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ABSTRACT 

The logistic regression model is used to model the relationship between a categorical dependent variable and a set of 

explanatory variables, continuous or discrete. Almost all papers on logistic regression have only considered the 

classical logistic regression model, with linear discriminant functions. But there are situations where quadratic 

discriminant functions are useful, and work better. However, the quadratic logistic regression model involves the 

estimation of a great number of unknown parameters, and this leads to computational difficulties when there are a 

great number of explanatory variables. Furthermore, if the groups of explanatory variables are completely separated, 

the maximum likelihood estimators of the unknown parameters do not exist. This paper proposes to use a set of 

principal components of the explanatory variables, in order to reduce the dimensions in the problem, with continuous 

independent variables, and the computational costs for the parameter estimation in polytomous quadratic logistic 

regression, without loss of accuracy. Examples on datasets taken from the literature show that the quadratic logistic 

regression model, with principal components, is feasible and, generally, works better than the classical logistic 
regression model with linear discriminant functions, in terms of correct classification rates. 

KEYWORDS: Polytomous Logistic Regression, Quadratic Logistic Regression, Principal Components Analysis, 

Polytomous Response. 
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RESUMEN 

El modelo de regresión logística es usado para modelar la relación entre una variable dependiente categórica y un 

conjunto de variables explicativas, contínuas o discretas. La mayoria de los artículos sobre regresión logística sólo han 

considerado el modelo de regresión logístico clásico, con funciones discriminantes lineales. Pero hay situaciones en las 

que las funciones discriminantes cuadráticas son útiles y funcionam mejor. Todavia, el modelo de regresión logístico 

cuadrático involvera la estimación de un número grande de parámetros desconocidos, y eso lleva a dificultades 

computacionales, sobretodo cuando hay un número grande de variables explicativas. Además, cuando hay separación 

entre los grupos de variables explicativas los estimadores de máxima verossimilitud de los parámetros desconocidos no 

existem. Este artículo propone usar un conjunto de componentes principales de las variables explicativas, con el fin de 

reducir las dimensiones del problema, con variables explicativas contínuas, y los costos computacionales para la 

estimación de parámetros en regresión logística cuadrática politómica, sin pérdida de precision. Ejemplos de conjuntos 

de datos tomados de la literatura muestram que el modelo de regresión logístico cuadrático, con componentes 
principales, es factible y generalmente funciona mejor que el modelo de regresión logístico clásico, con funciones 

discriminantes lineales, en términos de tasas de clasificación correctas. 

1. INTRODUCTION 

The logistic regression model is known as a powerful method widely applied to model the relationship between a 
categorical - or ordinal - dependent variable and a set of explanatory variables, or covariates, which may be 

either continuous or discrete. The accuracy of the Logistic Regression Model has been reported in many studies 

involving bankruptcy prediction, marketing applications and cancer classification, among other applications. 

Almost all papers on logistic regression have only considered the classical logistic regression model with linear 

discriminant functions, but there are situations where quadratic discriminant functions are useful, and work 

better. However, as pointed out by [3] and [5], the quadratic logistic regression model involves the estimation of 
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a great number of unknown parameters, and this leads to computational difficulties, in terms of memory and 

computing time requirements, when there are a great number of explanatory variables. Furthermore, a great 

number of parameters should be avoided, because of the risk of over-fitting. Moreover, the logistic model 

becomes unstable when there is strong dependence, or multicollinearity, a phenomenon in which two or more 

explanatory variables are highly correlated. Another problem is that, while the logistic regression model works 

well for many situations, it may not work when the data set has no overlapping. These problems, 

multicollinearity and complete separation, are common in the logistic regression, and frequently occur together. 

In order to way out the problem that arises when the data set has no overlapping, [21] propose the Hidden 

Logistic Regression Model (HLR). Other approaches to deal with separation can be found in [13], for binary 

response, and [4] for polytomous response, to name just a few. In order to improve the parameter estimation 

under multicollinearity, and to reduce the dimension of the problem, [1] propose to use as covariates of the 
logistic regression model a reduced set of optimum principal components of the original covariates. This 

approach, called Principal Component Logistic Regression (PCLR) model, provide an accurate estimation of the 

parameters in the case of multicollinearity. 

In this paper we propose to use a set of principal components of the explanatory variables, in order to reduce the 

dimensions in the problem, with continuous independent variables, and the computational costs for the parameter 

estimation in polytomous quadratic logistic regression, without loss of accuracy. To deal with separation we 

propose an extension of the hidden logistic model to polytomous response. The main advantage of this model is 

the existence and uniqueness of estimators, even when there is complete or quasi-complete separation. 

