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ABSTRACT 

A hybrid encryption scheme is a cryptographic algorithm that can be built from two different phases: a key encapsulation 

mechanism (KEM) based on public key encryption, and a data encapsulation mechanism (DEM) based on a private key 

encryption scheme. The main advantage of hybrid cryptographic schemes is that they offer solutions to the problem of 

symmetric key exchange and the problem of efficiency typical of asymmetric encryption schemes. An example of a hybrid 

cryptographic algorithm is the Elliptic Curve Integrated Encryption Scheme (ECIES). ECIES is incorporated as international 

standard, however this protocol does not provide issuer authentication which is a drawback in many practical applications. 

This paper presents a secure, efficient and authenticated variant of ECIES protocol. The modification is based on the 

substitution of the mechanism for generating shared secret values included in the ECIES, for a one-pass authenticated key 

agreement protocol. This protocol is included in a cryptographic file-protection system which is used today in many practical 

applications and scenarios. 
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RESUMEN 

 

Un esquema de cifrado híbrido es un algoritmo criptográfico que puede ser construido a partir dos fases bien definidas: un 

mecanismo de encapsulamiento de llave (KEM por sus siglas en inglés) basado en un esquema de cifrado de llave pública, y 

un mecanismo de encapsulamiento de datos (DEM por sus siglas en inglés) basado en un esquema de cifrado de llave privada. 

La ventaja principal de los esquemas criptográficos híbridos radica en que ofrecen solución al problema del intercambio de 

llaves simétricas y al problema de eficiencia propio de los esquemas asimétricos de cifrado. Un ejemplo de algoritmo 

criptográfico híbrido es el Esquema Integrado de Cifrado sobre Curvas Elípticas (ECIES por sus siglas en inglés). El ECIES 

se ha constituido como estándar internacional, sin embargo, este protocolo no ofrece autenticidad del emisor lo que representa 

un inconveniente en la práctica en muchas aplicaciones. 

En este trabajo se propone una variante segura, eficiente y autenticada del protocolo ECIES. La modificación realizada se basa 

en la sustitución del mecanismo de generación de la llave secreta compartida incluido en el ECIES, por un protocolo 

autenticado de acuerdo de llaves de un solo paso.  Esta variante del protocolo ECIES se integra a un sistema de protección 

criptográfica de ficheros que está siendo usado en varias aplicaciones prácticas. 

 

1. INTRODUCTION 
 

Security protocols aim to allow two or more entities to establish a secure communication over a hostile 

network. The goal of security protocols is to allow the exchange of sensitive data over insecure networks. 

Without doubt cryptography plays a very important role in the design of security protocols.  The appearance 

of asymmetric cryptography [11] as a solution to the problem of key exchange leads its inclusion as a 

fundamental component in the development of cryptographic protocols designed to ensure one or more 
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security objectives. The key exchange is a process in which two honest entities share a secret key that will be 

used to communicate via an insecure communication channel. The key exchange protocols are divided in two 

classes: key-agreement protocols, in which both parties contribute with information from which the secret key 

is generated and key-transport protocols in which a secure secret key is transmitted from one entity to another. 

The one-way communication models are a popular alternative used today (e.g. email). In these models, the 

issuer sends a single message with all necessary information to establish a communication with the recipient. 

These models requires the existence of a one-pass key exchange protocol, so it is important to have 

alternatives to wrap the secret key from an issuer entity A to recipient entity B. 

Asymmetric encryption provides secure communication without previous agreement using the static public 
keys of the entities involved. However, its proven inferiority in computational performance compared to 

symmetric algorithms has leaded to the design of hybrid cryptosystems. Hybrid cryptosystems complements 

public key and private key cryptosystems taking both advantages for best results. A widely accepted example 

of hybrid cryptographic algorithm is Diffie-Hellman Integrated Encryption Scheme (DHIES) [1]. The term 

integrated is due to the use of asymmetric cryptography to wrap a secret key used by a symmetric encryption 

algorithm. The recent interest in Elliptic Curve Cryptosystems [17, 21] leads to the appearance of Elliptic 

Curve Integrated Encryption Scheme (ECIES) as a DHIES adaptation of the groups formed by the points of 

an elliptic curve defined over a finite field with an operation of point’s addition acting as internal law. 

