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ABSTRACT
In this paper a Linear-Quadratic control model of a discrete-time is considered (the transition law
is a linear difference equation and the cost per stage has a quadratic form). Also, the expected
total cost with a random horizon is considered as performance criterion, it is assumed that the
horizon is independent of the control process. For the corresponding control problem the existence
of the optimal solution is proved when the support of the distribution of the horizon is infinite,
the proof is based on recent theoretical results concerning to the Markov decision processes with
a random horizon. In addition, the rolling horizon procedure is used to obtain a control policy
for the approximation of the optimal solution in the Linear-Quadratic control problem. The policy
is provided through recursive equations which are programmed. In numerical cases is observed
that even the policies with a small length of the rolling horizon provide good performance and a
convergence of selectors in the policy of rolling horizon is observed, which allow to change the policy
of rolling horizon by a stationary policy.
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RESUMEN
En este art́ıculo se toma en cuenta un modelo de control de tipo Lineal-Cuadrático en tiempo dis-
creto (la ley de transición es una ecuación lineal en diferencias y el costo por etapa tiene una forma
cuadrática). Además, se considera como el criterio de rendimiento el costo total esperado con un
horizonte aleatorio, suponiendo que el horizonte es independiente del proceso de control. Para el
correspondiente problema de control, se prueba la existencia de la solución óptima cuando el soporte
de la distribución del horizonte es infinito, la prueba es basada en recientes resultados teóricos con-
cernientes a los procesos de decisión de Markov con un horizonte aleatorio. Adicionalmente, se utiliza
el procedimiento de horizonte rodante para obtener una poĺıtica que aproxime la solución óptima
del problema de control Lineal-Cuadrático. La poĺıtica propuesta es dada mediante ecuaciones re-
cursivas las cuales han sido programadas. En casos numéricos se observa que incluso las poĺıticas
con una longitud pequeña del horizonte rodante proporcionan buen rendimiento y puede notarse una
convergencia de los selectores que forman la poĺıtica de horizonte rodante, lo cual permitirá cambiar
la poĺıtica de horizonte rodante por una poĺıtica estacionaria.

1. INTRODUCTION

In this paper a control model of a discrete-time is considered where the transition law is given by a linear
equation in differences and the cost per stage has a quadratic form. The corresponding optimal control
problem is also known as the Linear-Quadratic (LQ) control problem or the LQ regulator problem, it is of
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great importance mainly in the area of engineering and economy. In addition, for this problem the expected
total cost with a random horizon of an infinite support and independent of the control process is considered
as the performance criterion.

The LQ control problem has been solved in [3] p. 34, here the expected total cost with a finite horizon is
considered as the performance criterion. Also, in [3] p. 70, the LQ control problem is solved considering the
expected total discounted cost with an infinite horizon as the performance criterion. In latest latest case,
the discount factor is economically interpreted as a rate of return of the cost per stage. However, in [6] p.
126, it has shown that the criterion “the expected total discounted cost with an infinite horizon” and “the
expected total cost with a random horizon with geometric distribution” are equivalent. Since in applications
to engineering (see [5]), the cost per stage in the LQ control problem is interpreted as an abstraction of the
energy and is not exactly a monetary cost, it is justifiable to use a random horizon rather than the rate of
return, assuming that an unexpected event can end the process of the system at a random time.

In [4], the LQ control problem of matrix type is solved considering a random horizon with arbitrary
distribution it having a finite support. Now, in this paper, a solution for the LQ control problem with a
random horizon considering an arbitrary distribution of an infinite support is proposed. For this, first the
existence of the optimal solution is proved using recent theoretical results concerning to the Markov decision
processes with a random horizon (see [2]). Due to limitations to obtain the exact solution, a policy of rolling
horizon and the corresponding performance function are obtained as an alternative to approximate the op-
timal solution for the Linear-Quadratic control problem. The solution is provided through programmable
recursive equations. In numerical cases some policies of rolling horizon with different length are calculated
and is observed that even the policies with a small length of rolling horizon provide good performance. Also,
a numerical convergence of the selectors in the policy of rolling horizon to a stationary selector is observed,
which allow to change the policy of rolling horizon by a stationary policy. Such stationary selector is in the
optimal policy of a particular discounted LQ control problem that is associated to the LQ control problem
with a random horizon.