Furthermore, this paper gives an extension of the approach given, in a resumed way, by [5]. 

This paper is organized as follows. Section 2 consists of a brief review of the Classical Logistic Regression 

model (CLR). Section 3 presents an overview of the Quadratic Logistic Regression model (QLR) for polytomous 
response. In section 4 we extend an existing approach, called Principal Components Logistic Regression model 

(PCLR), developed to deal with multicollinearity in binary case, as well a generalization for the polytomous 

response case, and proposes the Principal Components Quadratic Logistic Regression model (PCQLR). In 

Section 5 we apply the QLR and PCQLR models on data sets taken from the literature and compare their 

performance with those that were obtained from the CLR and QLR models. Section 6 gives a brief conclusion 

and makes suggestions for future studies. 

 

2. CLASSICAL LOGISTIC REGRESSION MODEL 

 

Let us consider a sample of n observations, available from the groups G1 , … , Gs, and a vector of explanatory 

variables xT = [x0 , x1 , … , xp], where x0 ≡ 0, for convenience. Let Y denote the polytomous dependent variable 

with s possible outcomes. We will summarize the n observations in a matrix form given by: 
 

X = [

1 … 𝑥𝑝1

⋮ ⋱ ⋮
1 … 𝑥𝑝𝑛

]. 

 

The Classical Logistic Regression (CLR) Model assumes that the posterior probabilities have the form: 

 

𝑃(𝐺𝑘|𝐱) =
𝑒𝑥𝑝(Β𝑘𝐱)

∑ 𝑒𝑥𝑝(Β𝑖𝐱)𝑠
𝑖=1

                                                              (1) 

 

where Β𝑖𝐱 = 𝛽𝑖0 + ∑ 𝛽𝑖𝑗𝑥𝑗
𝑝
𝑗=1   , i = 1 , … , s – 1 and Β𝑠 = 0. In this paper the group s is called reference group. 

The model involves (s – 1)(p + 1) unknown parameters and the conditional likelihood function is: 

 

𝐿(Β|𝐘 , 𝐱) = ∏ ∏[𝑃(𝐺𝑘|𝐱𝑖)]𝑦𝑘𝑖  

𝑠

𝑘=1

𝑛

𝑖=1

                                                (2) 

where Y = (Y1 , … , Yn)T and Yi = (y1i , … , ysi), with yki = 1, if Y = k, and yki = 0, otherwise. Taking the 

logarithm, the log-likelihood function is given by: 

ℓ(Β|𝐘 , 𝐱) = ∑ ∑ 𝑦𝑘𝑖𝑙𝑛[𝑃(𝐺𝑘|𝐱𝑖)]

𝑠

𝑘=1

𝑛

𝑖=1

                                               (3) 

Thus: 
𝜕

𝜕𝛽𝑘𝑗

 ℓ(Β|𝐘 , 𝐱) = ∑ 𝑥𝑖𝑗(𝑦𝑘𝑖 − 𝑃(𝐺𝑘|𝐱𝑖))
𝑛

𝑖=1
                                     (4) 

The Maximum Likelihood Estimator (MLE) Β̂ is obtained by setting the derivatives to zero and solving for B. 
The solution is found using an iterative procedure, such as Newton-Raphson method. 
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In practice, the estimation of unknown parameters should take into account the possible configurations of the 

sample points. [2] suggested a sample classification into three categories: Overlap, complete separation and 

quasi-complete separation, when perfect prediction occurs only for a group of observations. They also proved 

that the MLE do not exist for complete and quasi-complete separation. In this case, existing iterative methods 

fail to converge, or give a wrong answer. We say that two groups are completely separated if there exists a 

vector Β ∈  ℝ𝑚, m = (s – 1)(p + 1), such that for all 𝑖 ∈ 𝐺𝑗 , and j , t = 1 , … , s (j ≠ t): 

(Β𝑗 − Β𝑡)
T

𝐱𝑖 > 0                                                                   (5) 

We say that there is quasi-complete separation if, for all 𝑖 ∈ 𝐺𝑗 , and j , t = 1 , … , s (j ≠ t): 

(Β𝑗 − Β𝑡)
T

𝐱𝑖 ≥ 0                                                                    (6) 

with equality for at least one (i , j , t) triplet. The points for which the equality holds are said to be quasi-

separated. 

