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ABSTRACT
The adjustment of an obsolete demand matrix, from some given known data, is an important issue

for transport research. In this article we introduce a penalized model, based on volume counts on
a given set of arcs or segments, to update the demand matrix. Also, we propose a multiplicative
conjugate gradient algorithm to solve the resultant convex optimization problem. This algorithm
has been programmed with the macro language of EMME and tested with a synthetic scenario
from the Winnipeg network. The numerical results show that the proposed algorithm improves the
performance of the traditional multiplicative steepest descent algorithm, introduced by Spiess.

KEYWORDS: O-D matrix, demand models, transit assignment, convex optimization, conjugate

gradient method, bilevel programming.
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RESUMEN
El ajuste de una matriz de demanda obsoleta, cuando se conocen ciertos datos, es un tema importante
en la investigación del transporte. En este art́ıculo introducimos un modelo penalizado, basado en
el conteo de volúmenes sobre ciertos arcos o segmentos, para actualizar la matriz de demanda.
También, proponemos un algoritmo multiplicativo de gradiente conjugado para resolver el problema
resultante de optimización convexa. Este algoritmo ha sido programado utilizando el macro lenguage
de EMME y se ha aplicado a un escenario sintético, obtenido de la red de Winnipeg. Los resultados
numéricos muestran que el algoritmo propuesto mejora el desempeño del método tradicional de
descenso máximo, introducido por Spiess.

1. INTRODUCTION

Public transport is becoming more relevant in modern societies, especially in large cities, where a good
transportation planning is extremely important for many obvious reasons. Therefore, a good knowledge of the
transit network and of the operation of the transportation system is necessary. In particular, mathematical
models for transit assignment are very useful to help understanding how users travel from their different
origins to their diverse destinations. These models must replicate realistic scenarios as close as possible,
and for this purpose it is necessary to collect field data. Data may be obtained based on surveys and other
complex and expensive studies, but unfortunately they are useful only for a limited short time, due to growth
in demand and change in infrastructure around big cities. To avoid making new comprehensive studies, there
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are some techniques that allow approximations to the most recent data, using previously known data and
only a small (but significant enough) amount of new data.
One of the most important elements on the transportation planning process is the O–D matrix, which repre-
sents the flow between each origin node to each destination node of the transportation network. Generating
or updating these data is not trivial, since people travel to satisfy many diverse needs, and it clearly depends
on many factors, such as day and time. Additionally, due to its nature, the O–D matrix is very difficult and
costly to estimate requiring a great amount of resources, while the resultant accuracy is frequently very low.
One way to estimate demand may be using ticket counting machines at bus stations, or using sensors; but
this information, if it is available, may not be entirely realistic. Another more efficient and less expensive
way to estimate, or improve O–D matrices, is from volume counts at some specific important links of the
network. A large amount of research has been carried out in this direction and many models has been
proposed in the past such as those in [2], [3], [5], [11], [13], [14], [15], [17], among many others.
Most of those traditional approaches can be formulated as convex optimization problems for which the
objective function corresponds to some distance function between the obsolete demand matrix and the
unknown demand. Some constraints are then added in order to force the assigned volumes to be close to
the observed volumes on the correspondent arcs (or segments). These problems can be reformulated as
least-squares models, where the volume constraints are relaxed and incorporated as additional terms in the
objective function. Least-squares models has been studied and extended over the years, as in [2] and [13],
and they are part of the well known bilevel programs, [5], [11]. An important issue on these programs is
finding a good iterative algorithm that solves efficiently the corresponding model for large scale networks.
A more general overview of O–D matrix estimation can be found in reference [1].
Given the amount of computational resources needed to solve those programs, specially for large scale
networks, with hundreds of transit zones and thousands of network links, in 1990 Spiess proposed a new
approach [15]. Instead of defining the objective function with the distance between the obsolete matrix,
G = {Gpq}, and the resulting demand, g = {gpq} (where pq ∈ PQ denote O–D pairs), he defined the
objective function as a measure of the distance between observed and assigned volumes:

