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ABSTRACT 

The combination of classifiers is an active research area of the machine learning and pattern recognition communities. Many theoretical and empirical 

studies have been published demonstrating the advantages of the paradigm of combination of classifiers over the individual classifiers. When combining 

classifiers it is important to guarantee the diversity among them [16]. Some statistical measures can be used to estimate how diverse the ensembles of 

classifiers are, they are called diversity measures. 

On the other hand the number of individual classifiers are very big and just a litter group of classifiers can be generated a large number of combinations, 

so emerge the idea to use one of the meta-heuristics: the genetic algorithms (gas). 

Genetic algorithms play a significant role as search technique for handling complex spaces in many fields. They are based on the underlying genetic 

process in biological organisms and on the natural evolution principles of populations. These algorithms process a population of chromosomes, which 

represent search space solutions, with three operations: selection, crossover and mutation. 

In this paper some diversity measures are presented and one modulation of genetic algorithm using diversity measures is enunciated and implemented in 

order to obtain, from all possible combinations of a large number of base classifiers, a combination that ensures greater diversity among the chosen 

classifiers and the best accuracy in multi classifier system. We also present and discuss the results of applying the implemented system in two fields of 

application. Finally, the general conclusions are exposed. 
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RESUMEN 

La combinación de clasificadores es un área de investigación activa en el aprendizaje reforzado y el reconocimiento de patrones. Muchos estudios 

teóricos y empíricos han demostrado las ventajas del paradigma de la combinación de clasificadores sobre los clasificadores individuales. Cuando se 

combinan clasificadores es importante garantizar la diversidad entre ellos. Algunas medidas estadísticas pueden utilizarse para estimar la diversidad de un 

conjunto de clasificadores, estas se llaman medidas de diversidad. 

Por otro lado, el número de clasificadores individuales existentes es muy grande y con sólo un grupo pequeño de clasificadores se puede generar un gran 

número de combinaciones, entonces surge la idea de utilizar una de las meta-heurísticas existentes: los algoritmos genéticos. 

Los algoritmos genéticos juegan un papel importante como técnica de búsqueda para el manejo de espacios complejos en muchos campos. Se basan en el 

proceso genético subyacente en los organismos biológicos y en los principios de la evolución natural de las poblaciones. Estos algoritmos procesan una 

población de cromosomas, los cuales representan las soluciones del espacio de búsqueda, esto lo hacen con tres operaciones: selección, cruzamiento y 

mutación.  

En este artículo se presentan algunas medidas de diversidad reportadas en la literatura y se enuncia e implementa una modelación de algoritmos genéticos 

usando las medidas de diversidad, con el fin de obtener, a partir de todas las combinaciones posibles de un gran número de clasificadores base, una 

combinación que garantice la mayor diversidad posible entre los clasificadores elegidos y la mejor precisión posible en el sistema multiclasificador. 

Además se presentan y se discuten los resultados del sistema implementado en dos campos de aplicación. Finalmente, se exponen las conclusiones 

generales. 

 

1. INTRODUCTION  

Genetic Algorithms are emerging as tools for solving complex search and optimization problems, as a result of the analysis of 

adaptive systems in nature. The search and optimization methods have been studied since the early years of computing, ranging 

from methods based on calculation to enumerative methods, up to random search algorithms. All these methods are analyzed and 

criticized in terms of robustness, but this does not mean they are not useful; they can be used as a complement to build more 

robust schemes in order to create hybrid approaches. 
The term Genetic Algorithm is used because they simulate the processes of the Darwinian evolution through the use of genetic 

operators which operate on a population of individuals that  evolves  from one generation to another . 

The development of the whole theory concerning the subject has not only served to achieve an efficient search method but 

allowed to abstract and rigorously explain the adaptive process in natural systems. Moreover, this has made possible to design 

artificial systems that include these natural mechanisms [10]. 

On the other hand, the issue of classification has been widely discussed and continues to develop. Choosing the best classifier 

depends largely on the problem to be solved, for each case the selected classifier establishes the best decision boundary to 
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separate the classes. In the search for better methods of classification there is a trend to combine several classifiers for the solution 

of same problem. This is the idea on which the so-calls multi classifier systems algorithms are based on. They use several 

classifiers and combine their outputs with the aim of achieving a better result [25]. 

Dietteric [6] suggests three reasons why a multi classifier system can be better than a single classifier. The first is statistical, 

because if each classifier has a hypothesis, the idea of combining these hypotheses, results in a hypothesis that cannot be the best, 

but at least avoids selecting the worst. The second justification is computational, since some algorithms execute queries that can 
lead to different local optima: each classifier starts the search from a different point and ends it closes to the optimum. There is an 

expectation that some combination pathway can lead to a classifier with a better approximation. The last justification is figurative 

because it is possible that the hypothesis space contains the hypotheses considered not optimal, but the approximation of several 

decision boundaries can result in a new space outside the initial hypothesis that is closest to the optimum. 

There are several ways in which multi classifier systems may be built. There are a number of algorithms developed, some for 

general problems as bagging and boosting and others for specific problems, but they all have the choice of the fundamental parts 

of the base classifiers and the choice of how to combine the outputs [4]. 

The selection of basic classifiers is the first step in building multi classifier systems. Among the variants to combine the base 

classifiers are the ones used for bagging and boosting, which use the same classification model trained with different case subsets. 

The first selects random case subsets and the second selects the subsets iteratively based on the result of the previous iteration. 

Another variant is used by Stacking, which is used in different classification models trained with the same initial base. 

It could be said that these two paradigms are the most general and used in building multi classifier systems. Although which of 
the two variants is the best has not been demonstrated. Individual multi classifier systems, like simple classifiers, are not 

intrinsically better than others, but have to be selected on the basis of which gives better results for each specific problem [16]. 

