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ABSTRACT 

In this paper is shown the possibility to use a nonparametric regression instead of a scatter diagram, when this last cannot be employed in 

order to obtain information about the shape of the model. In particular it is considered a logistic regression, and a single quantitative 

independent variable. The proposal is illustrated with two examples. The former considers a scatter diagram that shows a linear 

relationship between the values of the independent variable and the probabilities of success of an event. The other one presents a scatter 

diagram that evidences a nonlinear relation between them. 
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RESUMEN 

En este trabajo se muestra la posibilidad de usar una regresión no paramétrica en lugar de un diagrama de dispersión, cuando éste último 

no pueda ser empleado para obtener información sobre la forma del modelo. En particular es considerada una regresión logística con 

sólo una variable independiente cuantitativa. La propuesta se ilustra con dos ejemplos. El primero considera un diagrama de dispersión 

que muestra una relación lineal entre la variable independiente y la probabilidad de éxito de un evento. El otro ejemplo presenta un 

diagrama de dispersión que evidencia una relación no lineal entre las variables.  

 

1.  INTRODUCTION 

 

In the case of a logistic regression with one independent quantitative variable, a scatter diagram does not can give 

information about the linear structure of the systematic component of the logistic model. The objective of this work 

is to show as a non-parametric regression can be used to obtain information about the most appropriate model to be 

considered. 

A major activity in statistics is the building of statistical models. In particular, the aim of regression analysisis to 

construct mathematical models which describe or explain relationships that may exist amongvariables (Seber and 
Lee, 2003; Sheather, 2009).Quite often, an experimental research work requires the empirical identification of the 

relationship among an observable response variable “y”, and a set of associated variables, or factors, that is believed 

that they have an effect on “y”. In general, if such relationship exists, it is unknown, but is usually assumed to be of 

a particular form, provided that it can adequately describe the dependence of “y” on the associated variables (or 

factors).This procedure leads to the so-called postulated model,which contains a number of unknown parameters, in 

addition to a random experimental error term (Khuri, 2009).  

The simplest case is when there are just two variables, such as height and weight, income and intelligence quotient 

(IQ), the length and breadth of the leaves, temperature and pressure of a certain volume of gas, etc.If we have n pairs 

of observations (𝑥𝑖 , 𝑦𝑖)of the variables “x” and “y”, we can plot these points, giving a scatter diagram, and endeavor 

to fit a smooth curve through the points, in such a way that the points are as close to the curve as possible. Clearly, 
we would not expect an exact fit, because at least one of the variables is subject to chance fluctuations due to factors 

outside our control. With two variables, the simplest regression model is the straight line. It is a particular case of the 

multiple regression models. The regression analysis is a statistical technique widely used, and it is employed in 

almost every field of application (Ryan, 1997). Many books and research papers have been published as an evidence 
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of this fact. To mention only several of them, see Ryan (1997, pag. 1, 2).The linear regression analysis allows us to 

consider a dependent variable and one or more independent variables. 

 

Suppose a set of n observations(𝑦𝑖 , 𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑝𝑖)from the variables “y” and  "𝑥1, 𝑥2, … 𝑥𝑝"where “y” represents 

the dependent variable and "𝑥1, 𝑥2, … 𝑥𝑝"the independent variables. Amultiple linear regression is modelled by 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖 + 𝜀𝑖                                                                                                       (1.1) 

In (1.1) the term 𝜀𝑖 represents a random error, where 𝐸(𝜀𝑖 𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑝𝑖) = 0 and 𝑉𝑎𝑟(𝜀𝑖 𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑝𝑖) = 2, for 

𝑖 = 1,2, … , 𝑛. The role of the error term is to account for the extra variation in “y” that cannot be explained by the 

postulated model. Then, an equivalent form of the expression (1.1) is given by 

𝐸(𝑦𝑖 𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑝𝑖) = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖                                                                                     (1.2) 

Additionally it can be assumed that the errors are normally distributed. With this assumption, it is possible to 

perform a broader inferential study (Draper and Smith, 1998). The objective is to estimate the parameters β from the 

data, applying the method of least squares, or likelihood estimation, if errors are normally distributed. Even with an 

independent variable, it is possible to study, not only linear relationships, but also non-linear relationships. In this 
case the expression (1.1) becomes in 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + ⋯ + 𝛽𝑝𝑥𝑖

𝑝
+ 𝜀𝑖                                                                                                             (1.3) 

or 

𝐸(𝑦𝑖 𝑥𝑖) = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + ⋯ + 𝛽𝑝𝑥𝑖

𝑝
                                                                                                            (1.4) 

In this work the case where there exists only an independent variable is of interest. 

From a parametric perspective, to apply linear regression is necessary to know the structure of the model which 

bestexpressesthe relationship between the dependent variable and the independent variables. In the case of asingle 

independent variable,if there is nota knowledge about the possible relation betweenthese variables, a scatter diagram 
can help to obtain evidence on this possible relation(Sheather, 2009). 