min
g
Z(g) =

1

2

∑
a∈Ā

(v(g)a − Va)2 (1)

v(g) = assign(g), (2)

where Ā is the subset of links where counts are available, Va are the measured volumes, and v(g) = assign(g)
indicates the volumes resulting from an assignment of the demand matrix g. This assignment procedure
must correspond to a convex optimization problem and it is understood as an equilibrium assignment to
ensure the convexity of the model. However, problem (1)–(2) is an ill posed problem, since it usually admits
an infinite number of optimal solutions (it is highly underdetermined), i.e. there are infinite many possible
demand matrices, and each of them reflects the observed volumes equally well. To overcome this degeneracy,
Spiess proposed the application of the method of steepest descent, which eventually would find a solution
close to the starting point (the obsolete demand matrix G). Thus, he introduced a multiplicative steepest
descent method:

gl+1
pq =

{
Gpq for l = 0,

glpq

(
1− λl ∂Z(gl)

∂gpq

)
for l = 1, 2, ..., L,

(3)

This multiplicative algorithm keeps the structure of the obsolete matrix, and its simplicity allows its appli-
cation to large scale networks. This algorithm is implemented in the EMME transportation planning system
[9].
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In this work we want to to explore the previous problems and models in the context of transit networks
instead of traffic networks. Thus, a transit assignment based on optimal strategies, which was introduced
in [16], will be used instead of a traffic equilibrium assignment. Also, we follow another approach to a
bilevel model. Here we think the problem as a approximated control problem where we want to drive the
system (transit network) to a state in which the assigned volumes are as close as possible to the measured
volumes, by adjusting the demand matrix. This kind of formulation give rise to an ill posed problem, which
not always has solution, but it can be regularized, by penalizing the difference between the measured and
assigned volumes, and then adding the square of this term to the objective function. With this approach,
the model of Spiess can be thought as a limiting case when the penalization parameter goes to infinity.
Also, we believe that the natural iterative method to solve these quadratic convex problems is the conjugate
gradient algorithm, which has proved to be more efficient than the steepest descent method for many models
and in a great variety of contexts. Thus, we introduce a multiplicative conjugate gradient algorithm which
has a comparable computational cost as steepest descent but with the advantage of requiring much less
iterations to converge. To carry on this study we programmed these iterative algorithms using the computer
macro language of the EMME4 software. This program can handle both the model of Spiess and bilevel
optimization problems.
The organization of the article is as follows. In Section 2. we derive the O–D matrix adjustment model,
where the difference of volumes is penalized. The multiplicative conjugate gradient algorithm to solve the
problem is shown in Section 3. Then, in Section 4 we show some numerical experiments with the Winnipeg
transit network. Finally, in Section 5 we write some conclusions.

2. THE O–D MATRIX ADJUSTMENT PROBLEM

Consider a transit network where an obsolete O–D matrix is known, and where volume counts are available
on a subset of links (or segments). Let us denote by A the set of network links, and by Ā its subset where
volume counts are available, and let {Va}a∈Ā be the set of measured volumes. We want to find a new
demand matrix g, close to the obsolete matrix G, such that its assigned volumes va are equal (or close) to
the observed volumes Va, for each a ∈ Ā. This problem can be formulated as follows.

Find an O–D matrix g that solves

min
g
Z(g) =

1

2

∑
pq∈PQ

(gpq −Gpq)2 (4)

such that

Va = v(g)a, ∀ a ∈ Ā (5)

v(g) = assign(g). (6)