The diversity between the base classifiers is very important since this will largely depend on the final result of multi classifier 

systems. Each classifier achieved a percentage of cases classified correct. The more diverse the results of the classifiers are the 

higher probability to cover a higher percentage of cases, by combining the outputs thereof [14].  

Some multi classifier systems ensure diversity using different sets of training bases, but this only works for classifiers that are 

sensitive to changes, such as decision trees. Others use different sets of features and thus also vary the training base. Others use 

different base classifiers. In the latter case it is difficult to know when a great diversity is ensured, making it necessary to use 

some statistical measures that help to determine how diverse they are. Some measures of diversity are described by Kuncheva in 

[17]. They can be classified as: measures in the form of pairs (pairwise) and measures group (no pairwise). In this paper we will 

work with the pairwise measures. 

2. MEASURES FORMS OF PAIRS (PAIRWISE) 

These measures are calculated for pairs of classifiers. Its outputs are binary (0, 1) indicating whether the instance was classified 

correctly or not. Table 1 shows the results of two classifiers (Ci, Cj) for a given instance, depending on whether or not they were 

correctly classified. If we consider all instances between the pair of classifiers (Ci, Cj) the following results are obtained, see 

Table 2: 

  Cj correct (1) Cj incorrect (0) 

Ci correct (1) a b 

Ci incorrect (0) c d 

a + b + c + d = 1 

Table 1: Binary matrix for one instance 

  Cj correct (1) Cj incorrect (0) 

Ci correct (1) A B 

Ci incorrect (0) C D 

A +B + C + D = N 

Table 2: Binary matrix for N instances 

N is the total number of cases. A set of L classifiers produces L (L-1)/2 pairs of values. To obtain a single result these values are 

averaged. 

Correlation coefficient ρ 

The coefficient of correlation [16], is one of the measures for pairs of classifiers, it is calculated as: 

   (1) 

A better diversity is obtained for smaller values of . The values of will be in the interval [-1, 1]. 

Q Statistics 

The Q statistic is one of the measures for pairs of classifiers 
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   (2) 

It has been proved that ρ and Q have the same sign. Also, it can be demonstrated that [17]. 

The Measure of Differences 

The measure of differences was introduced by Skalak [28], it is the most intuitive measure between a pair of classifiers, and it is 

equal to the probability that the two classifiers disagree in their predictions. The diversity increases when the value of D increases. 

   (3) 

The Double-Fault Measure  

Another measure to be analyzed is known as double fault measure, which was introduced by Giacinto and Roli [9]and considers 

the failure of two classifiers simultaneously. This measure is based on the concept that it is more important to know when 

simultaneous errors are committed, that when both have a correct classification. The diversity increases when the value of DF 

decreases. 

  (4) 

3. GROUP MEASURES  

The measures group considers all the classifiers at the same time and calculates a unique value of diversity for the whole set of 

classifiers. 

Entropy 

This measure was introduced by Cunningham and Carney [5]: 

                                                                             (5) 

Where Yj,i will be 1 if the classifier i was correct in the case j, and 0 otherwise. If E is equal to 0 then there isn’t a difference 

between the classifiers and if E is equal to 1 then there is the most diversity. 

Kohavi-WolpertVariance 

The Kohavi-Wolpert Variance was introduced by Kohavi and Wolpert [13], and then Kuncheva and Whitaker presented a 

modification in [17]. In this measure the diversity is lower if the value of KW is higher. 

                                                                                (6) 

Measurement of Inter-rater Agreement  

The Measurement of Inter-rater Agreement was presented in [7].In this measure the diversity is lower when the k value is higher. 

The k is calculated by: 

                                                                                                                                        (7) 

Where the last term is the measure of Kendall concordance and p is the mean of the accurate in the individual classification, 

which has the following formula: 

                                                                                                                                                     (8) 

Coincident Failure Diversity  

The Coincident Failure Diversity is enunciated by Partridge y Krzanowski [23], this measure takes into account the instances 

where all the classifiers coincide. 

                                                                                                                          (9) 

This measure has a minimum value of 0 when all the classifiers are corrector incorrect, at the same time. The maximum value is 1 

when at least one classifier is incorrect in any random object. In the formula pi is the probability that Y=i/L and L is the number of 

classifiers. 

 

Distintic Failure Diversity  

The Distintic Failure Diversity was also enunciated by Partridge y Krzanowski [22], as an improvement of the previous measure. 

                                                                                                                                         (10) 
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Where ti is the number of i fails divided by total distinct fails, and L is the number of classifiers. 

4. GENETIC ALGORITHMS 

Genetic algorithms are search methods based on the general purpose principles of natural genetics, they are search algorithms 

based on the mechanisms of natural selection and genetics. Genetic algorithms are an example of a method that exploits the 

random search  guided  that has gained popularity in recent years due to their applicability in a wide range of fields and few 

requirements imposed by the problem [10, 12]. 
The basic idea is to maintain a population of chromosomes, which represent candidate solutions to the concrete problem; this 

population evolves over time through a process of competition and controlled variation. Each chromosome in the population has 

an associated fitness to determine which chromosomes are used to form new ones in the competition process, which is called 

selection. The new ones are created using genetic operators such as crossover and mutation. GAs have had a great measure of 

success in search and optimization problems. The reason for a great part of their success is their ability to exploit the information 

accumulated about an initially unknown search space in order to bias subsequent searches into useful subspaces, i.e., their 

adaptation. This is their key feature, particularly in large, complex, and poorly understood search spaces, where classical search 

tools (enumerative, heuristic) are inappropriate, offering a valid approach to problems requiring efficient and effective search 

techniques. 

