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ABSTRACT 
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RESUMEN 

En este paper son propuestas algunas clases de estimadores mínimo cuadráticos de la media de poblaciones finitas, en la 

presencia de una variable auxiliar, y sus eficiencias son comparadas teóricamente y usando ilustraciones numéricas. 

 
1. INTRODUCTION 

 

In large scale sample surveys the sampler looks for information on certain auxiliary variables , correlated with 

the main variable under study. One of  the  main  reasons for such endeavour is to formulate estimators of the 

population mean or total of the study variable with the help of auxiliary information which are more efficient 
than estimators ,not using such information. Ratio and Regression estimators (Watson,1937, Cochran,1940) 

are classical estimators to estimate the population  mean/total of the study variable using auxiliary 

information. During last eight decades volumes of  research  have been undertaken to study the  properties of 

these estimators along with their improved versions. As most of the estimators using auxiliary information are 

biased and  non-linear in nature , it is relevant to discuss some classes of minimum  mean  square  error 

estimators to be used in survey sampling. 

Let there be a finite population  U   , consisting of N units- 1 2, ,...., NU U U , where the ith  unit iU  is 

indexed by paired values ( , ), 1,2,...,i iy x i N , corresponding to the study variable y  and the correlated 

auxiliary variable x . Define Y  and X  as the population means of y  and x  respectively;
2

yS  and 
2

xS  as the 

finite population variances of y  and x   respectively;   as the correlation coefficient between y  and x . 

Further, define   / , / , ( / )( / )y y x x yx y xC S Y C S X C S Y S X   y xC C . 

as the coefficient of variation of y ,coefficient of variation of x  , and coefficient of  covariation  between 

y and x   respectively.  

For a simple random sample without replacement  s  of  size n  , define y  and x  as the sample means of 

y  and x   respectively. The sample mean y  is an unbiased estimator of Y  with sampling variance 

2 2( ) yV y Y C
                                                                         

(1.1) 

where  
1 1

n N
   . 

                                                
1
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When    is positive, the classical ratio estimator (Cochran,1977) of Y  is  

 

( )R

X
y y

x


                                                                

(1.2) 

with approximate mean square error to order
1n (symbolically written as (1/ )O n ) given by 

2 2 2( ) ( 2 )R y x yxMSE y Y C C C  
                         

(1.3) 

Murthy’s(1967) product estimator  of  Y , when  is negative  is 

( )P
x

y y
X


                                                                   (1.4)

 

with  approximate mean square error to (1/ )O n  given by  

 

2 2 2( ) ( 2 )P y x yxMSE y Y C C C  
                          (1.5)

 

 

The linear regression estimator used in sample surveys is given by 

( ),lry y b X x  
                                                  

(1.6) 

where b  is the sample regression coefficient of y  on x . The approximate mean square error of lry  to order 

1n  is given by  

2 2 2( ) (1 )lr yMSE y Y C  
                                     

(1.7) 

 

Srivastava (1971) proposed a general class of estimators to estimate the population meanY  of the study 

variable y with advance knowledge of the population mean of the auxiliary variable x  given by  

( )gt yH u ,                                                                (1.8) 

where /u x X  and (.)H  is a parametric function such that it satisfies the conditions 

                     (i) (1)H =1 

                     (ii) The first, second and higher order partial derivatives of H  with respect to single variable u  
exist and  are known constants at a given point 1u  .These are the necessary and sufficient conditions for 

the expansion of ( )H u  in Taylor’s series. . 

Thus ,expanding ( )H u  about the point 1u  ,in a Taylor’s series we have  

 

2
2

1 12

( ) [1 ( 1]

1
(1) ( 1)[ ] ( 1) [ ] .......

2
u u

H u H u

H H
H u u

u u
 

  

 
     

 

(1.9) 

In this paper we approximate ( )H u by first three terms of Taylor’s series expansion. 

Also, assuming 1 1u   , the higher order terms may be neglected. 

Hence, we write 

gt =  ( ) [1 ( 1]yH u yH u    

                            =

2
2

1 12

1
(1 ( 1)[ ] ( 1) [ ] )

2
u u

H H
y u u

u u
 

 
   

 
 

                            =
2

1 2(1 ( 1) ( 1) )y u H u H    ,               (1.10) 

where 
1 1[ ]u

H
H

u






  and   

2

2 12

1
[ ]

2
u

H
H

u






. 
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                      Thus,  
2

0 1 1 1 2(1 )(1 ....)gt Y e e H e H                 (1.11) 

where 
0

y Y
e

Y


  and 

1 1
x X

e u
X


   . 

 

   We have       2 2 2 2
0 1 0 1

( ) ( ) 0, ( ) , ( )y xE e E e E e C E e C      and 0 1( ) yxE e e C . 

Hence to first order of approximation , that is , to terms of order  
1n (symbolically to (1/ )O n ) 

 
2( ) ( )g gMSE t E t Y  = 

2 2 2 2

1 1[ 2 )]y x yxY C H C H C  
            

(1.12) 

 

Also, to (1/ )O n  the bias of gt  is given by 

 
2

2 1( ) [ )g x yxB t Y H C H C  ]                                                          (1.13) 

 

The minimum value of ( )gMSE t  when minimized with respect to 1H  gives 

2 2 2. ( ) (1 )g yMin MSE t Y C  
                                                   

 (1.14) 

Thus, Srivastava (1971) concludes that if we attach any function of /u x X  to y , 

the asymptotic mean square error of the resultant estimator can  not be lower than that 

given by ( 1.5): 

 Searls (1964) considered an estimator of the population meanY  given by 
 

searlsy y                                                                                          (1.15) 

where   is a real constant to be suitably chosen.Under simple random sampling without replacement , the 

minimum mean square error of the Searls’ estimator is given by  
 

2

2

2
. ( )

1

y

searls

y

C
Min MSE y Y

C







                                                       

(1.16) 

        In the following we shall consider certain general classes of minimum mean square error estimators and  

compare their lower bounds to asymptotic mean square errors along with optimum biases. 