When using ECIES to key wrapping (the message to encrypt is a symmetric key) this can be seen as a one-

pass key exchange protocol that guarantees implied authentication of the recipient entity. However it is very 

desirable to have protocols where both the issuer and recipient are authenticated. One possible solution may 
be to apply a digital signature algorithm (e.g. ECDSA) to the encrypted message. However, this introduces 

the disadvantage that it is necessary to implement a digital signature scheme and also increasing processing 

and some transmission requirements. Even assuming the use of digital signatures could not guarantee some 

security objectives because an adversary can replace the transmitted digital signature by his own. 

 

Approach: This paper proposes an authenticated variant of ECIES. The modification consists in the inclusion 

of the Elliptic Curve variant of the scheme MQV (ECMQV) to ensure implicitly issuer authentication during 

the process of generating the shared secret key. 

 

Related works: MQV protocol was formalized by Law, Menezes, Qu, Solinas and Vanstone [19] and 

proposes one-pass, two-pass and three-pass variants, the latter with key confirmation. A paper presented by 
Kaliski [7] described the unknown key-share attack (UKSA) for this protocol and proposes a set of measures 

to avoid it, showing that the three-pass variant of MQV is resistant to these attacks. Hugo Krawczyk [18] 

presented a set of vulnerabilities for MQV relating to the security model Canetti-Krawczyk [8] and also 

formalized a variant known as HMQV (hashed MQV). However these vulnerabilities either are well known 

and avoidable or depend on the ability of an adversary to know secret information of the entities involved, 

which in practice is unlikely. Menezes [20] criticized the formal analysis performed by Krawczyk and raised 

the need to include validation of ephemeral public keys and static entities in case of HMQV. It also showed 

that the one-pass variant of HMQV is vulnerable to UKSA. 

 

Two years later was published a symmetric key wrapping proposal [13] which include one-pass HMQV 

(HOMQV) to achieve issuer authentication. This selection was based on efficiency, security and flexibility of 

the HOMQV protocol. It is known that the HMQV protocol is more efficient than MQV [18], in case where is 
not necessary to verify that the ephemeral keys belong to the prime order group G,  employed by the protocol 

(G-Test in accordance with the notation used by Krawczyk) and similar behavior for the remaining cases. 

Following the observation by Menezes of the importance of including the G-Test, Krawczyk [18] recognized 

that this validation is required for one-pass variant HOMQV protocol. From these results it can be assumed 

that for the present case (a one-way communication model) the one-pass variants of MQV and HOMQV have 

the same efficiency in terms of computational performance. The added HOMQV calculate a hash value that 

can be considered negligible with respect to operations on group elements. 

 

2. DOMAIN PARAMETERS AND KEY PAIR GENERATION 

This section briefly describes the elliptic curve domain parameters that are common to both entities involved 

in the protocol (i.e., the domain parameters), and the key pairs of each entity. Also it describes the schemes 

Elliptic Curve Diffie-Hellman (ECDH) and ECMQV. 
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Elliptic curve domain parameters 

 

The domain parameters for cryptographic schemes using elliptic curves defined over prime finite fields 𝐹𝑞 are 

a sextuple {𝑞, 𝑎, 𝑏, 𝑃, 𝑛, ℎ} conformed as: 
 

1. 𝑞: a prime power. 

2. 𝑎, 𝑏: two field elements in 𝐹𝑞 which define the equation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 of the elliptic curve over 

𝐹𝑞. 

3. 𝑃 = (𝑥𝑃 , 𝑦𝑃): a finite point of prime order in 𝐸(𝐹𝑞). 

4. 𝑛: the order of the point 𝑃. 

5. ℎ: the cofactor ℎ = #𝐸(𝐹𝑞)/𝑛. 

 

The selection of adequate domain parameters is very important in order to avoid many attacks could solve the 

Elliptic Curve Discrete Logarithm Problem ECDLP. For more information see [14]. 