In binary logistic regression, if there is complete separation, the MLE do not exist. However, in polytomous 

logistic regression, complete separation does not make the same sense, although the parameter estimation is not 

necessarily affected. According to [18], when there are more than two groups, separation can occur even when 

some groups overlap substantially. We say that two groups Gi and Gj are linearly separable if there exist a vector 

Ω =  (𝜔1, … , 𝜔𝑝) and a real number δ such that Ω𝐱𝑘 > 𝛿, if 𝐱𝑘 ∈ 𝐺𝑖, and Ω𝐱𝑘 < 𝛿, if 𝐱𝑘 ∈ 𝐺𝑗 , where i , j = 1, 

… , s (i ≠ j) and k =  1, … , n. When there are more than two groups, the difference between linear separability 

and separation becomes more important. In this case linear separability means the existence of a set of vectors 

{Ω1 , … , Ω𝑠} satisfying s(s – 1) inequalities given by: 

(Ω𝑗 − Ω𝑡)
T

𝐱𝑖 ≥ 𝛿                                                                (7) 

for all i = 1 , … , n and j , t = 1 , … , s (j ≠ t). 

For the polytomous logistic regression model, [7] proposed an alternative method for the maximum likelihood 

estimation, called Individualized Logistic Regression (ILR) Model. For a response variable with s groups, they 

suggested fitting (s – 1) binary logistic regressions and, each time, comparing a group Gj , j = 1 , … , s – 1, with 

the reference group, Gs. The coefficients for the polytomous logistic regression model are obtained from the (s – 

1) separately fit logistic models. According the authors, the estimators that are obtained are consistent and will 

be approximately those from the CLR Model. Furthermore, according to [14], the ILR Model can be useful to 

select variables. 

In order to way out the problem that arises when the data set has no overlapping, [21] propose the Hidden 

Logistic Regression Model (HLR). Other approaches to deal with separation can be found in [13], for binary 

response, and [4], for polytomous response, to name just a few. 
 

3. QUADRATIC LOGISTIC REGRESSION MODEL 

 

An extension of the linear logistic model is to include quadratic and multiplicative interaction terms. The 

Quadratic Logistic Regression (QLR) Model is given by: 

𝑄(𝐺𝑘|x) =
𝑒𝑥𝑝(Θ𝑘)

∑ 𝑒𝑥𝑝(Θ𝑖)𝑠
𝑖=1

                                                                     (8) 

where Θ𝑘 = 𝛼𝑘0 + ∑ 𝛼𝑘𝑖𝑥𝑖
2𝑝

𝑖=1 + ∑ 𝛼𝑘𝑖𝑥𝑗´𝑥𝑗´´

(𝑝−1)
𝑝

2
𝑖=𝑝+1

+ ∑ 𝛼𝑘𝑖𝑥𝑗

(𝑝−1)
𝑝

2
+𝑝

𝑖=(𝑝−1)
𝑝

2

 , k = 1 , … , s – 1, Θ𝑠 = 0 and  j , j´´ = 1 , 

… , p , j´ = 1 , 2 , … , p – 1. 

The model involves [(𝑠 − 1)(𝑝 + 1)] (1 +
𝑝

2
) unknown parameters and the estimation of these parameters 

follows the same lines as that taken by the Classical Logistic Regression Model (CLR). However, for a large 

number of independent variables, the number of extra parameters can be render an unworkable problem, so that 

a reduction dimension method can be useful to way out of this problem. Furthermore, a large number of 
parameters should be avoided, because of the risk of over-fitting. As pointed out by [3], the quadratic term also 

can be written as: 

Θ𝑘 = 𝛼𝑘0 + x𝑇𝛀𝑘x + 𝛼𝑘
𝑇x                                                                (9) 

where Ω𝑘 = V𝑘
−1 − V𝑠

−1, and 𝐕𝑘  is the dispersion matrix in 𝐺𝑘 , k = 1 , … , s – 1. An approximation, proposed by 
[3], gives a quadratic term with a reduced number of parameters. This approximation is given by the spectral 

decomposition: 

𝛀𝑘 = ∑ 𝜆𝑗𝑘𝑙𝑗𝑘𝑙𝑗𝑘
𝑇𝑝

𝑗=1                                                                  (10)  

where the 𝜆𝑗𝑘 are the eigenvalues of Ω𝑘 , in decreasing size, 𝜆1𝑘 ≥ 𝜆2𝑘 ≥ ⋯ ≥ 𝜆𝑝𝑘 , and 𝑙𝑗𝑘  are the 

corresponding eigenvectors. In this case, Ω𝑘 can be given by: 

𝛀𝑘 ≅  𝜆𝑘𝑙𝑘𝑙𝑘
𝑇                                                                        (11) 

In the sequence, each 𝑙𝑗
𝑇 = (𝑙𝑗1, … , 𝑙𝑗𝑝)  is normed with the constraints  ∑ 𝑙𝑗𝑘

2𝑝
𝑘=1 = 1. 