For example, figures (1.a) and (1.b) represent two scatter diagrams.The first suggests that the existing relationship 

between the variables "y" and "x" is a straight line, and the second, a second degree polynomial. 

But no always is possible to use a scatter diagram, even though it is considered an alone independent variable.For 

example, when the dependent variable takes only 0 and 1 values, since a scatter diagram  displays ordered pairs (x, 

y) on two straight parallel lines, y = 1 and y = 0, which does not provide evidence on the possible relationship 

between these variables. In this situation, it is not appropriate to use a linear regression model to study the 

relationship betweenthe variables. However, through the use of a logistic regression, the study of the relationship 

between these variables can be done.  

 
         

 

On the other hand, when the functional form of the model which explains the relationship between the dependent 

variable and the independent variable is decided from a scatter diagram, what really is fixed is the second term of the 

expression (1.4). Therefore, once determined the values of the parameters𝛽0, 𝛽1 , … , 𝛽0, estimates 

of𝐸(𝑦𝑖 𝑥𝑖 , 𝑥𝑖
2, 𝑥𝑖

3, … , 𝑥𝑖
𝑝

), for each i = 1,2,..., n, are obtained.Then the figures (1.a) and (1.b) suggest respectively the 

linear models 

𝐸(𝑦𝑖  𝑥𝑖) = 𝛽0 + 𝛽1𝑥𝑖 

Figure1.a Figure1.b 
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and 

𝐸(𝑦𝑖 𝑥𝑖) = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 

2. NON-PARAMETRIC REGRESSION AND LOGISTIC REGRESSION 

There is another way to perform a regression analysis without imposing any kind of model to data. The non-

parametric regression (NPR) it allows determining graphically the existing relationship between the variables. With 

a NPR is not necessary to fix a model before to perform the regression analysis, but rather, the model is determined 

by the data (Takezawa, 2006; Eubank, 1999;Ruppert, Wand, and Carroll, 2003). 

The NPR is a collection of techniques that allow  estimating the functional form of the regression function from the 

data, and any  assumption of linearity is replaced with a much weaker assumption of a smooth regression function; 

is therefore appropriate use it when do not exist prior knowledge of the relationship between the variables under 

study, or when the modelling using a parametric regression is very difficult, given the structure of the relationship 

between the dependent and independent variables.This characteristic makes very flexible the non-parametric 
regression (Eubank, 1999).The NPR does not assume a particular model. In this case the model is very general, and 

it is given by 

𝐸(𝑦𝑥) = 𝑚(𝑥)                                                                                                                                                        (2.1) 

where m(x) is some unknown smoothed function and which expresses the functional form of the relationship 

between “y” and “x”. The objective is to estimate the functional form of 𝑚(𝑥) from the data (Keele, 2008). This 

estimate is achieved through some method of non-parametric estimation (Takezawa, 2006). Once estimated 𝑚 (𝑥)by 

�̃�(𝑥),  an estimated of 𝐸(𝑦𝑖 𝑥𝑖) for each value of 𝑥𝑖 is obtained; and this informationis, in some sense, equivalent to 

the information provided by a scatter diagram. 

On the other hand, the study of the relationship between a dichotomous dependent variable "𝑦", with Bernoulli 

distribution and a quantitative independent variable “x", it is possible using a generalized linear model (GLM) 

(Agresti, 2002; Dobson, 2002; Faraway, 2006; McCulloch and Searle, 2001).If  = 𝑃{𝑦 = 1  𝑥 } = 𝐸(𝑦𝑥), the 

simplest model is given by the expression (2.1), in this case 

𝐸(𝑦𝑥) =  =  𝛽0 +  𝛽1𝑥                                                                                                                                          (2.2) 
 

But the expression (2.2) makes no sense, because once estimated the parameters, the adjusted model ̂ = 𝛽0̂ +

𝛽1̂𝑥cannot guarantee values inside the interval (0, 1). An alternative is to formulate the relationship in terms of a 

function g (.), this is 

 

 = 𝑔(𝛽0 +  𝛽1 𝑥) 
 

But when the function g (.) is a distribution function, their values will be in the interval (0, 1). If it is assumed that 

 

 = 𝑔(𝛽0 + 𝛽1𝑥) =
𝑒𝛽0+𝛽1𝑥

1+𝑒𝛽0+𝛽1𝑥                                                                                                                                  (2.3) 

g (.) is the distribution function of the  logistic distribution with location parameter μ = 0  and scale  parameter s =1, 

evaluated in (𝛽0 + 𝛽1 𝑥). From the expression (2.3),  

𝑙𝑛 [


1−
] = 𝛽0 + 𝛽1𝑥                                                                                                                                                   (2.4) 

is obtained. 