This paper is organized as follows. Firstly, in Section 2, the theory of the Markov decision processes
and general results of the Markov decision processes with a random horizon are presented. Afterwards, in
Section 3, the Linear-Quadratic model with a random horizon is described and the existence of the optimal
solution for the LQ control problem is proved. Finally, in Section 4, a policy of rolling horizon for the LQ
control problem with a random horizon is provided, which can be used to approximate the optimal solution
and the performance function is obtained, also a numerical results are presented.

2. BASIC THEORY OF THE MARKOV DECISION PROCESSES

Let (X,A, {A(x) : x ∈ X}, Q, c) be a Markov decision or control model, which consists of the state space
X, the action set A (it is assumed that X and A are Borel spaces), a family {A(x) : x ∈ X} of nonempty
measurable subsets A(x) of A, whose elements are the feasible actions when the system is in state x ∈ X.
The set K := {(x, a) : x ∈ X, a ∈ A(x)} of the feasible state-action pairs is assumed to be a measurable
subset of X × A. The following component is the transition law Q, which is a stochastic kernel on X given
K. Finally, c : K→ R is a measurable function called the cost per stage function.

A policy is a sequence π = {πt : t = 0, 1, . . .} of stochastic kernels πt on the control set A given the
history Ht of the process up to time t where H0 = X and Ht = K×Ht−1, t = 1, 2, . . .. The set of all policies
is denoted by Π.
F denotes the set of measurable functions f : X → A such that f(x) ∈ A(x), for all x ∈ X. The functions
in F are called selectors of the multifunction x 7→ A(x).
A deterministic Markov policy is a sequence π = {ft} such that ft ∈ F, for t = 0, 1, 2, . . .. If ft = f for all
t = 0, 1, 2, . . . the policy is a deterministic stationary policy.
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In many cases, the evolution of a Markov control process is specified by a discrete time or difference
equation of the form xt+1 = F (xt, at, ξt), t = 0, 1, 2, . . ., with x0 given, where {ξt} is a sequence of independent
and identically distributed random variables with values in a Borel space S and a common distribution µ,
independent of the initial state x0. In this case, the transition law Q is given by

Q(B|x, a) =

∫
S

IB
(
F (x, a, s)

)
µ(ds),

B ∈ B(X) where B(X) is the Borel σ-algebra of X, (x, a) ∈ K and IB(·) denotes the indicator function of
the set B.

Let (Ω,F) be the measurable space consisting of the canonical sample space Ω = H∞ := (X × A)∞

and F as the corresponding product σ-algebra. Let π = {πt} be an arbitrary policy and µ be an arbitrary
probability measure on X called the initial distribution. Then, by the theorem of C. Ionescu-Tulcea (see
[3]), there exists a unique probability measure Pπµ on (Ω,F) such that Pπµ (H∞) = 1. The stochastic process
(Ω,F , Pπµ , {xt}) is called a discrete-time Markov control process or a Markov decision process. The expec-
tation operator with respect to Pπµ is denoted by Eπµ . If µ is concentrated at the initial state x ∈ X, then
Pπµ and Eπµ are written as Pπx and Eπx , respectively.

Let (Ω′,F ′, P ) be a probability space and let (X,A, {A(x) | x ∈ X}, Q, c) be a Markov decision model.
Define the performance criterion as

τ (π, x) := E

[
τ∑
t=0

c(xt, at)

]
,

π ∈ Π, x ∈ X, where τ is considered as a random variable on (Ω′,F ′) with the probability distribution
P (τ = t) = ρt, t = 0, 1, 2, ... (i.e. with an infinite support). Moreover, it is assumed that for each x ∈ X and
π ∈ Π the induced process {(xt, at) | t = 0, 1, 2, . . .} is independent of τ .
The optimal value function is defined as

Jτ (x) := inf
π∈Π

τ (π, x),

x ∈ X.
The optimal control problem with a random horizon is to find a policy π∗ ∈ Π such that τ (π∗, x) = Jτ (x),
x ∈ X, in which case, π∗ is said to be optimal.

In [2] is observed that

E

[
τ∑
t=0

c(xt, at)

]
= Eπx

[ ∞∑
t=0

Ptc(xt, at)

]

= Eπx

[ ∞∑
t=0

t∏
k=n

αk−1c(xt, at)

]
,

where

αt = P (τ ≥ t+ 1 | τ ≥ t) =
Pt+1

Pt
t = 0, 1, 2, . . . , (1)

with Pt = P (τ ≥ t) and α−1 = P0 = 1 is considered.