Since this approach is not convenient for computing, an alternative parameterization is suggested by [3]: 
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Θ𝑘 = 𝛼𝑘0 + 𝜇𝑘(𝑑𝑘
𝑇𝐱)

2
+ 𝛼𝑘

𝑇𝐱                                                          (12)  

where 𝜇𝑘 = 𝑠𝑔𝑛(𝜆𝑘), k = 1 , … , s – 1, 𝑑𝑘𝑗 =
𝑙𝑘𝑗

√|𝜆𝑘|
⁄   , j = 1 , … , p. 

The log-likelihood function is maximized with respect to the 𝛼𝑘𝑗 and 𝑑𝑘𝑗 unrestrictedly 2(𝑠−1) times for 𝜇𝑘 =

±1 and to take as maximum likelihood estimates those values of the parameters which give the greatest of these 

2(𝑠−1) values of the log-likelihood function. With this approximation, there are (s – 1) unknown parameters. 
However, this approach is not always applicable. If the independent variables are binary, the diagonal terms of Ω 

are zero. In this paper we propose to use as covariates the principal components of the (s – 1)(p + 1) matrix I(Θ)  

whose elements are given by: 

𝜕2𝐿(Θ)

𝜕𝛽𝑗𝑚𝜕𝛽𝑗𝑚´

= − ∑ 𝑥𝑚´𝑖𝑥𝑚𝑖[𝑄(𝐺𝑗|x)][1 − 𝑄(𝐺𝑗|x)]

𝑚

𝑖=1

                                   (13) 

and 

𝜕2𝐿(Θ)

𝜕𝛽𝑗𝑚𝜕𝛽𝑗´𝑚´

= − ∑ 𝑥𝑚´𝑖𝑥𝑚𝑖[𝑄(𝐺𝑗|x)][𝑄(𝐺𝑗´|x)]

𝑚

𝑖=1

                                     (14) 

where j ,  j´ = 1 , 2 , … , (s – 1) and m , m´ = 1 , … , p. 

In this paper, it has been considered that the quadratic term is unlikely to be of major importance in determining 

the effectiveness of the discrimination compared to the linear term. 

As the CLR model, the quadratic logistic model is not immune to complete separation. Our approach to solve the 

problem that arises when the data set has no overlapping, when there is complete, or quasi-complete separation, 

is to provide a simple and direct generalization of the Hidden logistic Regression (HLR) Model, a robust 

estimation method presented by [21]. This model was used by [9], under a different name. In related literature 
different approaches to implement robust estimation methods are given by [12] and [17], to name just a few. The 

HLR Model assumes that, due to an additional stochastic mechanism, the true response of a logistic regression 

model is unobservable, but there is an observable variable that is related to this response. Under this point of 

view, the true unobservable response is comparable to a hidden layer in a feed-forward neural network. In this 

paper we consider n unobservable independent variables T1 , … , Tn , where each Ti has s values γ1 , … , γs . 

Thus, we observe Yi = j with a 𝑃(𝑌𝑖 = 𝑗|𝑇𝑖 = 𝛾𝑘) = 𝛿𝑗𝑘 probability, where 𝛿𝑗𝑗 = 𝑚𝑎𝑥𝑘=1,…,𝑠{𝛿𝑗𝑘} and 

∑ 𝛿𝑗𝑘
𝑠
𝑗=1 = 1. Let us keep in mind that in the CLR Model 𝛿𝑗𝑗 = 1 and 𝛿𝑗𝑘 = 0 , 𝑗 ≠ 𝑘. 

The maximum likelihood estimator for Ti , if Yi = j, is  𝑇̂𝑖 = 𝛾𝑗 . In a model with n responses 𝑦𝑖𝑗 , i = 1 , … , s and 

j = 1 , … , n, with yki = 1, if Y = k, and yki = 0, otherwise, we can define the variable given by: 

𝑦̃𝑖𝑗 = ∑ 𝑦𝑖𝑘𝛿𝑘𝑗

𝑠

𝑘=1
                                                                (15) 

The purpose is to maximize: 

𝐿(Θ|𝒀̃ , 𝐱) = ∏ ∏[𝑄(𝑇𝑘|𝐱𝑖)]𝑦𝑘𝑖

𝑠

𝑘=1

𝑛

𝑖=1

                                               (16) 

The log-likelihood function becomes: 

ℓ(Θ|𝒀̃ , 𝐱) = ∑ [∑ 𝑦̃𝑗𝑖Θ𝑗 − 𝑙𝑛 (1 + ∑ 𝑒𝑥𝑝(Θ𝑗)

𝑠−1

𝑗=1

)

𝑠−1

𝑗=1

]                                  (17)

𝑛

𝑖=1

   

The MLE are the maximizers of the log-likelihood function, which is strictly concave. Unlike the MLE for the 

CLR model, the MLE for the HLR model always exists. 