The assignment assign(g) can be done in many forms. Here we consider the transit assignment, based on
optimal strategies, introduced in [16]. The optimal strategy is obtained by the distribution of the demand
on the different links, in such a way that the total transit time in the system (travel time + waiting time) is
minimum. In the case of a non congested network this yields a convex optimization problem that is solved
very efficiently using dynamic programming. This formulation yields a unique distribution of the demand g
on the transit network, represented by the volume flows {va}a∈A. The corresponding program, and variants
that considers congestion, are included in the EMME transportation planning system [9]. Let us to say that
we have applied with success this assignment procedure to the transit network associated to the metropolitan
area that includes Mexico City and neighboring municipalities [7], [10].
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The problem given by (4)–(6) is a variant of a control (or inverse) problem, and it is ill posed. So, to find
a solution a regularization procedure is needed first. Actually, problem (4)–(6) can be thought as one in
which the the transit system want to be driven to a desired state, given by (5), using the demand matrix
g as control variable. To find a solution, equation (5) is relaxed, and therefore we seek a demand matrix
g, such that the assigned volume va(g) gets close enough to the known value Va, for each a ∈ Ā. We can
include in the model this restirction by penalizing the differences between these two quantities and adding
them to the objective function. We obtain the following problem

min
g
Z(g) =

1

2

∑
pq∈PQ

(gpq −Gpq)2 +
k

2

∑
a∈Ā

(v(g)a − Va)2, k > 0 (7)

subject to:

v(g) = assign(g), and gpq ≥ 0 ∀ pq ∈ PQ, (8)

where k is the penalty coefficient. The effect of this formulation is that, in most cases, the restriction (5) is
satisfied very accurately when large values of k are imposed, as it is demonstrated by the numerical results.
It is possible that the measured volumes are more reliable or accurate on some links or segments. However,
in those cases, different penalty values ka may be used for each a ∈ Ā. To keep the discussion as simple as
possible, in this paper a constant value of k is considered for all links or segments.
The previous formulation is equivalent to the bilevel programs [2], [5], [11], [13]. For instance, the objective
function proposed in [13] is

Z(g) =
α

2

∑
a∈Ā

(v(g)a − Va)2 +
1− α

2

∑
pq∈PQ

(gpq −Gpq)2, 0 ≤ α ≤ 1. (9)

The equivalence of this objective function with the objective function (7) can be obtained with k = α/(1−α)
or α = k/(k + 1). Therefore, the model of Spiess (1) is obtained with k = ∞ or α = 1. For us, it is more
intuitive the penalized model (7), since it indicates directly the relative importance given to condition (5),
through the value given to the penalization parameter k. Also, this model indicates the level of regularization
applied to the ill posed problem, which is 1/k.

3. A MULTIPLICATIVE CONJUGATE GRADIENT METHOD

The iterative descent methods are distinguished from each other by the descent direction chosen at each
iteration, and by the step size to ensure a good decrease of the objective function. One of the simplest
and most intuitive method is the method of steepest descent, where the descent direction is taken as the
opposite to the gradient direction. The method of steepest descent has been successfully used to solve the
O–D matrix adjustment problem (see [13] and [15], for instance). However, it is well known that in practice
the method of steepest descent can be inefficient because of the zig–zag phenomenon, which occurs mainly
with ill conditioned problems, requiring a large number of iterations to approach the optimum [12]. For
those cases, the Newton’s method converge much faster, but it becomes very expensive, specially for large
scale problems, since it needs the evaluation of Hessians and the solution of a linear algebraic equation at
each iteration. The conjugate gradient method does not share those disadvantages, it has a comparable
computational cost to the steepest descent, and it is particularly efficient for convex quadratic optimization
problems.
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The conjugate gradient algorithm to solve problem (7)–(8) can be formulated as follows:

gl+1
pq =

{
Gpq for l = 0,

glpq + λl d
l
pq for l = 1, 2, . . . , L,

∀ pq ∈ PQ, (10)

where the starting value in the iterative process is the obsolete O–D matrix G, and dl = {dlpq} is a conjugate
direction vector at iteration l, and finally λl is the length step that minimizes the objective function along
that direction. We will explain in detail how to compute the last two values, dl = {dlpq} and λl. But
before, let us introduce the multiplicative iterative version of this algorithm, where a change in demand is
proportional to the demand in the initial matrix and where, in particular, zeros are preserved in the iterative
process:

gl+1
pq =

{
Gpq for l = 0,

glpq
(
1 + λl d

l
pq

)
for l = 1, 2, . . . , L.