100



The following definitions and results are retaken of [2].
For each n = 0, 1, 2, . . ., defines

vτn(π, x) := Eπx

[ ∞∑
t=n

t∏
k=n

αk−1c(xt, at)

]
,

π ∈ Π, x ∈ X and
V τn (x) := inf

π∈Π
vτn(π, x),

x ∈ X.

Remark 2.1. Observe that the values αk in the definition of the functions vτn are obtained means of the
distribution of τ (see (1)), and with n = 0 it is obtained that vτn(π, x) = τ (π, x).

For N > n ≥ 0, it is defined that

vτn,N (π, x) := Eπx

[
N∑
t=n

t∏
k=n

αk−1c(xt, at)

]
, (2)

with π ∈ Π, x ∈ X, and
V τn,N (x) := inf

π∈Π
vτn,N (π, x),

x ∈ X.

Assumption 1
(a) The one-stage cost c is lower semicontinuous, nonnegative and inf-compact on K (c is inf-compact if

the set {a ∈ A(x) : c(x, a) ≤ λ} is a compact for every x ∈ X and λ ∈ R).

(b) Q is either strongly continuous or weakly continuous.

(c) There exists a policy π ∈ Π such that τ (π, x) <∞ for each x ∈ X.

Lemma 2.1. Suppose that Assumption 1 holds. Then, for every n ≥ 0 and x ∈ X,

V τn,N (x) ↑ V τn (x) as N →∞

and V τn is lower semicontinuous.

Theorem 2.1. Suppose that Assumption 1 holds, then

(a) the optimal value function V τn , n = 0, 1, 2, . . ., satisfies the optimality equation

V τn (x) = min
a∈A(x)

[
c(x, a) + αn

∫
X

V τn+1(y)Q(dy | x, a)

]
, (3)

x ∈ X, and if {un} is another sequence that satisfies the optimality equations in (3), then un ≥ V τn .

(b) There exists a policy π∗ = {fn ∈ F : n ≥ 0} such that, for each n = 0, 1, 2, . . . , the selector fn(x) ∈ A(x)
attains the minimum in (3), i.e.

V τn (x) = c(x, fn(x)) + αn

∫
X

V τn+1(y)Q(dy | x, fn(x)),

x ∈ X, and the policy π∗ is optimal.
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3. LQ CONTROL PROBLEM WITH A RANDOM HORIZON AND THE EXISTENCE OF
THE OPTIMAL SOLUTION

LQ control model with a random horizon is defined as follow: Let X = A = A(x) = R. The cost function
per stage is given by

c(x, a) = qx2 + ra2,

(x, a) ∈ K, where q ≥ 0 and r > 0. The transition law is induced by the following difference equation:

xt+1 = γxt + βat + ξt,

t = 0, 1, 2, . . . , τ , with x0 known. In this case, γ, β ∈ R and {ξt} is a sequence of independent and identically
distributed random variables taking values in S = R with a continuous bounded density function ∆, such
that E[ξ0] = 0 and E[ξ2

0 ] = σ2 < +∞, where ξ0 is a generic element of the sequence {ξt}. Moreover, it is
assumed that the distribution function of the random horizon τ has an infinite support and E[τ ] <∞.

Lemma 3.2. The LQ Model with a random horizon satisfies Assumption 1.

Proof: Clearly, c is nonnegative and continuous. Next, let Aλ(c) := {a ∈ A(x) : c(x, a) ≤ λ}, λ ∈ R. Then,

Aλ(c) =


∅ if λ < qx2

{0} if λ = qx2[
−
√

λ−qx2

r ,
√

λ−qx2

r

]
if λ > qx2

Since Aλ(c) is compact for each x ∈ R, then c is a inf-compact function on K. Now, it is verified that the
transition law is strongly continuous. Let v : X → R a measurable bounded function. Observe that

v′(x, a) =

∫
X

v(y)Q(dy | x, a) =

∫ ∞
∞

v(γx+ βa+ s)∆(s)ds.

Making the change of variable u = γx+ βa+ s, it is obtained that

v′(x, a) =

∫ ∞
∞

v(u)∆(u− γx− βa)du.