According to [21], [9] found that accurate estimation of δ, in the binary case, is very difficult, unless n is 

extremely large. For a detailed explanation, see [9], [15] and [21]. We consider that the probability of observing 

the true status, given by (𝑌𝑖 = 𝑗|𝑇𝑖 = 𝛾𝑗) = 𝛿𝑗𝑗 , should be higher than 0.5, this is, 0.5 < 𝛿𝑗𝑗 < 1. Furthermore, 

∑ 𝛿𝑗𝑘 < 𝛿𝑗𝑗
𝑠
𝑘=1 ,𝑘≠𝑗  . Therefore, we cannot take the estimate given by 𝜋̅𝑗 =

1

𝑛
∑ 𝑦𝑖𝑗

𝑛
𝑖=1  , j = 1 , … , s, once 𝜋̅𝑗  can 

be smaller than 0.5. Our default choice will be δ = 0.99 and set 𝛿𝑗𝑗 = 𝛿 and 𝛿𝑗𝑘 =
1−𝛿

𝑠−1
 . 

 

4. PRINCIPAL COMPONENTS LOGISTIC REGRESSION MODEL 

 
The Principal Components Analysis (PCA) is a method to explain the variance and covariance structure through 

linear combinations of the covariates and may be considered a tool for reducing the dimensionality of the data, 

as well as the multicollinearity among the independent variables. 

Let us consider n observations of p continuous variables, given by the matrix X, and the sample covariance 

matrix, given by: 
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𝐒 = [

𝑠11 ⋯ 𝑠1𝑝

⋯ ⋱ ⋯
𝑠𝑝1 ⋯ 𝑠𝑝𝑝

] 

The observations x can be standardized, so that 

𝐒 =
1

𝑛−1
𝐗T𝐗 . 

The matrix S can be written as S = VTΛV , where Λ = diag( λ1 , … , λp ) being orthogonal. Consider the linear 

combinations given by  𝑌𝑗 = ℓ1𝑗𝑥1 + ⋯ + ℓ𝑝𝑗𝑥𝑗 , where j = 1, … , p. The principal components are those 

uncorrelated linear combinations whose variances are as large as possible. The j-th principal component is the 

linear combination ℓ𝑗𝐱T that maximizes 𝑉𝑎𝑟(ℓ𝑗𝐱T) subject to ℓ𝑗ℓ𝑗
T = 1. 

Let Z be the matrix whose columns are the principal components, given by Z = XV, where v1 , … , vp are the 

eigenvectors of the matrix S, associated to the eigenvalues λ1 , … , λp , so that the matrix of observations can be 

written as X = ZVT , where 

𝑥𝑖𝑗 = ∑ 𝑧𝑖𝑘𝑣𝑗𝑘

𝑝

𝑘=1

                                                                          (18) 

Furthermore, matrices Z and V also can be written as: 

𝐙 = [

1 𝑧11 …
1 𝑧21 …

𝑧1(𝑞+1) … 𝑧1𝑝

𝑧2(𝑞+1) … 𝑧2𝑝
… … …
1 𝑧𝑛1 …

… … …
𝑧𝑛(𝑞+1) … 𝑧𝑛𝑝

] = (𝐙(𝑞)|𝐙(𝑟)) 

and 

𝐕 = [

1 1 …
1 𝑣11 …

1 … 1
𝑣1(𝑞+1) … 𝑣1𝑝

… … …
1 𝑣𝑝1 …

… … …
𝑣𝑝(𝑞+1) … 𝑣𝑝𝑝

] = (𝐕(𝑞)|𝐕(𝑟)) 

In order to improve the parameter estimation under multicollinearity, and to reduce the dimension of the 

problem, [1] propose to use as covariates of the logistic regression model a reduced set of optimum principal 

components of the original covariates, as an extension of the model introduced by [19], in the linear case. This 

approach, called Principal Component Logistic Regression (PCLR) model, provide an accurate estimation of the 

parameters in the case of multicollinearity. Furthermore, according to [6], estimates obtained via principal 

components can have smaller mean square error than estimates obtained through standard logistic regression. 

But, according to [20], it is well known that the estimates of the eigenvalues of S are biased. This bias is most 

pronounced when the eigenvalues of S tend toward equality, being less severe when they are highly disparate. 