 

Key pair generation 

 

Given a valid set of domain parameters {𝑞, 𝑎, 𝑏, 𝑃, 𝑛, ℎ}, an entity A’s private key is an integer 𝑑𝐴 selected at 

random from the interval [1, 𝑛 − 1]. A’s public key is the elliptic curve point 𝑄𝐴 = 𝑑𝐴𝑃. The key pair of 

entity A is (𝑄𝐴, 𝑑𝐴). Similarly the key pair of entity B is (𝑄𝐵 , 𝑑𝐵). 

 

Elliptic Curve Diffie-Hellman (ECDH) 

 

Diffie-Hellman (DH, ECDH if using elliptic curves) is perhaps the simplest protocol of key agreement. In 

ECDH scheme 2 entities agree a secret key shared over an insecure communication channel in the following 
way: 

 

Set {𝑞, 𝑎, 𝑏, 𝑃, 𝑛, ℎ} the domain elliptic curve parameters shared by A and B: 

 

1. A selects a random integer 𝑘𝜖[1, 𝑛 − 1]. 
2. A computes the elliptic curve point 𝑘𝑃. 

3. A sends 𝑘𝑃 to B. 

4. B selects a random integer 𝑘′𝜖[1, 𝑛 − 1]. 
5. B computes the elliptic curve point 𝑘′𝑃. 

6. B sends 𝑘′𝑃 to A. 

7. A can compute 𝐾𝐴 = 𝑘(𝑘′𝑃) = 𝑘𝑘′𝑃 and B can compute 𝐾𝐵 = 𝑘′(𝑘𝑃) = 𝑘′𝑘𝑃. 

 

By commutative 𝐾𝐴 = 𝐾𝐵 so both entities have shared the same secret key. The ECDH scheme is vulnerable 

to man-in-the-middle attacks due to the absence of entities authentication. Various versions have been 

proposed to solve this problem such as the Menezes-Qu-Vanstone (MQV) scheme, ECMQV when using 

elliptic curves. 

 

ECMQV 

 

Set {𝑞, 𝑎, 𝑏, 𝑃, 𝑛, ℎ} the domain elliptic curve parameters shared by A and B and set (𝑄𝐴 , 𝑑𝐴) and (𝑄𝐵 , 𝑑𝐵) 

their static key pairs and also set (𝑘𝑃, 𝑘) and (𝑘′𝑃, 𝑘′) their ephemeral key pairs. A do the following: 

 

1. 𝑙 = ⌈log2 𝑛⌉/2. 

2. A computes 𝑢 = (𝑥𝑘𝑃) 𝑚𝑜𝑑 2𝑙 + 2𝑙.  

3. A computes 𝑠 = (𝑘 + 𝑢𝑑𝐴) 𝑚𝑜𝑑 𝑛. 

4. A computes 𝑣 = (𝑥𝑘′𝑃) 𝑚𝑜𝑑 2𝑙 + 2𝑙 . 

5. A computes 𝑍 = 𝑠(𝑘′𝑃 + 𝑣𝑄𝐵). 

6. If 𝑍 = 𝑂 generate again A and B ephemeral keys 𝑘𝑃 and 𝑘′𝑃. 

7. return 𝑍. 
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B can computes the same value of 𝑍 using previous algorithm just changing (𝑑𝐴, 𝑘, 𝑄𝐵 , 𝑘′) by (𝑑𝐵 , 𝑘′ , 𝑄𝐴, 𝑘). 

If the values 𝑢, 𝑣, 𝑠 computed by entity A are denoted by 𝑢𝐴, 𝑣𝐴, 𝑠𝐴 and 𝑢𝐵 , 𝑣𝐵 , 𝑠𝐵 the values computed by 

entity B we can see that 𝑢𝐴 = 𝑣𝐵 and 𝑣𝐴 = 𝑢𝐵. So: 

 

𝑍 = 𝑠𝐴(𝑘′𝑃 + 𝑣𝐴𝑄𝐵) 

𝑍 = 𝑠𝐴(𝑘′ + 𝑣𝐴𝑑𝐵)𝑃 

𝑍 = 𝑠𝐴(𝑘′ + 𝑢𝐵𝑑𝐵)𝑃 

𝑍 = 𝑠𝐴𝑠𝐵𝑃 
 

The values 𝑠𝐴 and 𝑠𝐵  acts as implicit digital signatures of A and B. These values can be saw as digital 

signatures because the unique entity that can compute 𝑠𝐴 is A and the same for B. The implicit sense is due 

because B indirectly verify the validity of 𝑠𝐴 computing (𝑘𝑃 + 𝑣𝐵𝑄𝐴) = 𝑠𝐴𝑃. 
 