The expressions (2.3) and (2.4) can be generalized for more than one independent variable, resulting 

 = 𝑔(𝛽0 + 𝛽1𝑥1 + ⋯ + 𝑥𝑝) =
𝑒

𝛽0+∑ 𝛽𝑗𝑥𝑗
𝑝
𝑗=1

1+𝑒
𝛽0+∑ 𝛽𝑗𝑥𝑗

𝑝
𝑗=1

                                                                                                        (2.5) 

and 

𝑙𝑛 [


1−
] = 𝛽0 + ∑ 𝛽𝑗𝑥𝑗

𝑝
𝑗=1  .                                                                                                                                       (2.6) 

In particular if 𝑥𝑗 = 𝑥𝑗  for j=1,2,…,p,  

 = 𝑔(𝛽0 + ∑ 𝛽𝑗𝑥𝑗𝑝
𝑗=1 ) =

𝑒
𝛽0+∑ 𝛽𝑗𝑥𝑗𝑝

𝑗=1

1+𝑒
𝛽0+∑ 𝛽𝑗𝑥𝑗𝑝

𝑗=1

                                                                                                                (2.7) 

and 

𝑙𝑛 [


1−
] = 𝛽0 + ∑ 𝛽𝑗𝑥𝑗𝑝

𝑗=1                                                                                                                                         (2.8)         
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The expressions (2.4), (2.6) and (2.8) represent logistic regression models, as special cases of a GLM, where the link 

function is𝑛 [


1−
] , known as logit function. The systematic component in each case is a linear predictor, given by 

𝛽0 + 𝛽1𝑥, 𝛽0 + ∑ 𝛽𝑗𝑥𝑗
𝑝
𝑗=1  and 𝛽0 + ∑ 𝛽𝑗𝑥𝑗𝑝

𝑗=1   respectively, and the random component is a Bernoulli random 

variable. 

3. NUMERICAL ILLUSTRATION 

Two different scenarios were considered. In each one it is fixed a set of 20 pairs of values (𝑥𝑖 ,𝑖) ,The variable 

"𝑥"represents the independent variable, and "" the dependent variable. The variable "" represents the probability 

of success of an event, that is, it only takes valuesbetween 1 and 0. With each value"", it was generated a random 

variable Bernoulli with probability of success𝑖 , resulting a sample of size 20, of pairs of values(𝑥𝑖 , 𝑦𝑖). In the tables 

1.a and 1.b, appear the values of the variables “x”, “” and “y”, whose scatter diagrams (figures 2.a and 2.b) suggest 

a linear relationship and a nonlinear between the variables "𝑥" and "", respectively. In practice the values of the 

variable “”(𝑖)are unknown, and neither is possible to make a scatter diagram, nor obtain evidence of the possible 

model of the systematic component in a logistic regression. In this work it is assumed that the 𝑖values are known, 

but just to illustrate how the use of a scatter diagram can be substituted by a nonparametric regression, in order to 

obtain information on the model that to be considered in the logistic regression.  

On the other hand, on each figure (2.a and 2b), it is shown the scatter diagram of pairs(𝑥𝑖 , 𝑦𝑖), the 𝑖  values,  
estimated by the application of a nonparametric regression using  spline smoothing, and a logistic regression with 

the model 

 𝑙𝑛 [


1−
] = 𝛽0 + 𝛽1𝑥 

 on figure 2.a, and 

 𝑙𝑛 [


1−
] = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 

 on figure 2.b. 

For the computation was used the Rlanguage(R Code Team,2008). 

 

                                               Table 1.a                                                          Table 1.b 

x  y  x  y 

4.1 0.25 0  4.1  0 

5.3 0.38 0  5.3 0.25 0 

6.5 0.15 0  6.5 0.38 0 

7.3 0.20 0  7.3 0.15 0 

8.5 0.45 1  8.5 0.30 0 

9.58 0.26 1  9.58 0.45 1 

10.66 0.45 0  10.66 0.58 1 

11.74 0.53 0  11.74 0.45 0 

12.82 0.51 1  12.82 0.53 1 

13.9 0.54 1  13.9 0.71 1 

14.98 0.73 0  14.98 0.74 1 

16.06 0.41 0  16.06 0.73 1 

17.14 0.54 1  17.14 0.61 0 

18.22 0.42 0  18.22 0.59 0 

19.3 0.71 0  19.3 0.72 0 

20.38 0.65 1  20.38 0.61 1 

21.46 0.77 1  21.46 0.65 1 

22.54 0.80 1  22.54 0.52 0 

23.62 0.64 1  23.62 0.60 0 

24.7 0.87 1  24.7 0.34 0 
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Symbols used: , , ---, and ,  represent the probabilities𝒊,, the values 𝒚𝒊,  the estimated probabilitiesvia the applicationof a logistic 

regression and NPR, respectively. 

 

4. CONCLUSIONS  

 
From the obtained results, it can be concluded that the proposal formulated, is reasonable.A logistic regression was 

considered in this work, but there are other cases where a scatter diagram is not informative.For example, when one 

tries to adjust growth models, and as it is known, there are many of them. Therefore, different models offer different 

settings, which can not be assessed from the result of a scatter diagram. In this situation the applicationof a non-

parametric regression can help in the selection of the most suitable model. 
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