A generalization of the PCLR model for polytomous responses can be found in [4] and does not require a 
complex formulation. It begins by computing the covariance matrix S. Then the matrix S can be written as: 

𝑥𝑖𝑘 = ∑ 𝑧𝑖𝑗𝑣𝑘𝑗

𝑝

𝑗=1

                                                                      (19) 

so that 

  

𝑃(𝐺𝑡 |𝐙𝐯𝑖) =
𝑒𝑥𝑝(𝛽𝑡0 + ∑ ∑ 𝑧𝑖𝑗𝑣𝑘𝑗𝛽𝑡𝑘

𝑝
𝑗=1

𝑝
𝑘=1 )

∑ 𝑒𝑥𝑝 (𝛽𝑚0 + ∑ ∑ 𝑧𝑖𝑗𝑣𝑘𝑗𝛽𝑚𝑘0
𝑝
𝑗=1

𝑝
𝑘=1

)𝑠
𝑚=1

                                  (20) 

where i = 1 , … , s ;  j = 0 , … , p ; t = 1 , … , s and β sj = 0. 

Setting 𝛾𝑡𝑗 = ∑ 𝑣𝑘𝑗𝛽𝑡𝑘
𝑝
𝑘=1  , the PCLR model, with linear discriminant functions, extended to polytomous 

responses is given by: 

(𝐺𝑡|𝐙𝐯𝑖) =
𝑒𝑥𝑝(𝛽𝑡0 + ∑ 𝑧𝑖𝑗𝛾𝑡𝑗

𝑝
𝑗=1 )

∑ 𝑒𝑥𝑝 (𝛽𝑖0 + ∑ 𝑧𝑖𝑗𝛾𝑚𝑗
𝑝
𝑗=1

)𝑠
𝑖=1

                                                (21) 

The Principal Components Quadratic Logistic Regression (PCQLR) is given by: 

𝑄(𝐺𝑘|𝐙𝐯𝑖) =
𝑒𝑥𝑝 (𝜒𝑘)

∑ 𝑒𝑥𝑝 (𝜒𝑖)
𝑠
𝑖=1

                                                          (22) 

where 𝜒𝑘 = 𝜒𝑘0 + ∑ 𝑧𝑖𝑗𝛾𝑘𝑗
2𝑝

𝑖=1 + ∑ 𝑧𝑖𝑗𝛾𝑘𝑗´𝛾𝑘𝑗´´ + ∑ 𝑧𝑖𝑗

(𝑝−1)
𝑝

2
+𝑝

𝑖=(𝑝−1)
𝑝

2
+1

(𝑝−1)
𝑝

2
𝑖=𝑝+1

𝛾𝑘𝑗 ; 𝜒𝑠 = 𝟎 and k = 1 , … , s – 1;  j , j´´ = 

1 , … , p;  j´ = 1 , … , p – 1. 

In order to estimate the parameters, one can apply the Maximum Likelihood Method. In the dichotomous case, 

[1] also propose two methods to solve the problem of choosing the optimum principal components that should be 

included in the model. In this paper we have used the first q principal components, with the largest variances, 

given by the eigenvalues. However, the interested reader should note that, according to [16], principal 
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components with small eigenvalues can be as important as those with large eigenvalues. A decision rule for 

discarding principal components, in linear regression, is given by [11]. Furthermore, we should taking into 

account that multicollinearity affects the accuracy of the parameters estimation, more precisely on the estimation 

of their standard errors, but it does not affect the performance, in terms of correct classifications. 

In this paper the purpose is only to investigate the principal components model's classificatory performance in 

polytomous cases, using linear and quadratic forms, for practical purposes. In order to formulate the model, the 

first step was to obtain the principal components of the covariates. We have used the first q principal 

components, with the largest variances, including principal components in the natural order, given by the 

explained variability. In the sequence, we fitted the quadratic logistic model, using the selected principal 

components as covariates. With respect to the QLR model, we propose to use as covariates the first q principal 

components, with the largest variances, of the [(𝑠 − 1)(𝑝 + 1) (
𝑝

2
+ 1)] matrix I(Γ) , whose elements are given 

by: 

𝜕2𝐿(𝚪)

𝜕𝛾𝑗𝑚𝛾𝑗𝑚′

= − ∑ 𝑥𝑚′𝑖𝑥𝑚𝑖[𝑄(𝐺𝑗|x𝑖)][1 − 𝑄(𝐺𝑗|x𝑖)]

𝑛

𝑖=1

                                     (23) 

and 

𝜕2𝐿(𝚪)

𝜕𝛾𝑗𝑚𝛾𝑗′𝑚′

= ∑ 𝑥𝑚′𝑖𝑥𝑚𝑖[𝑄(𝐺𝑗|x𝑖)][𝑄(𝐺𝑗′|x𝑖)]

𝑛

𝑖=1

                                        (24) 

where j , j' = 1 , 2 , ... , (s – 1) and m , m' = 1 , 2 , ... , p. The parameter estimation follows the same lines as that 

taken by the CLR model with linear discriminant functions. 