∀ pq ∈ PQ. (11)

This is the equivalent version of the multiplicative iteration formula (3) introduced by Spiess [15].
The conjugate direction at each new iteration dl+1

pq is generated as a linear combination of the previous
conjugate direction and the current gradient. Thus

dl+1
pq = glpq

[
−∂Z(gl+1)

∂gpq

]
+ βl d

l
pq, pq ∈ PQ, (12)

where the constant βl is computed to ensure that the two directions dlpq and dl+1
pq are conjugate to each other.

Notice that in (12) we have multiplied by glpq to preserve the multiplicative structure of the algorithm. The
gradient in (12) can be computed from (7):

∂Z(gl+1)

∂gpq
= (gl+1

pq −Gpq) + k
∑
a∈Ā

(
va(gl+1)− Va

) ∂va(gl+1)

∂gpq
, pq ∈ PQ. (13)

The last derivative in (13) can be computed from the relation between link flows and path flows:

va(gl+1) =
∑

pq∈PQ

∑
s∈Spq

δashs, a ∈ Ā, and δas :=

{
0 if a /∈ s
1 if a ∈ s

(14)

where Spq is the set of used paths in the network to travel from p ∈ P to q ∈ Q, and hs denotes the total flow
along one path s ∈ Spq. Equation (14) can be rewritten in terms of the path probabilities πl+1

s = hs/g
l+1
pq ,

s ∈ Spq, pq ∈ PQ:

va(gl+1) =
∑

pq∈PQ
gl+1
pq

∑
s∈Spq

δas π
l+1
s , a ∈ Ā. (15)

Assuming that πl+1
s ≈ πls, we get

∂va
∂gpq

(gl+1) =
∑
s∈Spq

δasπ
l
s, a ∈ Ā, pq ∈ PQ. (16)

Therefore,
∂Z(gl+1)

∂gpq
= (gl+1

pq −Gpq) + k
∑
s∈Spq

πls
∑
a∈Ā

δas
(
va(gl+1)− Va

)
, pq ∈ PQ. (17)
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Remark. The assumption πl+1
s ≈ πls is very reasonable, specially when the sequence {gl} is close to the

optimum. It not only simplifies the computation of the gradient ∇Z(g), but also gives a “linear behavior”
to va(g), since in this case va(g + λd) ≈ va(g) + λv(d) when ||d|| is small.
Concerning the optimal step length λl in (11), it can be found as the minimum of the one–dimensional
subproblem φ(λ) = Z

(
gl + λdl

)
. More precisely

min
λ
φ(λ) ≈ 1

2

∑
pq∈PQ

(
glpq + λ dlpq −Gpq

)2
+
k

2

∑
a∈Ā

(
va(gl) + λ va(dl)− Va

)2
(18)

subject to λdl ≤ 1, and glpq ≥ 0 ∀ pq ∈ PQ. (19)

This optimization problem has the solution

λl ≈

∑
pq∈PQ

dlpq(Gpq − glpq) + k
∑
a∈Ā

va(dl) (Va − va(gl))∑
pq∈PQ

(dlpq)
2 + k

∑
a∈Ā

va(dl)2
. (20)

After obtaining gl+1, the new conjugate direction is computed using formula (12), where the value of βl is
calculated by an adaptation of the Hestenes–Stiefel formula (see ref. [12]). We obtain

βl =

∑
pq∈PQ

gl+1
pq

∂Z(gl+1)

∂gpq

(
∂Z(gl+1)

∂gpq
− ∂Z(gl)

∂gpq

)
∑

pq∈PQ
dlpq

(
∂Z(gl+1)

∂gpq
− ∂Z(gl)

∂gpq

) . (21)

Notice that in this formula we have also multiplied each term in the numerator by gl+1
pq to keep the multi-

plicative structure of the iterative algorithm.
The statement of the multiplicative conjugate algorithm is given next.