Let {(xk, ak)} a sequence such that limk→∞(xk, ak) = (x′, a′). By Dominated Convergence Theorem and the
continuity of ∆, then limk→∞ v′(xk, ak) = v′(x′, a′), hence v′ is continuous and bounded on K. Thus, the
transition law for the LQ Model is strongly continuous. Finally, to prove Assumption 1(c), the stationary
policy h(x) = − γβx and x0 = x ∈ X are considered. In this case, applying the dynamic xt+1 = γxt+βat+ ξt
of the system it is obtained that

x1 = γx0 + βa0 + ξ0 = γx− β γ
β
x+ ξ0 = ξ0

x2 = γx1 + βa1 + ξ1 = γξ0 − β
γ

β
ξ0 + ξ1 = ξ1

x3 = γx2 + βa2 + ξ2 = γξ1 − β
γ

β
ξ1 + ξ2 = ξ2

...

xt = γxt−1 + βat−1 + ξt−1 = γξt−2 − β
γ

β
ξt−2 + ξt−1 = ξt−1.
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Then

τ (h, x) = Ehx

[ ∞∑
t=0

Pt

(
q + r

γ2

β2

)
ξ2
t−1

]

=

(
q + r

γ2

β2

)
σ2(E[τ ] + 1) <∞.

Once that is proved the Assumption 1, Lemma 2.1. and Theorem 2.1. provides the existence of the
optimal solution for the LQ control problem with a random horizon.

4. APPROXIMATION OF THE OPTIMAL SOLUTION

In this section, an approximation of the optimal solution is obtained for the LQ control problem with a
random horizon through the rolling horizon procedure (see [1]).

Next, the rolling horizon algorithm is presented.

Algorithm 11. Set m = 0 and n = N.

2. Find the policy π∗ = (π∗m, π
∗
m+1, . . . , π

∗
n−1), which is optimal for periods from m to n, and set π̂m = π∗m.

3. Let m = m+ 1 and n = n+ 1.

4. Go to step 2.

The policy π̂ = (π̂0, π̂1, π̂2, . . .) is called a rolling horizon policy. N is the length of the rolling horizon
and it is a positive integer.

In accordance with Algorithm 1, the decision corresponding to stage m = t, t = 0, 1, 2, . . ., of the rolling
horizon policy is the first decision in the optimal policy of the control problem that starts at step t and ends
to step t + N. Assuming a zero terminal cost, observe that of (2), the corresponding criterion in the last
problem is vτt,t+N−1 and to solve it is used Theorem 4.1 given in [2] with the dynamic programming equation
written for the LQ model as follows:

Ut,N(x) = 0

Ut,k(x) = min
a∈R

[
qx2 + ra2 + αt+kE[Ut,k+1(γx+ βa+ ξ)]

]
, k = N− 1,N− 2, . . . , 0. (4)

Lemma 4.3. The rolling horizon policy π̂ of N stages for the LQ control problem with a random horizon is
the following: π̂ = (f̂0, f̂1, f̂2, . . .) with f̂t(x) = λtx, t = 0, 1, 2, . . . , x ∈ X, where

λt =
−αtCt,1γβ
r + αtCt,1β2

(5)

and the constant Ct,1 is obtained through the recurrence relation:

Ct,N = 0,

Ct,k =
qr + αt+kCt,k+1(qβ2 + rγ2)

r + αt+kCt,k+1β2
, k = N − 1, N − 2, . . . , 1.

The performance function is given by vτ0 (π̂, x) = K1x
2 +K2, x ∈ X, where

K1 = P0(q + rλ2
0) + P1(q + rλ2

1)(γ + βλ0)2 +

∞∑
t=2

Pt(q + rλ2
t )

t−1∏
i=0

(r + βλi)
2 (6)
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and

K2 = σ2P1(q + rλ2
1) + σ2

∞∑
t=2

Pt(q + rλ2
t )

1 +

t−2∑
i=0

t−1∏
j=i+1

(γ + βλj)
2

 . (7)

Proof: In the rolling horizon procedure, considers the problem that starts in step m = t with arbitrary
t. Using the dynamic programming equation (4) with k = N − 1, it is obtained that ft,N−1(x) = 0 and
Ut,N−1(x) = qx2, x ∈ X.
For k = N− 2, replacing Ut,N−1 in (4), it is obtained that