3. ELLIPTIC CURVE INTEGRATED ENCRYPTION SCHEMA, ECIES 

 

The ECIES [15, 3, 4, 9] was proposed by Bellare and Rogaway like a variant of ElGamal asymmetric 

encryption system [12]. In ECIES a shared secret value is used to derive two symmetric keys (k1, k2). k1 is 

used to encrypt the input message using a symmetric encryption algorithm and k2 is used to authenticate the 

encrypted message. ECIES uses the following cryptographic primitives: 

 

KDF(S, lk): Key derivation function constructed from a hash function. Receives as input a sequence S and 

returns a  lk bits key. 

 

Enck(M): Symmetric encryption algorithm. Receives as input a message M and a secret key k and 

produces as output an encrypted message c (c = Enck(M)). The inverse (decryption) is denoted by 

Deck(c) and it holds that M =  Deck(Enck(M)). 

 

MACk(M): Message authentication code. It is constructed from a hash function. Receives as input a 

message M and a secret key k and returns an authentication code. 

During ECIES execution recipient B has a static public-private keys pair (QB, dB) with QB = dB ∗ P (P 

generator of prime order). To encrypt a message M and send it to B, A selects a random secret value 

rA ∈ℝ [1, n − 1] (n order of P) and calculates the ephemeral public key RA = rA ∗ P. Then computes the 

Diffie-Hellman value Z =  rA ∗ QB and from it derives the key k = k1||k2 using a key derivation function k =
KDF(RA||Z, lk). Then obtains the cipher text c = Enck1

(M) using a symmetric algorithm with a secret key k1, 

and an authentication tag from the encrypted secret key t = MACK2
(c). A sends to B the message (RA, c, t) 

who recovers the Diffie-Hellman value Z =  RA ∗ dB, derives the private key k = k1||k2 , verifies the 

authentication tag t and decrypts the cipher text c to obtain the original message M (M = Deck1
(c)). Note that 

as additional element the RA point can be compressed [14] leading to a reduction in the length of the 

information exchanged. 

The ECIES security has been extensively analyzed. Abdalla, Bellare and Rogaway [1] made three variants of 

computational and decision Diffie-Hellman problems (CDHP and DDHP), valid on elliptic curves points 

groups (ECCDHP and ECDDHP), whose intractability from the computational viewpoint is sufficient to 

demonstrate their security. Cramer and Soup [10] demonstrated the ECIES security in random oracle model 

[16] under the assumption that the ECCDHP is intractable even when known an efficient algorithm to solve 
the ECDDHP. Other safety tests have been carried out from the assumption that the KDF and MAC functions 

are safe. The problem is that the safety tests are valid only under a precise set of constraints. For this reason it 

is necessary to pay attention principally to two factors that can directly threaten the security of the protocol. 

Benign malleability: It has been standardized that a KDF function applies only to the x coordinate of the 

curve point Z and not to the entire point. This option is more efficient but causes the scheme suffers from a 

condition called benign malleability [22]. The problem is that an adversary is able from a cipher text c to 

produce a different valid cipher text c' for the same secret key k1. For example c = (RA, c, t) and c′ =
(−RA, c, t)  would be valid cipher texts from the same session key. This is because the elliptic curve points: 

RA = (xA, yA) and −RA = (xA , −yA) have the same x-coordinate. The problem of benign malleability causes 



 
 

284 

 

the protocol is not secure against attack formal definition of adaptive chosen cipher text [14]. During the 

protocol description is presented a KDF function variant applying both secret value Z as ephemeral public key 

RA. This variant is designed to avoid the problem of benign malleability. 

Variable symmetric key length: Symmetric keys 𝑘𝑖 derived by the KDF function must be of fixed length (lk). 

