

achieves the best performance in 26 of the 40 comparisons (passing a t-test with p < 0.05). 

In a multi-modal search space, following a gradient doesn’t necessarily lead the search in a good direction. An 

initial exploratory search is recommended to detect the most promising regions. Once these regions have been 

found, local search is required to converge to the corresponding (local) optima. The available function 

evaluations need to be efficiently used and distributed among these two processes of global and local search. 

The good performance of MPS on multi-modal functions is a direct consequence of it using the smallest 

population required to cover the full dimensionality of the search space. Using a small population allows 

performing more generations, and this increases the efficient use of FEs (especially with respect to 

convergence upon local optima). 

Table 4. Effect of population size n on performance for problems with d = 20 

F15: Rastrigin Rotated F17: Schaffers F7 

n UMDA DE PSO NM MPS n UMDA DE PSO NM MPS 

100 2.03e+1 9.66e+1 5.73e+1  8.06e+0 100 1.04e−1 1.94e−4 8.35e−1  5.31e−3 

80 2.08e+1 9.29e+1 5.27e+1  7.69e+0 80 1.93e−1 5.98e−4 8.45e−1  6.06e−3 
60 3.34e+1 6.32e+1 5.30e+1  6.45e+0 60 3.88e−1 3.67e−3 8.63e−1  4.61e−3 

40 4.48e+1 2.96e+1 5.23e+1  6.05e+0 40 6.55e−1 4.08e−2 9.56e−1  4.11e−3 

20 1.19e+2 7.01e+1 6.02e+1 3.11e+2 7.71e+0 20 2.73e+0 1.01e+0 9.65e−1 2.10e+1 2.70e−2 
10 2.95e+2 2.28e+2 6.72e+1  1.41e+1 10 6.15e+0 4.51e+0 1.71e+0  4.90e−2 

F16: Weierstrass F19: Composite Griewank−Rosenbrock 

n UMDA DE PSO NM MPS n UMDA DE PSO NM MPS 

100 2.14e+0 1.82e+1 5.37e+0  1.64e+0 100 3.21e−1 4.22e+0 3.83e+0  4.20e−1 

80 2.81e+0 1.80e+1 5.49e+0  1.56e+0 80 3.89e−1 4.13e+0 3.73e+0  4.49e−1 

60 2.87e+0 1.76e+1 6.22e+0  1.47e+0 60 6.53e−1 4.10e+0 3.62e+0  4.26e−1 

40 5.20e+0 6.71e+0 5.78e+0  1.36e+0 40 1.08e+0 3.78e+0 3.72e+0  4.18e−1 
20 9.52e+0 1.14e+1 6.91e+0 1.95e+1 1.03e+0 20 2.68e+0 3.90e+0 3.75e+0 7.40e+0 4.17e−1 

10 2.14e+1 1.02e+1 7.85e+0  1.39e+0 10 6.24e+0 4.46e+0 3.79e+0  5.52e−1 
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Table 5. Performance as dimensions increase (FEs = 1000*d) 

d = 5  d =10 

Set F UMDA DE PSO NM MPS UMDA DE PSO NM MPS 

 15 2.39e+0 7.54e+0 6.30e+0 5.52e+1 2.27e+0  8.25e+0 3.63e+1 2.95e+1 1.28e+2 6.67e+0 

 16 9.88e−1 2.64e+0 7.63e−1 7.52e+0 2.84e−1 1.24e+0 1.07e+1 2.78e+0 1.35e+1 4.31e−1 

4 17 7.08e−3 3.03e−3 1.68e−1 1.05e+1 1.75e−3 4.49e−2 6.52e−3 6.89e−1 1.71e+1 1.17e−2 

 18 1.34e−1 1.69e−2 5.88e−1 4.46e+1 3.28e−2 2.75e−1 1.07e−1 2.40e+0 6.53e+1 2.42e−1 