To use the GAs is necessary to find a structure for representing the possible solutions. Thinking about this issue as the problem of 

searching in a state space, an instance of this structure represents a point or a state in the search space of all possible solutions. 

Thus, a data structure in the GA consist of one or more chromosomes (often one), which is commonly represented as a string of 
bits. Each chromosome is a concatenation of a number of subcomponents called genes. The position of a gene in the chromosome 

is known as locus alleles. In the string of bits, a gene is a bit, a locus is the position in the string and an allele is its value (0 or 1 if 

it is a bit). 

Fixed length and binary coded strings for the representation of the solutions have dominated the GA research since there are 

theoretical results that show them to be the most appropriate ones, and as they are easy to implement [11]. 

In order to optimize the GA structure, a measurement of the quality of each frame in the search space is needed. The fitness 

function is responsible for this task. In a maximization function, the objective function often acts as the fitness function. The GA 

usually works with maximization functions, for minimization problems the objective function values can be negated and 

transferred in order to take positive values, thus producing adaptability [1, 26]. 

In this meta-heuristic populations of solutions are built, it is stochastic because probabilities are used for taking decisions in the 

search process, and of course it is bio-inspired because it comes from a natural process. 
The simple mechanism of GA is as follows: 

 The simple GA randomly generates a population of n structures (strings, chromosomes or individuals) 

 The population operators act transforming the population. Once the actions of the three operators are completed, we can 

say that a generational cycle has expired. 

 Then the previous step is repeated while the stopping criterion of the AG is not guaranteed. 

The selection operator makes the selection of strings according to their adaptability for the next steps. The crossover operator 

performs the recombination of genetic material from two parent’s strings. The mutation operator, like the natural mutation 

operator, performs the mutation of a gene within a chromosome. 

A probability is associated to each of these operators. The mode of operation of a GA can be summarized as shown in Figure 

1.The AG runs for a fixed number of generations or until some stopping criterion is satisfied. 

Most experts on this subject agree that the GA can solve the difficulties represented in real life problems that sometimes are 

insoluble by other methods. The focus of research in GA is robustness: the balance between effectiveness and efficiency needed 
to survive in many different environments. 

In general, Genetic Algorithms have been used in many applications since their emergence, and every year more problems are 

being solved with this meta-heuristic, some of them from recent years are presented in [1, 2, 3, 8, 15, 18, 19, 24, 26, 27, 29].  

5. GENETIC ALGORITHM TO DETECT GOOD ENSEMBLES OF CLASSIFIERS 

The Genetic Algorithm configuration depends on the type of problem to solve. If the configuration and representation of all the 

elements are defined, then it is necessary to define the genetic operators, they are responsible for the evolution each population 

will have, process in which the expected solution should be found. These operators have to respond to the restrictions of the 

problem and therefore, they will have to be adapted in some occasions.  

In our case the genetic algorithm is presented using diversity measures for combining diverse classifiers and provides the best 

possible accuracy. The settings of all the parameters of the genetic algorithm and the definition of the goal function are: 
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Figure 1: Functional diagram of a Genetic Algorithm 

 

Chromosome configuration 

The chromosome will represent the possible solutions of our problem. 
Gen: is a binary variable. It takes the value 1 if the classifier belongs to the combination and it takes the value 0 otherwise. 

Chromosome: Arrangement of genes representing the set of all the base classifiers that will be used in multiple classifier systems. 

It is a vector of genes. 

The following equation shows the previous aspects: 

                                      (11) 

Description of the Goal Function 

In our case we want to obtain the better accuracy of multi classifier system together with the better diversity between the 

classifiers that are used in the multi classifier system. Then the value of  is the sum of the accuracy of the multi classifier system 

and the result of the diversity measures, according to the configuration of the  chromosome. 

                                                                                    (12) 

Therefore, the goal function in the evolutionary process will be: 

 
where P is the population size.  

In our problem there can be cases in which the first parameter of the objective function could be small and the value of  

could be high, because there is a great diversity between the classifiers. As the main goal in this work is to find the combination 

with higher accuracy in the classification and at the same time find the higher diversity between the classifiers, then another 

restriction is added. This restriction states that the final result will be the combination where the accuracy of the multiple classifier 

system surpasses the better accuracy obtained with the individual classifiers, and between them, the combination with more 

diversity. 

Configuration of the population 

In the configuration of the population it is necessary to define several elements, for example: the number of individuals in the 

population and the number of individuals to replace in each iteration. 

There are several works related to the influence of the population size in the convergence of the AG. In principle, it is logical to 

think that the work with small populations has the risk of poorly representing the space of solutions. On the other hand, the 

populations of great size consume more computational time. In this alternative and as a theoretical work, Goldberg obtained in his 

investigation that the good size of a population of binary strings, grows exponentially with the longitude of the string [10]. 

However, in different empiric results many authors suggest sizes of populations as small as 30 individuals. 

The population size can be calculated as , where Sc denotes the size of the chromosome. This size was suggested trying to 

avoid small space solutions or high computational time while analyzing this space.  

The initial population will be generated using a hybrid between the random generation and the sown of individuals. 

RandomGenerationof 

InitialPopulation 

Evaluation of the strings 

acording to the Goal Function 

Stopping 

CriterionOptimizationObjectiv

e 

ReproductionProcess 

(selection) 

Recombinationby crossing 

Updating theindividualsof 
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Each chromosome is randomly generated, where each gene takes value 0 or 1 depending on the presence of the classifier; i.e., a 

random number r is generated, if r is higher than 0.5 the classifier is included and therefore the gene will be 1, otherwise, the 

classifier is not included and the gene will be 0. After all the chromosomes are generated as explained before, the best individual 

classifiers are also included in the combination, putting the value of the corresponding gene equal 1. 