 

5. APPLICATIONS 

 

In this section we consider two benchmark data sets, taken from the trade literature. Iris Data, taken from [10], 

and Fatty Acid Composition Data, taken from [8]. We have applied the CLR model, PCLR model, QLR model 

and PCQLR model to both data sets.  A computer program that implements the approaches previously described 

was written in Visual Basic 6.0 and was run on HP Pavilion dv6 computer. The purpose is to compare the results 

provided by the four models, given by the Correct Classification Rate (CCR). The results achieved, in terms of 

correct classification rates, are given in the sequence. 
Example 1: Iris Data. There are three groups: Iris Setosa (G1), Iris Versicolor (G2) and Iris Virginica (G3). For 

each group there are 50 observations and four independent variables: Sepal Length, Sepal Width, Petal Length 

and Petal Width, all measured in mm. The reference group is Iris Virginica. It is well known that two groups, Iris 

Versicolor and Iris Virginica, overlap and form a cluster completely separated from Iris Setosa. Furthermore, a 

high correlation (r = 0.9629) between the Petal Lenght and Petal Width was found for the three groups. The 

cross-correlation matrix is given by: 

𝑅1 = [

1         −0.1176              
−0.1176         1              

0.8718 0.8179
−0.4284  0.3661

0.8718         −0.4284          
0.8179        0.3661       

1 0.9629
0.9629 1

] 

There is no MLE for the CLR model. In this example, the HLR model has two discriminant functions and 10 

parameters. The QLR model has 30 parameters. Table 1 displays the principal components and their cumulative 

percentage of the total variance. In order to build the PCLR and PCQLR models, two principal components were 

selected. In this case, the PCLR model requires six parameters and the PCQLR model requires 12 parameters. 

The correct classification rates for HLR and PCLR models are summarized in Table 2. The correct classification 

rates for QLR and PCQLR models are summarized in Table 3. It should be noted that the classificatory 

performance of PCQLR model, with 12 parameters, was equal to the classificatory performance of the QLR 

model, with 30 parameters. Furthermore, PCQLR model had better results than PCLR model. When we compare 

one model with the other, we should to take in mind that the purpose in this case is to reduce the number of 

unknown parameters, without loss of accuracy. 

 
Table 1. Classification Matrix. Iris data. Linear Discriminant Functions. 

Model Observed Group 
Allocated Group 

𝐺1 𝐺2 𝐺3  

HLR 

𝐺1

𝐺2

𝐺3

 
1.00 0.00 0.00
0.00 0.98 0.02
0.00 0.02 0.98

 

PCLR (1 p.c.) 

𝐺1

𝐺2

𝐺3

 
1.00 0.00 0.00
0.00 0.88 0.12
0.00 0.10 0.90
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Table 2. Iris data. Variances (eigenvalues) 

Variance (λ) 2.9185 0.9140 0.1468 0.0207 

Cumulative Percentage of Total Variance 72.96 95.81 99.48 100 

 

 

Table 3. Classification Matrix. Iris data. Quadratic Discriminant Functions. 

Model Observed Group 
Allocated Group 

𝐺1 𝐺2 𝐺3  

QLR 

𝐺1

𝐺2

𝐺3

 
1.00 0.00 0.00
0.00 0.98 0.02
0.00 0.02 0.98

 

PCQLR (3 p.c.) 

𝐺1

𝐺2

𝐺3

 
1.00 0.00 0.00
0.00 0.98 0.02
0.00 0.02 0.98

 

 
Example 2: Fatty Acid Data. There are 120 observations, five groups and seven variables, representing the 

percentage levels of seven fatty acids, namely palmitic (x1), stearic (x2), oleic (x3), linoleic (x4), linolenic (x5), 

eicosanoic (x6) and eicosenoic (x7) acids. In this paper we consider five groups: rapeseed (G1), sunflower (G2), 

peanut (G3), corn (G4) and pumpkin (G5) oils. In this paper the reference group is (G1) (pumpkin oil). The 

original data set have eight groups, and the complete table of the original data can be found in [8]. There is a 

high correlation between oleic and linoleic acids (r = – 0.9565). Table 4 displays the classification matrix for the 

QLR and PCQLR models. Table 5 displays the principal components and their cumulative percentage of the 

total variance. Table 6 displays the classification matrix for the QLR and PCQLR models. In this case, there is 

no MLE for the CLR model; the HLR model has four discriminant functions and 32 unknown parameters. The 

QLR model involves 144 unknown parameters. Keeping four principal components, the PCLR model involves 

20 parameters, and the PCQLR model involves 60 parameters. Table 4 displays the principal components and 

their cumulative percentage of the total variance. 
 