The key derivation function computes the value selected by taking the first L bits of a pseudo-random 

sequence produced from the input. This means that for any 0 < l′k < lk , KDF(RA||Z, l′k)  is equal to the first 

l′k bits to KDF(RA||Z, lk). 

A current trend is to apply the methodology KEM / DEM [2] to the public key encryption schemes being 

divided into key encapsulation mechanism (KEM) and data encapsulation mechanism (DEM). This procedure 

allows the analysis of two well defined states, which facilitates the study of the security of the protocol. It can 

be seen that the algorithm ECIES (and DHIES in general) is one example of paradigm KEM/DEM where RA 

is generated during encapsulation mechanism keys and (c, t) is the result of the data encapsulation mechanism. 

From this observation and applying the methodology KEM/DEM, ECIES can be defined as: 

 

ECIES-KEM/DEM 

 

Input: Issuer static private key QB and message M. 

Output: Cipher Text C. 

 

1. (RA, Z) ← ECIES/KEM(QB, l). 

2. (c, t) ← ECIES/DEM(Z, M). 

3. C ← (RA||c||t). 

Due to the possibility of modifying the flow bypass secret session key in ECIES protocol to include issuer 

implicit authentication, which is the main objective of this work, it is important to analyze the KEM phase. 

 

ECIES/KEM 

 

The key encapsulation mechanism for ECIES (ECIES / KEM) is a probabilistic algorithm that takes as input 

the recipient B static public key (QB) and uses it for the derivation of the session secret key by using a KDF 

function. The algorithm works as follows: 

 
1. A generate a random value rA ∈ℝ [1, n − 1]. 
2. A compute  RA = rA ∗ P. 

3. A compute Z =  rA ∗ QB. 

4. A obtain k = KDF(RA||Z, lk). 

The output is the key wrapping pair (k, RA). In other way, reverse deterministic algorithm receives as input 

the static key pair (dA, RA). Uses the same KDF function and operates in the following manner: 

 

1. B validate the ephemeral public key (RA). 

2. B  compute Z =  RA ∗ dB.  
3. B obtain k = KDF(RA||Z, lk). 

During the encapsulation phase the issuer executes the one-pass key agreement protocol Diffie-Hellman over 

elliptic curves (ECDH) [11]. As mentioned before this protocol does not guarantee the issuer implicit 

authentication (A to B) so it is proposed to use instead the protocol ECMQV to meet this security objective. 
 

4. AUTENTICATED KEY AGREEMENT PROTOCOL OVER ELLIPTIC CURVE, ECMQV 
 

The authenticated key agreement protocol ECMQV is a variant of MQV protocol over Elliptic Curve. It has 

been standardized [15, 4, 9] and is recognized as one of the most efficient extensions for key agreement 

Diffie-Hellman protocol [11]. In 2005, the NSA (National Security Agency) selected it as key exchange 

mechanism for the protection of "... critical or classified national security information..." [23]. The 

fundamental contribution made by ECMQV is to ensure issuer authentication by including in the process of 

generating the shared secret key Z the static public keys of both involved entities A and B (QA , QB) . This 
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solves the main difficulty of the Diffie-Hellman protocol preventing susceptible to attacks such as man-in-the-

middle attacks. In this paper the interest is the one-pass variant (oECMQV, one-pass ECMQV) by the 

analyzed communication model. 

During the oECMQV protocol description is used the following notation: l (l = ⌈log2 n⌉) denotes the bit 

length of n. If Q is a point of an elliptic curve then Q̅  is defined as  Q̅ = x̅ mod2
l

2⁄ + 2
l

2⁄  where x̅ is selected 

by the field elements representation 𝔽q of the x-coordinate of the elliptic curve point Q. Note that Q̅ mod n ≠

θ. 

oECMQV: let the entities A y B whit his static public-private key pairs (QA, dA), (QB, dB). To exchange a 

secret key with the recipient B, the issuer A generates a secret random value rA ∈ℝ [1, n − 1], then computes 

the value RA = rA ∗ P and sends it to B. A computes sA = (rA + RA
̅̅ ̅̅ dA)mod n  checking that ZA ≠ θ. 