The selection, crossover and mutation operators are used to simulate the genetic recombination and the mechanism of natural 

selection. 

Mutation operator 

The implementation of this operator is very simple. The traditional mutation operator is defined: randomly choose a chromosome, 

randomly choose a gene to mutate and change its status: 0 for 1 or 1 for 0, which means that the inclusion of a classifier changes 

in the combination. If the resulting chromosome previously exists, choose another mutation point and repeat. If as result of 

exploration in all mutation points new chromosomes aren’t obtained, then another chromosome is selected to mutate. The 

probability of occurrence of the mutation can be defined by the user. 

Crossover operator  

In the case of the crossover, it is allowed to select fragments of the genotype of chromosomes that are not very good 

independently, but when they are mixed, it can be a better solution respect to the previous one. There are several ways to define 

this operator; in our case we define the classic operator of crossover in a point and the uniform crossover. 

In the crossover in a point, two chromosomes are chosen in a random way from the intermediate population, these two 

chromosomes will act as parents. A position of the gene is randomly chosen and as a result of this crossover two new 
chromosomes are obtained. 

In the uniform crossover, each father has the same probability of contributing with his genes to the only resulting individual. If a 

randomly generated number is smaller or equal to 0.5, the gene will be taken from the first father; otherwise, it will be taken from 

the second father. 

Once the process of genetic recombination by means of the crossover is concluded, if the new chromosomes already exist in the 

population then a mutation is performed in order to obtain new and different chromosomes. The probability of occurrence of the 

crossover can be defined by the user.  

Selection operator 

In this process an intermediate population of chromosomes is formed, where the previously mentioned operators are applied to 

obtain a new population with chromosomes that have more quality than the previous ones. For the selection of the chromosomes 

that will be part of the intermediate population the goal function is used, the objective function evaluated in each one of the 
individuals will determine their selection to participate in the genetic recombination, the best chromosomes are selected, i.e., the 

chromosomes with higher value when evaluated using the objective function. 

Then the previous operators are applied in this intermediate population to obtain new chromosomes that are added to the initial 

population. They are added in the initial population because for our problem the combinations that were not selected for the 

intermediate population sometimes can offer better solutions when they are combined with the new chromosomes and therefore 

they cannot be deleted. Now the population size is bigger, we denote its size as . 

Taking into account the characteristics of the problem, in this process one more step is added after recombination, whit the 

objective of getting a population with the established size. This reduction of the population size is done using a new selection, 

applying the roulette method, which does not allow the selection of one individual more than once. 

In the roulette method the probability used for each chromosome is calculated dividing the result of the goal function for the 

chromosome by the sum of the goal function of every chromosome in the population with size . This is shown in the following 

formula: 

            (13) 

Summarizing, each simple iteration of the GA begins with a population that has size equal to the number previously specified, 

this population is generated using a hybrid between the random generation and the sown of individuals. The intermediate 
population is generated by the selection operator, then new chromosomes are generated by the recombination process, they will 

be added to the initial population and can be taken or not into the new population. 

The population will be cleaned of chromosomes that probabilistically take the smaller values in the goal function, until keeping 

the established size (the roulette method). 

The algorithm stops when at least one of the following conditions is true: 

 The user specifies to stop when the algorithm finds the first combination that satisfies the conditions and restrictions of 

the problem. 

 The number of generations defined by the user is over.  

6. DESIGN OF EXPERIMENTS AND RESULTS 
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To validate the implemented system taking into account all the aspects mentioned before several experiments were designed. 

First, three experiments were focused on the validation of the implemented variant of GA and were divided by the number of 

individual classifiers that were used (6 classifiers, 12 and 18 respectively). The classification models were taken from the WEKA 

- Waikato Environment for Knowledge Analysis (http://www.cs.waikato.ac.nz/ml/weka/) 

The tables below show the classifiers selected for the experiments: 

weka.classifiers.bayes.NaiveBayes 

weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 
weka.classifiers.lazy.IBk -K 1 -W 0 -A  weka.core.neighboursearch.LinearNNSearch        

                                      -A \ weka.core.EuclideanDistance -R first-last\   

weka.classifiers.trees.J48 -C 0.25 -M 2 

weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0  

                                   -E 20 -H a 

weka.classifiers.trees.ADTree -B 10 -E -3 

Table 3: Set of 6 classifiers of the first experiment 

 

weka.classifiers.bayes.NaiveBayes 

weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 

weka.classifiers.lazy.IBk -K 1 -W 0 -A  weka.core.neighboursearch.LinearNNSearch        

              -A \ weka.core.EuclideanDistance -R first-last\   

weka.classifiers.trees.J48 -C 0.25 -M 2 

weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0  
             -E 20 -H a 

weka.classifiers.trees.ADTree -B 10 -E -3 

weka.classifiers.functions.SGD -F 0 -L 0.01 -R 1.0E-4 -E 500 

weka.classifiers.trees.RandomTree -K 0 -M 1.0 -S 1 

weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1  

              -K  weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0  

weka.classifiers.lazy.KStar -B 20 -M a 

weka.classifiers.functions.VotedPerceptron -I 1 -E 1.0 -S 1 -M 10000 

weka.classifiers.bayes.BayesNet -D -Q weka.classifiers.bayes.net.search.local.K2 –  