Table 5 displays the classification matrix for the HLR and PCLR models and Table 6 displays the classification 

matrix for the QLR and PCQLR models. In this case, the PCQLR model, with 60 parameters, had better 

performance than HLR model, and similar performance to the QLR model, with 144 parameters. 

 

 

Table 5. Classification Matrix. Fatty acid data. Linear Discriminant. 

Model Observed Group 
Allocated Group 

G1        G2        G3        G4        G5 

HLR 

G1 

G2 

G3 

G4 
G5 

0.64     0.00     0.00     0.00     0.36 

0.00     0.95     0.00     0.00     0.05 

0.00     0.00     1.00     0.00     0.00 

0.00     0.00     0.00     1.00     0.00 
0.15     0.00     0.05     0.05     0.75 

PCLR (6 p.c.) 

G1 

G2 

G3 

G4 

G5 

0.64     0.00     0.00     0.00     0.36 

0.00     0.95     0.00     0.00     0.05 

0.00     0.00     0.96     0.00     0.04 

0.00     0.00     0.00     0.80     0.20 

0.17     0.06     0.03     0.06     0.68 

 

Table 5A. Fatty acid data. Variances (eigenvalues) 

Variance (λ) 3.9092 1.0842 0.9325 0.7866 0.2053 0.0811 0.0001 

% of Total Variance 55.85 71.84 84.66 95.90 98.83 99.99 100 

 

According to [8], the Principal Component Analysis (PCA) was successful to distinguish clusters of different oil 

samples, but it is not suitable for an automatic prediction of vegetable oil classes, because PCA requires a visual 

inspection and the final decision has to be made by an expert. Based on the results achieved by the PCLR and 

PCQLR models, we believe that the PCA can be a useful tool to develop and implement an automated method 

for classification of vegetable oils, because it gives an accurate estimation of the parameters of a polytomous 
quadratic logistic model, with a high classificatory performance. 
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Table 6. Classification Matrix. Fatty acid data. Quadratic Discriminant. 

Model Observed Group 
Allocated Group 

G1        G2        G3        G4        G5 

QLR 

G1 

G2 

G3 

G4 

G5 

0.82     0.00     0.00     0.00     0.18 

0.00     1.00     0.00     0.00     0.00 

0.00     0.00     1.00     0.00     0.00 

0.00     0.00     0.00     1.00     0.00 

0.00     0.00     0.00     0.00     1.00 

PCQLR (6 p.c.) 

G1 

G2 

G3 

G4 

G5 

0.73     0.00     0.00     0.00     0.27 

0.00     1.00     0.00     0.00     0.00 

0.00     0.00     1.00     0.00     0.00 

0.00     0.00     0.00     0.90     0.10 

0.00     0.03     0.00     0.05     0.92 

 

 

6. CONCLUSION 

 

The purpose of this paper was simply to develop and implement a simple and direct generalization for the 

Quadratic Logistic Regression Model, for polytomous response, which allows the reduction of the number of 

unknown parameters in the problem, and to explore the performance of the model when compared to the 

Classical Logistic Regression model with linear discriminant functions. This paper does not intend to give a 

detailed explanation of theoretical aspects which involves neither Principal Components Analysis (PCA) nor the 

quadratic logistic model. In order to solve the problem that arises when there are multicollinearity and a large 

number of unknown parameters, we have used the PCA, as well a generalization of the Hidden Logistic 

Regression Model (HLR), to estimate the unknown parameters in case of complete separation. We have 

concentrated on a comparison of classical logistic model to quadratic logistic model, with estimates obtained via 
PCA. We can see that the PCA allows the reduction of the number of dimensions, and of unknown parameters, 

in a polytomous quadratic logistic model, with continuous covariates and avoiding the multicollinearity of these 

variables, without loss of accuracy. Furthermore, this approach provides a simple and easy-to-implement 

solution to the problem that arises when there is multicollinearity among the independent variables. For practical 

purposes, the main advantage of the HLR model is the existence and uniqueness of estimators, and, in addition, 

it involves neither arbitrary data manipulation nor complicated modifications to both classical and quadratic 

logistic models. Furthermore, there are not any computational difficulties to implement the referred approaches. 

With respect to the performance, we can see that the Quadratic Logistic Regression Model and the Principal 

Components Quadratic Logistic Model can provide better classification rates than the Classical Logistic 

Regression Model. The results achieved suggest that the proposed approach is a promising alternative to the 

classical logistic regression model, when a large number of dimensions have to be considered. 
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