Meanwhile the receiver B performs a validation of the ephemeral key RA (if invalid execution aborts), then 

computes sB = (1 + QB
̅̅ ̅̅ )dBmod n and  ZB = hsB ∗ (RA + RA

̅̅ ̅̅ ∗ QA) with ZB ≠ θ.  The shared secret value is 

 ZA = ZB. From this value is derived the shared secret key k using a KDF function. This is necessary because 

the shared secret value can have weak bits (bits of information on Z that can be predicted with a non-

negligible advantage). 
 

Security Notes 

 

The security of oECMQV protocol has not been demonstrated in a distributed computing model only 

heuristics suggest that owns mutual digest authentication [5]. A fundamental aspect inside ECMQV protocol 

(for all variants) is the ephemeral public key validation. This value is generated for each execution of the 

protocol and must be validated as a mechanism to prevent Small Subgroup Attacks and Curve Invalid Attacks. 

Although this observation may be noted in the analyzed case is not necessary to validate n ∗ RA = θ. This 

validation is intended to verify that the ephemeral public key (RA) does not belong to a subgroup of G 

(prevents attack by subgroup). For the specific case where the cofactor h = 1 there exists a subgroup minor G' 

of G generated by P so just check that (RA) is a finite element of G (RA ≠ θ). Generally the condition to be 
met h ≤ 4 the small subgroup attack is not effective since an attacker has very few options to select a subgroup 

in G which leads to very few may know bits of the private key attacked entity. An additional element adopted 

by the ECMQV protocol to avoid this check is to ensure that the shared secret value Z is an element of the 

finite group G generated by P. This is accomplished by including the cofactor in the calculation of the points 

ZA,ZB. The condition ZA = ZB ≠ θ guarantees a finite order element in G. 

 

The oECMQV ensures the commitment of rA secret value does not affect the security of the protocol as the 

shared secret key k depends on the static private key dA of the issuer entity A (this property will be denoted 

by rA-Security). A result of this observation is that it can be possible to pre-calculate the values  (rA, rA ∗ P). 
Some security attributes for a key agreement protocol are described in [6] and are accepted by the 

cryptographic community: 

 
Perfect forward secrecy (PFS): in the case of one-pass protocols this property cannot be ensured in general 

because the recipient does not intervene with additional secret information in the process of key generation. 

This causes that if recipient's static private key is exposed the attacker can decrypt all the information 
transmitted. The oECMQV protocol only guarantees the issuer forward secrecy (SFS) as an attacker obtain 

the issuer's static private key cannot know the ephemeral secret keys because their calculation involving a 

secret value rA that change for each session. 

 

Known Key: This attribute is not guaranteed since the recipient no contributes with secret information during 

the execution of the protocol. In this way an attacker from the knowledge of a prior session key can use it to 

change the information transmitted during the session and forward it to the recipient. 

 

Unknown key share (UKS): The information provided by Kaliski [7] exposed the vulnerability of the protocol 

against these attacks. However this is avoided including the use of a KDF function in the derivation process of 

the session secret key value k from Z and also the identities of both involved parties (Â, B̂). 

 

Performance Notes 
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The oECMQV protocol guarantees the attributes: little overhead in communication (related to the number of 

bits transmitted) and minimum number of messages [6]. Concerning computer performance it can be noted 

that the predominant operation in oECMQV is the scalar multiplication. In the issuer side is needed to 

compute rA ∗ P, hsA(1 + QB
̅̅ ̅̅ ) ∗ QB and in the recipient side is needed to compute hsB ∗ (RA + RA

̅̅ ̅̅ ∗ QA). It 

may be noted that the values QB
̅̅ ̅̅ , RA

̅̅ ̅̅  only use half of the bits of the x- coordinate of the elliptic curve points 

QB, RA respectively. This increases the efficiency of the protocol because for the calculation of RA
̅̅ ̅̅ ∗ QA it is 

only consumed half of the execution time compared to an operation to take all the bits of the integer. 