           -P 1 -S BAYES -E weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 0.5 

Table 4: Set of 12 classifiers of the second experiment 

 

weka.classifiers.trees.FT -I 15 -F 0 -M 15 -W 0.0 

weka.classifiers.lazy.LWL -U 0 -K -1  

      -A  weka.core.neighboursearch.LinearNNSearch -A \ weka.core.EuclideanDistance  

      -R first-last\   -W weka.classifiers.trees.DecisionStump 

weka.classifiers.trees.RandomForest -I 10 -K 0 -S 1 -num-slots 1 

weka.classifiers.lazy.IBk -K 5 -W 0 -A  weka.core.neighboursearch.LinearNNSearch  

      -A \ weka.core.EuclideanDistance -R first-last\   

weka.classifiers.functions.SPegasos -F 0 -L 1.0E-4 -E 500 

weka.classifiers.trees.REPTree -M 2 -V 0.001 -N 3 -S 1 -L -1 -I 0.0 

weka.classifiers.bayes.NaiveBayes 

weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 

weka.classifiers.lazy.IBk -K 1 -W 0 -A  weka.core.neighboursearch.LinearNNSearch        
              -A \ weka.core.EuclideanDistance -R first-last\   

weka.classifiers.trees.J48 -C 0.25 -M 2 

weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0  

             -E 20 -H a 

weka.classifiers.trees.ADTree -B 10 -E -3 

weka.classifiers.functions.SGD -F 0 -L 0.01 -R 1.0E-4 -E 500 

weka.classifiers.trees.RandomTree -K 0 -M 1.0 -S 1 

weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1  

              -K  weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0  

weka.classifiers.lazy.KStar -B 20 -M a 

weka.classifiers.functions.VotedPerceptron -I 1 -E 1.0 -S 1 -M 10000 

weka.classifiers.bayes.BayesNet -D -Q weka.classifiers.bayes.net.search.local.K2 –  
           -P 1 -S BAYES -E weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 0.5 

Table 5: Set of 18 classifiers of the third experiment 

http://www.cs.waikato.ac.nz/ml/weka/
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As multi classifier system we used  Vote , which is included in WEKA too, this multi classifier was selected because its operation 

is quite simple, it works with the basic idea of combining several individual classifiers and get a single output through a criterion 

of combination to their output. 

The following criteria of combination of the outputs of the individual classifiers were considered: 

 Majority Vote: The class that will be assigned is where most of the classifiers agree.  

 Average: The class is assigned considering the average of the probabilities of each instance’s classification. 
 Product: The class is assigned considering the product of the probabilities of the each instance’s classification.  

 Minimum: The class is assigned considering the minimum of the probabilities of the classification of each instance. 

 Maximum: The class is assigned considering the maximum probability of the classification of each instance.  

The objective of these three experiments was not to propose a set of configuration parameters for the GA, so that in general we 

can say that they were executed using the classical and uniform crossover operators. 

The specific parameters used in the experiments are the following: 

 number of generations: 50  

 probability of mutation: 0.25 

 probability of crossover: 0.75  

As evaluation measure we used  Percentage Split , taking 66% of the instances for training and the rest for evaluation. The 

diversity measure selected was Double Fault (DF), because it is one of the most intuitive and simple.  

Nine bases from the Repository of Machine Learning Databases from the University of California Irvine-UCIML 
(http://archive.ics.uci.edu/ml/ ) were used, below are listed some of their features: (see Table 6). 

 

Data Bases Nominal Features Numeric Features Classes Instances Distribution by classes 

Australian 5 9 2 690 383-307 

Breast Cancer Wisconsin 9 0 2 683 444-239 

Diabetes 0 8 2 768 500-268 

Echocardiogram 1 11 2 132 79-53 

Heart Stlatlog 0 13 2 270 150-120 

Hepatitis 13 6 2 155 32-123 

House-votes 16 0 2 435 201-99 

German Credit 13 7 2 1000 300-700 

Tic Tac Toe 9 0 2 958 626-332 

Table 6: Data bases used in experiments 

As it was shown, these databases are different: two have numerical features, other three have nominal features and four present a 

combination of them. They all have two classes. The amount of instances is also different, from bases with 132 cases to bases 

with 1000 cases. 

Figure 2 shows the best accuracy of the classification models used in each experiment and for each database that was used. 

As we can see, the average accuracy in each group of classifiers was above 85%, resulting significant the accuracy of the bases 

Breast Cancer Wisconsin, House Votes and Tic Tac Toe with over 95% of cases correctly classified. Usually, the best individual 

accuracy that the multi classifier should overcome not was constant when the number of classifiers to combine increased. 

 

http://archive.ics.uci.edu/ml/
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Figure 2: Comparison between the accuracy in the classification of each group of classifiers 

 

 

Sometimes several configurations which meet the requirements defined above in the modeling of the genetic algorithm were 
obtained, that is why representative combinations of each run were selected, taking into account that with a greater accuracy we 

also get greater diversity in the entire set of solutions found in this run. This way, the most important representative combinations 

are shown in Figure 3. 

 

 
a) First experiment with 6 classifiers 

 

 

 
b) Second experiment with 12 classifiers 
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c) Third experiment with 18 classifiers 

 

Figure 3: Best results found with the GA 

 

From the results shown in the comparisons, according to the combination rule of multi classifier and the differences between the 

best individual accuracy and the accuracy of the formed multi classifier, we determined the combination rule which provided 

more combinations which accuracy over the best individual. 

Figure 4 shows the total of the differences between the accuracy of the multi classifier formed from the combination found, and 

the best individual accuracy, considering each combination rule of the multi classifier. Note that the combination rules which 

provided combinations of classifiers with higher differences in individual accuracy were the average of the probabilities and the 

majority vote. 
 

 

 
Figure 4: Total of the differences between the best individual accuracy and the multi classifier formed in each combination rule 

 

Also, if we analyze the configuration of each chromosome in the representative combinations, we can detail the results shown in 

Table 7. 

  
Group 6 Group 12 Group 18 TOTAL 

Total of combinations found 37 38 40 115 

From them: have all of the best 

classifiers 
27 18 25 70 

From them: have partially the best 

classifiers 
7 11 6 24 

From them: don’t have any of the 

best classifiers 
3 9 9 21 

Table 7: Analysis of the presence of the classifiers of the best accuracy in the representative combinations selected 

 

With this is evident the convenience of the definition of the initial population randomly generating each gene in the chromosomes 

but forcing to include at least half of the classifiers which accuracy is the best.  