Multiplicative conjugate gradient algorithm for matrix adjustment

Initialization. Given the initial demand g0 = G, do the following.

1. Assign the demand to get the volumes: v(g0) = assign(g0).

2. Compute the initial direction: d0
pq = −∂Z(g0)

∂gpq
, pq ∈ PQ, using formula (17) with l = −1.

Descent. For l ≥ 0, assuming that we know gl, dl, do the following steps.

3. Assign the demand on the network to get v(gl) = assign(gl). Compute v(dl) with (15).

4. Compute λl in formula (20) with the known values gl, dl, v(gl), v(dl).

5. Update the demand matrix: gl+1
pq = glpq

(
1 + λl d

l
pq

)
for all pq ∈ PQ.

6. Compute the gradient of the objective function at gl+1: apply formula (17).
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Stopping condition and new conjugate gradient direction. Given 0 < ε � 1 (the stopping parame-
ter), do the following.

7. If ‖∇Z(gl+1)‖ ≤ ε ‖∇(Z(g0)‖, take g = gl+1, stop and exit.

8. Otherwise, compute βl with formula (21).

9. Compute the new conjugate gradient direction dl+1 with formula (12).

10. Update the index: l = l + 1 and go to 3.

4. NUMERICAL RESULTS

For the numerical experiments we employed the transit network from the city of Winnipeg, Canada, obtained
from the standard EMME/4 Winnipeg demonstration database [9]. This is a network of 154 zones, 906 nodes,
3005 directional links, 4347 transit segments and 136 volume counts. The network is displayed in Figure 1,
where the set of segments with available volume counts (Ā) is shown in green.

Figure 1: Segment counts on the Winnipeg network.

We built up the following synthetic scenario: we first did a transit assignment to the Winnipeg network, with
the exact O–D matrix g at the peak hour in the morning. From the result of this assignment we extracted
the volumes, which play the role of measured volumes {Va}a∈Ā in the numerical experiments. Finally, we
generated an ‘obsolete’ O–D matrix G by doing a stochastic perturbation of 20% of the exact O–D matrix
g.
Then, with the generated data, we applied our multiplicative conjugate gradient method (CG) to see how
much we can recover of the original demand matrix. This CG algorithm was programmed with the macro
language of EMME and, consequently, the transit assignments in steps 1 and 3 of the CG algorithm were
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done with a trial version of the software package EMME/4. To stop the iterations in the CG algorithm (step
7) we chose ε = 10−3. All the numerical calculations were done in a HP–Pavilion dm4 computer desk, which
has an Intel(R) Core(TM) i5 processor and 3 GB RAM.
The numerical results show that this new algorithm improves the performance of the traditional multiplicative
steepest descent method of Spiess (SD). Table 1 shows the values of a least squares fit of the deviation from
the original O–D matrix obtained with both iterative algorithms. Similarly, Table 2 shows the correspondent
values of the least squares fit of the adjusted volumes versus the real volumes. In both tables, A and B
are the parameter values of the regression line, thus the adjustment is better for those points that are
closer to the correspondent line. On the other hand, R2 and RMSE are the correlation coefficient and the
square root of the mean squared error, respectively. A more detailed information about these regression
parameters can be found in [4] and [6]. In both tables, Iters denotes the number of iterations to achieve
convergence up to the given accuracy. Finally, in the last column we included the values of the quadratic
sums

∑
pq∈PQ (gpq −Gpq)2

and
∑
a∈Ā(va − Va)2, respectively.