 19 3.12e−1 8.77e−1 6.41e−1 3.00e+0 3.48e−1 6.77e−1 2.66e+0 2.26e+0 4.73e+0 5.03e−1 

 20 8.50e−1 7.50e−1 6.18e−1 1.74e+0 6.11e−1  1.50e+0 1.78e+0 1.26e+0 1.72e+0 1.24e+0 

 21 1.68e+0 3.45e−1 1.53e−1 1.30e+1 1.13e+0 2.66e+0 1.06e+0 5.98e−1 2.00e+1 3.08e+0 

5 22 2.49e+0 4.61e−1 1.84e−1 1.43e+1 8.14e−1 5.09e+0 2.30e+0 1.43e+0 1.36e+1 3.19e+0 

 23 1.29e+0 1.21e+0 8.38e−1 1.13e+0 2.29e−1 1.73e+0 1.71e+0 1.01e+0 9.02e−1 2.75e−1 

 24 9.14e+0 1.33e+1 1.15e+1 6.36e+1 7.31e+0 2.54e+1 4.51e+1 4.38e+1 1.96e+2 1.64e+1 

d = 15  d = 20 

Set F UMDA DE PSO NM MPS UMDA DE PSO NM MPS 

 15 1.34e+1 6.94e+1 6.02e+1 2.23e+2 1.11e+1  1.51e+1 1.13e+2 1.08e+2 3.15e+2 1.38e+1 

 16 1.40e+0 1.63e+1 5.90e+0 1.38e+1 1.27e+0 2.19e+0 2.07e+1 8.13e+0 1.70e+1 1.90e+0 

4 17 3.70e−2 1.76e−2 1.01e+0 2.22e+1 1.69e−2 1.09e−1 4.05e−2 1.53e+0 2.79e+1 3.02e−2 

 18 4.91e−1 3.85e−1 4.28e+0 1.01e+2 3.53e−1 8.10e−1 8.63e−1 6.21e+0 9.98e+1 7.38e−1 

 19 3.18e−1 4.00e+0 3.64e+0 7.87e+0 7.31e−1 4.25e−1 4.73e+0 4.53e+0 8.19e+0 9.69e−1 

 20 1.79e+0 2.21e+0 1.50e+0 1.75e+0 1.49e+0 

 

1.89e+0 2.24e+0 1.88e+0 1.80e+0 1.75e+0 

 21 4.14e+0 3.26e+0 9.50e−1 7.55e+0 2.68e+0 7.54e+0 4.24e+0 1.53e+0 1.33e+1 7.30e+0 

5 22 4.70e+0 3.27e+0 1.76e+0 1.56e+1 4.49e+0 6.43e+0 3.81e+0 1.45e+0 1.85e+1 7.54e+0 

 23 2.01e+0 2.08e+0 1.49e+0 1.10e+0 2.55e−1 1.20e+0 2.40e+0 1.45e+0 1.09e+0 2.74e−1 

 24 3.86e+1 8.83e+1 9.17e+1 3.43e+2 2.53e+1 5.23e+1 1.30e+2 1.49e+2 5.25e+2 3.84e+1 

 

 

Table 6. Performance as dimensions increase (FEs = 5000*d) 

d = 5  d =10 

Set F UMDA DE PSO NM MPS UMDA DE PSO NM MPS 

 15 1.75e+0 1.03e+0 2.26e+0 3.55e+1 1.71e+0  6.92e+0 6.87e+0 1.50e+1 1.10e+2 4.58e+0 

 16 7.86e−1 2.02e−2 8.01e−2 6.51e+0 5.37e−1 1.09e+0 2.50e+0 1.18e+0 9.28e+0 5.71e−1 

4 17 1.12e−2 1.05e−4 6.05e−3 1.24e+1 1.15e−5 2.93e−2 7.15e−4 1.76e−1 1.61e+1 1.54e−4 