Consider a  representative slot  as a combination obtained after the execution of the GA using a base, and using a combination 

rule in the multi classifier and with a number of classifiers specified in one of the three experiments.  

If you consider that five combination rules were tested in the multi classifier with 10 bases and three sets of classifiers with 

different sizes, then the processing of these three experiments was to find 150 representative slots as maximum, 50 in each group 
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of classifiers. Figure 5 shows the behavior of the representative slots (representative combinations of classifiers) found in each of 

these groups. 

 

Figure 5: Number of representative slots found and not found in the classifier sets defined 

From the above, we can see that in the experiments the number of combinations found increased with the number of classifiers, 

even when the best individual accuracy was not the same in each set or nearly impossible to over (see Figure 2), which supports 

the relevance of the variant of GA implemented. 

As an example, Figures 6a and 6b show a comparison by set of classifiers and the number of representative slots found in the 

different bases: Diabetes, Echocardiogram and Hepatitis. This also takes into account the accuracy of the multi classifier system 

built from them. In the rest of the bases used, the slots found were approximately constant. 

 

 
Figure 6a: Behaviuor of number of representative slots found 

 

Figure 6b: Accuracy of  the multi classifier systems 

 

As it can be seen, there are cases in the experiments in which the set of classifiers did not find any representative slots 

(Echocardiogram base), or the number found was less than the total (5), but as the number of classifiers varies and also the best 

accuracy registered, then possible combinations emerge and they can be used in a multi classifier system. This is because the 

aggregated classifiers were able to classify instances that, when they were combined in multi classifier systems, conducted to 

correct classification of these instances. However, the best individual classifier of the previous provided a wrong classification.  

Therefore the accuracy found shows variability in the sets of classifiers. Finally, Figure 7 shows the behavior of the diversity 

measures and the best multi classifier system formed in each base, taking into account the number of classifiers in the three 
experiments. Note that apparently there exists a correlation between both variables, confirmed also in the dispersion graphics: b), 
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c) y d), where we can see that R2 expresses the quality of the formed lineal function and it is very good. Each graph has accuracy 

vs. diversity. 

 
a) 

  
 

b)                                                  c)                                                    d) 

Figure 7: Behaviuor of accuracy and diversity in the representative slots, a) Behaviuor in each one of the bases 
b), c) and d) Correlation beetwen the accuracy and the diversity in sets of 6, 12 and 18 classifiers respectively 

 

7. APPLICATION TO PREDICT PROTEIN INTERACTIONS 

The problem is to predict protein interactions in a database of Arabidopsis thaliana, which was obtained by the Department of 

Plant Systems Biology2, from documents reported in the literature. This database contains information relevant to the interactions 

of proteins in Arabidopsis thaliana: attributes of conserved domains, expression values to calculate Pearson correlation 

coefficients, information of annotations of GO (Gene Ontology), OG (Orthologous Group), among others. 

The data consist of 4314 pairs of proteins, 1438 are examples of true interactions and 2876 are negative examples (or at least 

dubious). The results reported before demonstrate that the process of identifying simultaneously positive and negative examples is 

difficult, it is rare to find reports of pairs of proteins non-interacting, especially at large-scale and the negative cases for the 

learning are not entirely safe. 

Eleven features were selected in total, also the special variable named class, which identifies if there is or there is not a protein 
interaction. 

  GO similarity score biological process: average  (GO_sim_bp_avg) 

  GO similarity score biological process: sum  (GO_sim_bp_sum) 

  GO similarity score biological process: maximum  (GO_sim_bp_max) 

  GO similarity score cellular component: average  (GO_sim_cc_avg) 

  GO similarity score cellular component: sum  (GO_sim_cc_sum) 

  GO similarity score cellular component: maximum  (GO_sim_cc_max) 

  Pearson correlation coefficient for micro-array type 1  (PCC_1_devtissues) 

  Pearson correlation coefficient for micro-array type 2  (PCC_2_heterog) 

  Domain score 1: number of common domains  (domain_match) 

                                                             
2 Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Belgium 
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  Domain score 2: number of common domains/ total number of different domains for the two proteins together  

(domain_score) 

 class (value zero identify no interaction protein, and the value one that there is interaction protein) 

A brief statistical description is shown in Table 8. 

Input parameters 

The multi classifier  Vote  from WEKA was used together with each combination rule: Average, Majority vote, Product, 
Maximum and Minimum, as a measure of evaluation we used  Percentage Split  taking 66% of the instances to train and the rest 

for evaluation, with DF as diversity measure.  

The GA was executed with 0.25 as probability of occurrence of a mutation and 0.75 as probability of occurrence of a crossover, 

the number of generations for evolution was equal to 50 and the uniform crossover operator was used. 

 

 

 

 

 

 

 
 

 

Features Minimum Maximum Media Std. Desviation 

GO_sim_bp_avg .00 .67 .0082 .02679 

GO_sim_bp_sum .00 1726.00 29.9580 116.75787 

GO_sim_bp_max .00 11.00 .7728 1.96263 

GO_sim_cc_avg .00 2.00 .0199 .09019 

GO_sim_cc_sum .00 1240.00 5.4390 37.63749 

GO_sim_cc_max .00 7.00 .6938 1.56981 

PCC_1_devtissues -.82 1.00 .0635 .33527 

PCC_2_heterog -.80 1.00 .0787 .35708 

domain_match .00 11.00 .3401 1.00913 

domain_score .00 1.00 .1243 .31261 

Table 8: Statistical description of the base used 

Used Classifiers 

The sets of 6, 12 and 18 classifiers defined above in previous experiments were the classifiers used in this application. 