Ut,N−2(x) = min
a∈R

[
qx2 + ra2 + αt+N−2E[q(γx+ βa+ ξ)2]

]
= min

a∈R

[
qx2 + ra2 + αt+N−2q(γ

2x2 + β2a2 + 2γβxa+ σ2)
]

= min
a∈R

[
(r + αt+N−2qβ

2)a2 + 2αt+N−2qγβxa+ q(αt+N−2γ
2 + 1)x2 + qαt+N−2σ

2
]
,

deriving the expression in brackets with respect to the variable a and equating to zero for the minimization,
it is obtained that

ft,N−2(x) =
−αt+N−2Ct,N−1γβ

r + αt+N−2Ct,N−1β2
x,

where Ct,N−1 = q. Therefore Uk,N−2(x) = Ct,N−2x
2 +Dt,N−2, where

Ct,N−2 =
qr + αt+N−2Ct,N−1(qβ2 + rγ2)

r + αt+N−2Ct,N−1β2

and Dt,N−2 = Ct,N−1αt+N−2σ
2.

Continuing with this process, it follows that

ft,N−3(x) =
−αt+N−3Ct,N−2γβ

r + αt+N−3Ct,N−2β2
x

and Ut,N−3(x) = Ct,N−3x
2 +Dt,N−3, where

Ct,N−3 =
qr + αt+N−3Ct,N−2(qβ2 + rγ2)

r + αt+N−3Ct,N−2β2

and Dt,N−3 = αt+N−3(Ct,N−2σ
2 +Dt,n−2).

Making k = 1, it is obtained that

ft,1(x) =
−αt+1Ct,2γβ

r + αt+1Ct,2β2
x,

and U0(x) = Ct,1x
2 +Dt,1, where

Ct,1 =
qr + αt+1Ct,2(qβ2 + rγ2)

r + αt+1Ct,2β2

and Dt,1 = αt+1(Ct,2σ
2 +Dt,2).

Finally, with k = 0, it is obtained the first optimal decision for the problem starts at stage t, that is

ft,0(x) =
−αtCt,1γβ
r + αtCt,1β2

x,

Hence

f̂t(x) =
−αtCt,1γβ
r + αtCt,1β2

x = λtx, t = 0, 1, 2, . . . , x ∈ X.
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To obtaining the performance function of the rolling horizon policy, applying the dynamic of the system
which is xt+1 = γxt + βat + ξt with at = f̂t(x) = λtx and x0 = x, it is obtained that

x1 = (γ + βλ0)x+ ξ0

x2 = (γ + βλ0)(γ + βλ1)x+ (γ + βλ1)ξ0 + ξ1

x3 = (γ + βλ0)(γ + βλ1)(γ + βλ2)x+ (γ + βλ1)(γ + βλ2)ξ0 + (γ + βλ2)ξ1 + ξ2
...

xt =

t−1∏
i=0

(γ + βλi)x+

t−2∑
i=0

t−1∏
j=i+1

(γ + βλj)ξi + ξt−1.

Then,

τ (π̂, x) = Eπ̂x

[ ∞∑
t=0

Ptc(xt, at)

]

= Eπ̂x

[ ∞∑
t=0

Pt(q + rλ2
t )x

2
t

]
= P0(q + rλ2

0)x2 + P1(q + rλ2
1)Eπ̂x

[
((γ + βλ0)x+ ξ0)2

]
+Eπ̂x

 ∞∑
t=2

Pt(q + rλ2
t )

t−1∏
i=0

(γ + βλi)x+

t−2∑
i=0

t−1∏
j=i+1

(γ + βλj)ξi + ξt−1

2


= P0(q + rλ2
0)x2 + P1(q + rλ2

1)
(
(γ + βλ0)2x2 + σ2

)
+

∞∑
t=2

Pt(q + rλ2
t )

t−1∏
i=0

(γ + βλi)
2x2 + Eπ̂x


t−2∑
i=0

t−1∏
j=i+1

(γ + βλj)ξi

2
+ σ2


= P0(q + rλ2

0)x2 + P1(q + rλ2
1)
(
(γ + βλ0)2x2 + σ2

)
+

∞∑
t=2

Pt(q + rλ2
t )

t−1∏
i=0

(γ + βλi)
2x2 +

t−2∑
i=0

t−1∏
j=i+1

(γ + βλj)σ
2 + σ2


=

(
P0(q + rλ2

0) + P1(q + rλ2
1)(γ + βλ0)2 +

∞∑
t=2

Pt(q + rλ2
t )

t−1∏
i=0

(r + βλi)
2

)
x2

+σ2P1(q + rλ2
1) + σ2

∞∑
t=2

Pt(q + rλ2
t )

1 +

t−2∑
i=0

t−1∏
j=i+1

(γ + βλj)
2


= K1x

2 +K2,

concluding of this form the proof.