If it is taken as a comparison parameter for scalar multiplication operation the length of the scalar integer 

involved it can be said that the operation rA ∗ P represents 1l scalar multiplication (where l is the length in bits 

of the integer rA). In this way the operation RA
̅̅ ̅̅ ∗ QA represents 0,5l  scalar multiplications. From this notation 

can be stated that during the execution of the oECMQV protocol the issuer requires 2l scalar multiplications 

while the recipient performs 1,5l scalar multiplication in the process of calculating the agreed value. During 

validating the ephemeral public key RA the scalar multiplication can be removed. 
 

5. ECIES-A/KEM 

 

The key element of this proposal is to change the KEM phase of the protocol ECIES by adapting the protocol 

oECMQV as authenticated for the process of generating the session secret key. Thus is obtained a ECIES-A 

scheme (ECIES authenticated) that during the encapsulation process (ECIES-A/KEM) operates as follows: 
 

1. A generate a random value rA ∈ℝ [1, n − 1]. 
2. A compute RA = rA ∗ P. 

3. A compute sA = (rA + RA
̅̅ ̅̅ dA)mod n.  

4. A compute Z = hsA(1 + QB
̅̅ ̅̅ ) ∗ QB con Z ≠ θ. 

5. A obtain k = KDF(RA||Z||Â||B̂, l). 

 

The output is the encapsulated key pair (k, RA). The deterministic algorithm for the inverse process receives 

as input the key pair (dA, RA) and performs the following operations: 

 

1. B Validate the ephemeral public key (RA) 

2. B compute sB = (1 + QB
̅̅ ̅̅ )dBmod n 

3. B compute Z = hsB ∗ (RA + RA
̅̅ ̅̅ ∗ QA) 

4. B compute k = KDF(RA||Z||Â||B̂, l) 

 

The computational performance differences between the variants ECIES/KEM and ECIES-A/KEM is 

minimal. Table 1 [13] shows a comparison of KEM phases between ECIES, HOMQV and ECIES-A variants. 
 

Table 1. Comparison of KEM Phases for asymmetric encryption schemes on Elliptic Curves. 

KEM phase A → B 
Implicit -

Authentication 
rA − Security 

Forward 

Secrecy 

(issuer) 

# Scalar 

Multiplications 

(A/B) 

ECIES RA Only B No No 2l/1l 
ECIES-A RA A,B Si Si 2l/1,5l 
HOMQV RA A,B Si Si 2l/1,5l 

 

The last column shows the number of l scalar multiplications required to execute the protocol for the issuer 

(A) and the recipient (B). Considering the possibility of pre computed values (rA, rA ∗ P) decreases in 1 scalar 

multiplication issuer requirements for ECIES-A/KEM and HOMQV cases. 

 

6. ECIES-A 

 

To complete the proposed hybrid encryption scheme is necessary to include the original ECIES/DEM phase. 

In this way a hybrid encryption scheme with explicit authentication is possible (ECIES-A). 

ECIES-A KEM/DEM 
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Input: Recipient static public key QB and message M. 

Output: Cipher Text C. 

 

1. (RA, Z) ← ECIES-A/KEM(QB, l). 

2. (c, t) ← ECIES/DEM(Z, M). 

3. C ← (RA||c||t). 
 

ECIES-A Advantage 

 

A(QA,dA)  

rA ∈ℝ [0, n − 1]. 

RA = rA ∗ P. 

l =  ⌈log2 n⌉/2. 

uA = ( RA
̅̅ ̅̅  )mod2l + 2l.  

sA = (rA + uAdA)mod n. 

vA = ( QB
̅̅ ̅̅  )mod2l + 2l. 

ZA = sA(1 + vA) ∗ QB, Z ≠ θ. 

k1||k2 = KDF(RA||ZA||Â||B̂, lk). 

      

 

 

 

 

 

 
 

 

 

 

 

B(QB,dB)             

A → B: (RA, c = Enck1
(M), t =  HMACk2

(c)). 

 

 l ←  ⌈log2 n⌉/2. 

uB ← ( QB
̅̅ ̅̅  )mod2l + 2l. 

sB ← (1 + uB)dBmod n. 

vB ← ( RA
̅̅ ̅̅  )mod2l + 2l. 

ZB ← sB ∗ (RA + vB ∗ QA). 

k1||k2 ← KDF(RA||ZB||Â||B̂, lk). 

t′ ← HMACk2
(c). 