Table 1: Demand deviation regression coefficients and convergence w.r.t. k.

k Method A B R2 RMSE Iters.
∑
pq (gpq −Gpq)2

SD -0.003 0.976 0.993 0.581 126 2.69
100 CG -0.003 0.976 0.993 0.580 37 2.70

SD -0.008 0.977 0.992 0.586 128 2.79
1000 CG -0.008 0.977 0.992 0.586 27 2.79

SD -0.009 0.977 0.992 0.587 128 2.80
10000 CG -0.009 0.978 0.992 0.586 29 2.79

SD -0.009 0.978 0.992 0.587 128 2.80
∞ CG -0.009 0.977 0.992 0.588 27 2.80

Table 2: Volume deviation regression coefficients and convergence w.r.t. k.
k Method A B R2 RMSE Iters.

∑
a(va − Va)2

SD 0.060 1.000 1.000 0.278 126 0.0105
100 CG 0.059 1.000 1.000 0.306 37 0.0126

SD 0.051 1.000 1.000 0.267 128 0.0096
1000 CG 0.028 1.000 1.000 0.285 27 0.0109

SD 0.050 1.000 1.000 0.266 128 0.0096
10000 CG 0.038 1.000 1.000 0.288 29 0.0112

SD 0.050 1.000 1.000 0.267 128 0.0096
∞ CG 0.028 1.000 1.000 0.262 27 0.0092

The previous tables show that both iterative methods yield almost the same results, specially for large values
of k. Also, those tables show a convergent behavior of the method when k → ∞. To further illustrate this
behavior, we show in Figures 2 and 3, the demand deviations and a comparison of volumes for k = 1000
and k =∞, respectively. In the demand matrix scatter plots (left) each red point has coordinates (gpq, g

L
pq),

with L the last iteration, i.e. L = 128 for SD and L = 27 in the case of CG. Similarly, for the volume
scatter plots (right) each red point has coordinates (Va, v(gL)a). These figures also corroborate that the
results obtained with the SD algorithm are quite similar to those obtained with the CG algorithm. The
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only significant difference is that the steepest descent algorithm requires about 4.5 more iterations than the
conjugate gradient algorithm to achieve the same accuracy.
Finally, in Figure 4 we show how the objective function, for the model of Spiess (1), decreases at each
iteration with both algorithms. We only show the first 27 iterations, since this is the number of iterations
needed by the CG algorithm to converge to the minimum with the given accuracy. This figure clearly shows
the better ability of the CG algorithm to solve the quadratic programming model.

SD

CG

Figure 2: Demand deviations (left) and flow comparison (right) with CG and k = 1000.
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SD

CG

Figure 3: Demand deviations (left) and flow comparison (right), obtained with CG. Model of Spiess.

5. CONCLUSIONS

In this work we studied an O–D matrix demand adjustment model within the context of public transportation
systems. This model is based on available volume data on some known links in the network; it considers the
difference between observed and assigned volumes as a constraint, and incorporates those differences to the
objective function as penalized quadratic terms, see (7)–(8). To solve the resultant optimization problem we
introduced a multiplicative conjugate gradient method. The performance of this algorithm was compared
with the method of steepest descent of Spiess [15]. Both methods yielded very similar solutions, but with
the advantage that the conjugate gradient algorithm does much less iterations to get the same accuracy.
It can be observed that the CG algorithm does more operations at each iteration than the SD algorithm,
mainly due to the calculation of βl in (21). However, this is compensated by the fact that the CG algorithm
does much less iterations than the SD algorithm to reach the same accuracy. Furthermore, it may be possible
to find a good preconditioner for the CG algorithm to reduce the number of iterations even more. This a
topic of future research.
There are additional issues that deserve further research, like the convergence properties of the CG algorithm.
Also, it will be interesting to investigate the possibility of generalize the penalized model (4)–(6), allowing
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Figure 4: Objective function vs iteration for SD and GC algorithms. Model of Spiess (1).

different penalization parameters for different links. An important pending task, is to test the reliability of our
approach for large scale problems, and how it compares with more recent models and techniques, like bi level
programming techniques, but in the context of transit assignment. Preliminary numerical experiments with
the transit network that represents the metropolitan area of Mexico City and surroundings are promising.
This is an ongoing research.
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