Results 

The best individual accuracies are observed in Table 9. 

 6 classifiers 12 classifiers 18 classifiers 

Best individual accuracy 0.82344922 0.82344922 0.825494206 

Table 9: Best individual accuracies in sets of 6, 12 and 18 classifiers 

As we can see, the individual accuracy increases again with the number of classifiers.  

By applying GA to this problem we can obtain the configurations shown in Table 10. 

 

Number of 

Classifiers 

Combination rule of multi classifier 

AVG PROD 

Chromosome Accuracy Diversity Chromosome Accuracy Diversity 

6 010110 0.82617587 0,83526471 010110 0.82481254 0.83526471 

12 111000111110 0.83026585 0.85709417 010111000000 0.82549421 0.84151329 

18 111011001000111011 0.83026585 0.85725971 100000000010000100 0.82617587 0.83890025 
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Number of 

Classifiers 

Combination rule of multi classifier 

MAJ MAX 

Chromosome Accuracy Diversity Chromosome Accuracy Diversity 

6 011111 0.82685753 0.85576005 010001 0.82413088 0.8459441 

12 111100011100 0.82890252 0.85717532 010011000100 0.82481254 0.84333106 

18 101110011000001110 0.83162918 0.85798682 010000010010000100 0.82617587 0.83696887 

 

 

 

 

 

 

 

 

Table 10: Results obtained with the GA 

Except in one combination rule with the set of 18 classifiers, the remaining combinations accuracies obtained were substantially 

better than the individual accuracy. In 8 of the 14 combinations found the classifier with the greater accuracy was included and 

the combination rule with greater differences respect to the individual accuracy was the majority vote.  

The diversity performance and accuracy of the multi classifier system can be seen in Figure 6. Note that the diversity in the 

combinations of classifiers found was relatively high. 

 

Figure 8: Behaviour of the accuracy in the multi classifier and diversity of the classifiers inside the combination found 

8. APPLICATION TO PREDICT SYSTEMIC ARTERIAL HYPERTENSION IN CHILDREN 

Nowadays, the concept  Systemic Arterial Hypertension  is very common in our society and it has been identified as 

cardiovascular risk factor. However, not everybody thinks in this risk for the children’s welfare. The guides to the  European 

Society of Hypertension (ESH) and European Society of Cardiology (ESC) for treatment of this disease, published in 2003 and 

updated in 2007, did not include, unfortunately, any section on hypertension in children and adolescents [20]. 

The prevention of cardiovascular diseases should not be limited to adulthood, it should begin in childhood. Diagnosis of 

hypertension in children is complicated because normal and abnormal values of blood pressure vary with age, sex and height. It 

has been shown that hypertension in childhood is an independent risk factor for hypertension in adulthood and it is associated 

with early markers of cardiovascular disease. Considering that morbidity and mortality in long-term are associated with high 

blood pressure, a major component for the health of children and adolescents is to intervene in time [21]. 

In this study, the sample consisted of 680 children apparently healthy between 8-12 years of age, of both genders, from 4 primary 
schools in the city of Santa Clara. The data were supplied by the PROCDEC3 project. We analyzed a set of 31 random variables 

                                                             
3 Project PRODEC: Projection Electronic Development Center to the Community, Universidad Central  Marta Abreu  de Las Villas, Santa Clara, Cuba. 

Number of 

Classifiers 

Combination rule of multi classifier 

MIN 

Chromosome Accuracy Diversity 

6 010001 0.82413088 0.845944104 

12 010001000000 0.82413088 0.845944104 

18 
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used in the diagnosis of cardiovascular risk for predicting the risk of a child to be or not hypertensive. Table 11 shows the key 

features of the random variables that are discrete and Table 12 shows the basic characteristics of the continuous random variables. 

 

Variables Identifier Values Percent 

Sex Sex Female 50.4 

  Male 49.6 

Skin color Skin 

color 

white 81.5 

  No 

white 

18.5 

Diagnostic Newdiag 

 

yes 57.5 

  No 42.5 

Table 11: Discret predictor variables 

 

Variables Identifier Minimum Maximum 

Age EdadA 

 

8 11 

Current weight (en kg) PesoKg 

 

20.5 75.1 

Size(en cm) Talla 113 191 

Waist circumference (en cm) CCintura 37 182 

Hip circumference (en cm) CCadera 30 106 

Waist hip index icc 0.58 2.5 

TA lower limb Systolic TSMI 11 150 

TA Lower Limb Diastolic TDMI 20 90 

TA Upper Limb Systolic T1dBS 81 150 

TA Upper Limb Diastolic T1dBD 6 99 

TA Systolic 5 min T1d5S 73 152 

TA Diastolic 5 min T1d5D 46 95 

TA Systolic 10 min (before 15 min) T1d10S 11 149 

TA Diastolic 10 min (before 15 min) T1d10D 45 94 

TA 1er day, Systolic Average T1SMedia 77.33 146 

TA 1er day, Diastolic Average T1DMedia 43.33 88.67 

TA 2do day, Basal  Systolic T2dBS 82 150 

TA 2do day Basal Diastolic T2dBD 17 94 

TA 2do day Systolic P. Sustained weight T2dPPSS 78 174 

TA 2do day Diastolic P. Sustained weight T2dPPSD 48 116 

Arterial Pressure Average 2d PAM2d 58 129.67 

TA 3er day Basal Systolic T3dBS 81 144 

TA 3er day Basal Diastolic T3dBD 40 110 

TA 3er day Systolic P. Sustained weight. T3dPPSS 83 160 

TA 3er day Diastolic P. Sustained weight. T3dPPSD 13 112 

Average of Arterial Pressure  3d PAM3d 53.33 120 

Índice of corporal weight imc 8.77 255.19 

Table 12: Continuous predictor variables 

Input parameters 

The multi classifier  Vote  from WEKA was used together with each combination rule: Average, Majority vote, Product, 
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Maximum and Minimum, as a measure of evaluation we used  Percentage Split  taking 66% of the instances to train and the rest 

for evaluation, with DF as diversity measure. The GA was executed with 0.25 as probability of occurrence of a mutation and 0.75 

as probability of occurrence of a crossover, the number of generations for evolution was equal to 50 and the uniform crossover 

operator was used. 