The formulas given in Lemma 4.3. have been programmed in order to obtain numerical results for the LQ
control problem with a random horizon. Without loss of generality, the following values for the parameters
of the model have been considered: γ = β = q = r = σ2 = 1. Furthermore, it is assumed that the horizon τ

has a Logarithmic distribution, that is P (τ = t) = − (1−p)t+1

(t+1) ln p , t = 0, 1, 2, . . ., with p = 0.8.

In Table 1, the approximate values of the constants given in (6) and (7) are showed evaluating 900 stages
of the rolling horizon policies with various values of N. Note that in [1], it is proved that when N→∞ the
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error of the approximation tends to zero. As is observed in the numerical results, there is no big difference
in the performance of policies and even rolling horizon with small lengths a good performance is obtained.

N K1 K2

100 1.07820310519224237224 0.09445482558131939907
50 1.07820310519224237224 0.09445482558131939907
20 1.07820310519224237224 0.09445482558131939907
15 1.07820310519224237224 0.09445482558131945282
10 1.07820310519224237267 0.09445482558535835057
5 1.07820310944105568810 0.09445512530972944205
3 1.07825877384652960600 0.09448857885511955891

Table 1: Approximate coefficients of the performance function of rolling horizon policies with different
lengths.

In Table 2, with N = 20, some values of the constants λt given in (5) are presented. Note that there
seems to be a convergence of these values.

t 970 971 972 973 974 975
λt -.14662424 -.14662439 -.14662453 -.14662468 -.14662483 -.14662498

t 976 977 978 979 980 981
λt -.14662512 -.14662527 -.14662542 -.14662556 -.14662571 -.14662586

Table 2: Coefficients of the selectors in the rolling horizon policy.

In [2], for the logarithmic distribution with parameter p it is proved that limt→∞ αt = 1−p and αt ≥ 1−p,
where αt is defined in (1). Also, in [2], under this condition it is proved that there exist a relation between
“the optimal control problem with a random horizon” and “a discounted problem with α = limt→∞ αt as
the discount factor”.

For the LQ control problem with a random horizon the associated problem is the discounted problem
with α = 1− p. The optimal policy for this problem is the following (see [3], p. 70):

π = (f, f, f, . . .)

with the selector f given by

f(x) = λx

= − αβγC

r + αβ2C
x,

x ∈ X, where

C =
−
(
r − α(rγ2 + qβ2)

)
+

√
(r − α(rγ2 + qβ2))

2
+ 4αqrβ

2αβ2

In the numerical case, the evaluation of the coefficient in the selector f is obtained, obtaining that
λ = −1.46768836, so it can be stated that

lim
t→∞

f̂t = f.
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The proof is not trivial, but in sufficient numerical cases can be seen something similar. Such convergence
would be very useful to the impossibility of compute f̂t for t large.

5. CONCLUSION

In this paper the existence of the optimal solution is proved for a Linear-Quadratic control problem in which
the performance function is the expected total cost with a random horizon. The case of random horizon with
infinite support is considered. To guarantee the existence of the optimal solution were used the theoretical
results provided in [2]. Given the difficulty to obtain the exact optimal solution, in this paper a policy of
rolling horizon is obtained to approximate the solution. A deterministic Markov policy through recursive
equations is obtained which are programmed to obtain numerical results. It is shown that use small values
of the length in the rolling horizon is sufficient to calculate the selectors. Moreover, a convergence of these
selectors is observed in various numerical cases which allow to change the policy of rolling horizon by a
stationary policy.
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[2] CRUZ-SUÁREZ, H., ILHUICATZI-ROLDÁN, R., MONTES-DE-OCA, R.(2012): Markov Decision
Processes on Borel Spaces with Total Cost and Random Horizon, Journal of Optimization Theory
and Applications, DOI 10.1007/s10957-012-0262-8
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