[t == t′] M ← Deck1
(c). 

Figure 2 ECIES-A Protocol 

The main advantage of ECIES-A is that provides implicit authentication of both entities involved (issuer and 

recipient). This eliminates the difficulties associated with the schemes that do not provide issuer 

authentication. The modification is based on the use of a standardized one-pass key agreement protocol 

ECMQV. This protocol has been widely discussed by the international cryptographic community and is 

recognized as one of the most efficient and safe variants of the Diffie-Hellman protocol. A modification of the 

protocol ECIES based on cryptographic primitives included in international standards facilitates its analysis 

and implementation into practical solutions. 

A very attractive aspect of this variant is given by its computational efficiency. The ECIES-A maintains the 

same number of bits and messages exchanged during a communication that the original variant ECIES. It is 

resistant to lack of shared key attacks, invalid curve attacks and small subgroup attacks, without this 
representing an increase in terms of computational cost and presents a very similar performance to the ECIES 

(Table 1). 
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ECIES-A includes a key agreement protocol which guarantees rA-security making possible to pre-calculate 

the (rA , RA) values so a scalar multiplication can be removed (from the issuer) in protocol execution. This 

aspect allows you to implement a solution based on ECIES-A with better computational performance in the 

issuer side than the original ECIES. 

In detail the protocol ECIES-A is presented in Figure 1. 

 

7. IMPLEMENTATION 
 

This section presents some experimental results in terms of computational time. All testing was done on a 

personal computer with Intel Core 2 Duo microprocessor, 2.66 GHz and 2 Gbytes of RAM. 

 

Modular arithmetic 

 

Despite there are many C++ library for cryptography such as Crypto++, LiDIA and MIRACL, we developed 

our own C++ library named BigInt for modular arithmetic. The performance of BigInt in terms of 

computational time is good enough for our purposes. As example in tables 2 and 3 we present some 

experimental results for modular exponentiation and modular inverse operations and the comparison with 

MIRACL v5.4.1library. The time is measured in milliseconds and we used the tool Intel Parallel Studio 11. 

 
Table 2. Modular exponentiation performance. 

Bit length MIRACL BigInt 

160 0.3 0.3 

256 0.8 0.6 

384 2.2 2.2 

512 6.6 4.7 

 
Table 3. Modular inversion performance. 

Bit length MIRACL BigInt 

512 0.1 0.4 

1024 0.2 1.1 

2048 0.7 3.2 

 

Elliptic Curves arithmetic 

 

For elliptic curve arithmetic we developed a C++ library EllipticCurve. We used elliptic curves in Weierstrass 

form defined over prime finite fields. For elliptic curve points representation we used standard projective 

coordinates [14] and for scalar multiplication which is the main operation in elliptic curve arithmetic in terms 

of computational time we implemented a NAF binary method [14]. The NAF method is not the best method 

for scalar multiplication but is good enough for our purposes. As example table 4 presents the performance in 
milliseconds of scalar multiplication operation and the comparison with MIRACL library. 

 
Table 4. Scalar multiplication performance. 

Bit length MIRACL BigInt 

160 3 17 

256 9 55 

384 29 148 

512 66 309 
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ECIES-A 

 

The ECIES-A protocol was also fully implemented in C++ language and was integrated in a cryptographic 

file-protection system also developed by the authors of this paper. This system are used with very good results 

in many practical applications and is projected its generalization in many others applications and scenarios. 

As example table 5 presents the performance in seconds of the ECIES-A protocol. 

 
Table 5. ECIES-A performance. 

Bit length Sender A Receipt B 

160 0.066 0.065 

256 0.181 0.180 

384 0.499 0.493 

512 1.004 1.002 

 

8. CONCLUSIONS 

 

The ECIES-A protocol is an authenticated hybrid cryptosystem option. Its use as a key wrapping protocol 

ensures secure communication without prior agreements. The security of ECIES-A is supported in the deep 

analysis of the cryptographic standards ECIES and ECMQV, especially its one-pass variant (oECMQV). The 

ECIES-A is a secure and efficient cryptographic scheme becoming a very attractive option for implements in 

models of one-way communication. 
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