Used Classifiers 

The sets of 6, 12 and 18 classifiers defined above in previous experiments were the classifiers used in this application. 

Results 

The best individual accuracies are observed in Table 13. 

 

 6 classifiers 12 classifiers 18 classifiers 

Best individual accuracy 0.9004 0.9091 0.9134 

Table 13: Best individual accuracies in sets of 6, 12 and 18 classifiers 

It can be seen that the individual accuracy increases again with the number of classifiers. By applying GA to this problem we can 

obtain the configurations shown in Table 14. 

Number of 

Classifiers 

Combination rule of multi classifier 

AVG PROD 

Chromosome Accuracy Diversity Chromosome Accuracy Diversity 

6 010010 0.9081 0.9089 010110 0.9072 0.9080 

12 111000111110 0.9288 0.9319 010111000000 0.9129 0.9153 

18 111011001000111011 0.9480 0.9496 100000000010100100 0.9290 0.9299 

       

Number of 

Classifiers 

Combination rule of multi classifier 

MAJ MAX 

Chromosome Accuracy Diversity Chromosome Accuracy Diversity 

6 011111 0.9074 0.9085 010001 0.9072 0.9082 

12 101100111100 0.9281 0.9309 010011000100 0.9129 0.9150 

18 001001000100101100 0.9468 0.9480 010000010010000100 0.9290 0.9299 

 

 

 

 

 

 

 

 

 

Table 14: Results obtained with the GA. 

The accuracy of the combinations obtained was substantially better than the individual accuracy. In 9 of the 15 combinations 

found the classifier with the greater accuracy was included, and the combination rule with greater differences respect to the 

individual accuracy was the average. Also, we can see that the second best results found in the combination rules were using 
majority vote. 

The diversity performance and accuracy of the multi classifier system can be seen in Figure 7. Note that the diversity in the found 

combinations of classifiers was relatively high, same to the first application. 

Number of 

Classifiers 

Combination rule of multi classifier 

MIN 

Chromosome Accuracy Diversity 

6 010011 0.9072 0.9082 

12 010001100000 0.9174 0.9184 

18 001001000100100100 0.9272 0.9289 
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Figure 9: Behaviour of the accuracy in the multi classifier and diversity of the classifiers inside the combination found 

Figure 10 shows a comparison of results between the accuracy of individual classifiers and the multi classifier system found. Note 
that the multi classifier is better. 

 

 
Figure 10: Accuracy of 18 models used and multi classifier obtained in this application 

9. DISCUSSION SECTION 

Several experiments were designed and conducted in order to validate the GA variant presented in this paper. The results of these 

experiments demonstrated that the implemented GA is able to find a combination of classifiers which inclusion in the multi 

classifier system achieves accuracy greater than the individual best classification accuracy. It is also shown how the classifiers 

included in the combinations found are diverse from each other. 

Specifically, two different applications are used, in the first one we worked with a database that describes the interaction of 

proteins in Arabidopsis thaliana, which shows that the best (or better) individual classifiers were completely or partly included in 

the combinations that yielded the best results. Also, the probability of finding a combination of classifiers that meets the 

requirements of the problem increased with the number of classifiers that were combined. Moreover, the combination rule where 

the best results were found was the majority vote. In general 18 classifiers were applied and their individual results showed 82% 
as best accuracy. Using the GA we obtained a combination of these classifiers which accuracy was better (83%) than the one 

reported by the individual classification. 

In the second application, we worked with a database that describes the necessary characteristics to predict the presence of 

hypertension in children; it is noted again that the best (or better) individual classifiers are completely or partly included in the 

combinations that yielded the best results. Again, the probability of finding a combination of classifiers that meets the 
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requirements problem increases with the number of classifiers that are being combined. In this case the combination rule that 

yielded the best results was the average although the results using majority vote were very close. In general, the same 18 

classifiers were applied, and their individual results show 91% as best accuracy. Using the GA we obtained a combination of 

these classifiers which accuracy was better (94%) than the individual classification. 

The same experiment was applied twice in different applications, where it was shown that the best results in a combination of 

classifiers are achieved when the best of the individual classifiers is included. Also, if there exist more classifiers to combine, the 
probability of finding a better accuracy increases as a result of some possible combinations. Moreover, the combination rules that 

best perform are the majority vote and the average.  

10. CONCLUSIONS 

In this paper we presented a novel technique using Genetic Algorithms to find a good combination of diverse classifiers. The 

objective function in the genetic algorithm involves the classification accuracy of the multi classifier and the results of the 

diversity of the base classifiers.   

Several experiments were performed, which showed that in the combinations found by the genetic algorithm, as solutions, the 

best (or better) individual classifiers are completely or partly included. 

Also, in these experiments it was shown that the probability of finding a combination of classifiers that meets the requirements of 

the problem, increases with the number of classifiers that are being combined. 

Finally, two different applications are shown. The results obtained in both are similar, where the combinations of classifiers that 

outperform the best individual accuracy were found, and these classifiers are relatively diverse from each other. All the aspects 
mentioned before validate the model proposed with genetic algorithms using diversity measures. 
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