 18 1.12e−1 6.44e−6 7.68e−2 4.36e+1 6.88e−3 1.84e−1 4.84e−3 7.18e−1 4.22e+1 1.93e−1 

 19 1.82e−1 4.38e−1 2.10e−1 4.37e+0 1.78e−1 3.99e−1 1.97e+0 1.42e+0 5.88e+0 3.30e−1 

 20 8.88e−1 5.69e−2 2.35e−1 1.46e+0 3.90e−1  1.65e+0 2.05e−1 6.92e−1 1.60e+0 9.94e−1 

 21 1.33e+0 6.26e−1 1.39e−1 7.44e+0 1.32e+0 2.49e+0 1.69e+0 4.74e−1 1.76e+1 1.41e+0 

5 22 2.31e+0 4.66e−1 8.38e−2 1.50e+1 5.34e−1 7.33e+0 3.28e+0 8.04e−1 1.92e+1 1.66e+0 

 23 6.92e−1 8.42e−1 4.65e−1 1.14e+0 1.56e−1 4.84e−1 1.35e+0 7.31e−1 8.42e−1 1.56e−1 

 24 6.81e+0 8.66e+0 7.15e+0 6.03e+1 5.91e+0 1.82e+1 3.37e+1 3.01e+1 1.75e+2 1.43e+1 

d = 15  d = 20 

Set F UMDA DE PSO NM MPS UMDA DE PSO NM MPS 

 15 1.04e+1 1.33e+1 3.17e+1 2.36e+2 7.72e+0  2.03e+1 5.60e+1 2.09e+1 3.11e+2 7.71e+0 

 16 1.37e+0 9.16e+0 3.53e+0 1.34e+1 9.18e−1 2.14e+1 5.84e+0 1.81e+0 1.95e+1 1.03e+0 

4 17 5.51e−2 2.76e−3 4.94e−1 1.74e+1 1.45e−3 1.04e−1 8.65e−1 1.26e−1 2.10e+1 2.70e−3 

 18 5.02e−1 5.69e−2 1.96e+0 7.79e+1 4.31e−1 6.34e−1 3.40e+0 6.18e−1 1.15e+2 5.96e−1 

 19 3.56e−1 3.20e+0 2.77e+0 6.61e+0 3.79e−1 3.21e−1 3.79e+0 4.35e−1 7.40e+0 4.17e−1 

 20 1.67e+0 4.37e−1 9.80e−1 1.70e+0 1.25e+0  7.52e−1 1.10e+0 1.93e+0 1.74e+0 1.57e+0 

 21 4.45e+0 1.90e+0 6.93e−1 1.39e+1 2.18e+0 3.27e+0 9.80e−1 1.33e+0 1.36e+1 3.44e+0 

5 22 5.62e+0 1.62e+0 7.15e−1 2.25e+1 4.13e+0 4.03e+0 1.99e+0 1.49e+0 1.27e+1 3.67e+0 

 23 4.28e−1 1.63e+0 1.05e+0 8.86e−1 1.21e−1 2.07e+0 1.34e+0 5.32e−1 1.03e+0 1.19e−1 

 24 3.10e+1 7.13e+1 6.39e+1 3.51e+2 1.88e+1 1.09e+2 1.16e+2 5.73e+1 5.73e+2 2.62e+1 
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6.3 Efficient Use of Function Evaluations 

The ability of MPS to effectively explore the search space with a small population allows performing more 

generations, and this increases the chances of convergence (of the population) with even a reduced budget of 

function evaluations. Figure 3 shows the performance of MPS on multi-modal functions as dimensions 

increase with a reduced budget, as well as a standard amount of FEs. The reported values are the relative 

performances (%-diff = (a-b)/max(a,b)) achieved by MPS versus DE, PSO, UMDA, and NM as dimensions 

increase. These values indicate by what amount (percent) the given algorithm (b) outperforms MPS (a), with 

negative values indicating that the competing algorithm has been outperformed by MPS. 

The result presented in Figure 3 is the average relative performance of all the functions in BBOB Sets 4 and 5. 

With a reduced budget of function evaluations, Minimum Population Search consistently outperforms the 

other metaheuristics. With a standard amount of FEs, MPS shows a steady increase in performance compared 

to PSO and DE as dimensions increase. In general, MPS does not only perform well on low dimensional 

problems, but its relative performance improves with dimensionality (from d = 5 up to d = 20).  

 

7. DISCUSSION 

The key ideas behind the design of Minimum Population Search are the focus on multi-modal functions and 

to consider from the beginning the issues that may arise when scaling to large scale global optimization 

(LSGO) problems (i.e. d >= 1000). The problem with LSGO is that our intuitive understanding of 

metaheuristics often involves visualizations in two dimensions – for example, 15 to 30 birds searching in a 

cornfield [11]. However, a linear growth in population size (e.g. n = 10*d [17]) cannot maintain our 

visualized coverage as the search space grows exponentially. Going from d = 2 to d = 42 can increase the size 

of the search space by a factor of about 2
40

 ≈ 10
12

. Whereas we might imagine 20 birds being able to fully 

explore a 10m x 10m courtyard, we should have a different visualization of 420 birds in an area similar to the 

size of the Atlantic Ocean. 

Since search space coverage will be sparse in high dimensions, we begin with the sparsest possible coverage 

that a population-based technique can have in two dimensions – i.e. n = 2 (because a population of n = 1 

makes a technique indistinguishable from point search). Meaningful exploitation of the information available 

from these n = 2 population members is further complicated by the targeting of multi-modal functions (which 

creates a need for diversity) and the knowledge that two points define a line which does not provide full 

coverage of the 2D search space. The decisions to use thresheld convergence and the orthogonal step are 

based upon addressing these specific concerns (as we are also opposed to the proliferation of metaheuristics 

based upon questionable metaphors [16]). 

 

 

 

Figure 3. Relative performance of DE, NM, PSO, and UMDA compared to MPS as dimensions increase  

for BBOB Sets 4 and 5. 
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Initial work using problems with d = 2 dimensions showed that MPS could outperform popular metaheuristics 

such as UMDA, DE, and PSO – especially with drastically reduced budgets of function evaluations [2]. Since 

search spaces increase exponentially with dimensionality and the allotted functions evaluations usually only 

increase linearly (e.g. [19]), we believe that the potential scalability of a metaheuristic can be better estimated 

by its performance in lower dimensions when function evaluations are highly restricted. For this reason, we 

have conducted experiments for both FEs = 1000*d and FEs = 5000*d in this paper. The generally superior 

performance of MPS compared to UMDA, DE, and PSO at both measurement points shows that the chosen 

search mechanisms for MPS hold the promise to be scalable across a broad range of problem sizes. 

Preliminary experiments show that MPS can perform better than DE and PSO all the way up to d = 200. 

However, none of these techniques performs exceptionally well on the LSGO benchmarks [19]. Going 

forward, we are in agreement with the suggestion that search techniques will need to focus more and more on 

gradient exploitation as dimensionality increases [6], so our primary focus is on hybrid techniques which will 

pair the full search space exploration performed initially by MPS with more efficient local search techniques. 

 

8. CONCLUSIONS 

Building up from the original two-dimensional design, this paper formally defines Minimum Population 

Search as a new metaheuristic. MPS can effectively search a solution space with a relatively small population 

size, and this increases the chances of converging with even a limited budget of FEs. The use of thresheld 

convergence for balancing global and local search allows detecting the most promising regions during the 

early stages and performing an intensive/local search on those regions during the final stages of the search 

process. The combination of these two features leads to a high efficiency in the use of the available FEs. 

Overall, Minimum Population Search is shown to be a simple and effective algorithm for solving complex 

multi-modal problems. Future work will focus on hybridizing and adapting MPS for large scale global 

optimization. 
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