 

2.GENERALIZED  CLASSES OF  MINIMUM MEAN SQUARE RATIO TYPE ESTIMATORS 

 

 Consider the following classes of estimators 

 

                  (i) 1 1 2 ( )gt w y w H u   

                  (ii) 2 1 2[ ( )]gt y w w H u   

                  (iii) 3 1 2( ) [1 ( )]gt w yH u w H u    

where  1w  and 2w  are real constants to be suitably determined and ( )H u  is as defined by 

 Srivastava(1971): 

 

Class I ( 1C ): 

1 1 2 ( )gt w y w H u                                                                     (2.1) 

 

 Using Taylor’s series expansion of ( )H u  with respect to u  , given in  ( 1.9), 

we have to second degree of approximation 
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2

1 1 0 2 1 1 2 1(1 ) (1 ....)gt wY e w H e H e       

' 2

1 0 2 1 1 0 2 1[( 1) ( )]gt Y Y w we w H e e H e                       (2.2) 

where ' 2
2

w
w

Y
   and  

'

1 2w w w  . 

Thus to first order of approximation 
' 2

1 1 2 2( ) ( ) [( 1) ]g g xB t Bias t Y w w H C                               (2.3) 

2 2 2 '2 '

1 1 2 2 2 12( ) [( 1) 2 ]gMSE t Y w w A w A ww A                 (2.4) 

where  
2

1 yA C
,
 

2 2 2

2 1 1[ 2 ]x y yxA H C C H C  
,

2

12 1[ ]yx yA H C C   

Minimizing  (2.4) with respect to w  and 
'

2w  we have 

 

2

1 12 2

1

1 ( / )
w

A A A


 
 and 

'

2w =
12

2

A
w

A
  

 
2

1 12 2
1 2

1 12 2

( / )
. ( )

1 ( / )
g

A A A
Min MSE T

A A A




 
 

 
2 2 2 2

1

2 2 2

1 12

2 2 2 2

1

2 2 2

1 1

(1 )

2
[ ]

(1 )
1

2

y x

x y yx

y x

x y yx

H C C

H C C H C
Y

H C C

H C C H C









 





 

                                             (2.5) 

 
2 2

12 1 2 2 12
1 2

2 1 12 2

( )
( ) [ ]

[1 ( / )]
x

g

A A A H C A
B t Y

A A A A

 


 
                                        (2.6) 

 

2 2 2 2 2 2

1 2 1

2

2 2 2 2 2 2

1 1 1 2

( ) ( )

( 2 ) ( )

yx y x x yx y

yx

x y yx x y

x

H C C C H C H C C
Y

C
H C C H C H C C

C





 
 

  
 
 

    
 

            (2.7) 

Class II  ( 2C ): 

 

2 1 2[ ( )]gt y w w H u 
                                                                       

(2.8) 

  Write 
2

2 0 1 2 1 1 2 1(1 )[ (1 )]gt Y e w w H e H e                                         (2.9) 

2 2

1 2 2 1 1 2 2 1 1 0 2 0 2 1 0 1 2 2 0 1[ ]Y w w w H e w H e w e w e w H e e w H e e              (2.10) 

To terms of order  
1n , 

2

2 2 2 2 1( ) ( ) [( 1) ( )]g g x yxB t Bias t Y w w H C H C                                        (2.11) 

 and          
2 2 2 2 2 2 2

2 2 1 2 1( ) [( 1) 2 ]g y x yxMSE t Y w w C w H C ww H C       ,    (2.12) 
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where 1 2w w w  . 

Minimizing  ( 2.12) with respect to w   and 2w   we have 

 

2

2

12B
w w

B
 

       
2

12
1

2

1

1

w
B

B
B



 

 

, 

where 
2

1 yB C , 
2 2

2 1 xB H C   and 12 1 yxB H C . 

Substituting optimum values of w  and 2w  in   (2.12) we have 

2 2

2

2 2 2

(1 )
. ( )

1 (1 )

y

g

y

C
Min MSE t Y

C

 

 




 
                                               

(2.13) 

and 

2
212

1 2 1 12 2

2
2 2

12
1

2

( ) ( )( / )

( ) [ ]

1

x yx

g

B
B H C H C B B

B
B t Y

B
B

B

  



 

            

(2.14) 

2 2

1

2

2

2
1 ( )

y yx

yx

y

x

H
C C

H
Y

C
C

C





 
 

  
 
  

 

                                                                    (2.15) 

Class III    ( 3C ) 

 

3 1 2( ) [1 ( )]gt w yH u w H u  
                                                              

(2.16) 

Expanding 3gt  in Taylor’s series  and keeping terms up to second degree, we have  

2 2

3 1 0 1 1 2 1 2 1 1 2 1(1 )(1 ) ( )gt w Y e H e H e w H e H e       

 
2 ' 2

1 0 1 1 2 1 2 1 1 2 1[ (1 )(1 ) ( )]Y w e H e H e w H e H e                            (2.17) 

where   
'

2 2 /w w Y . 

Thus, to terms of  order 
1n , 

' 2 2

3 3 1 1 1 2 2 1 2( ) ( ) [( 1) ]g g yx x xB t Bias t Y w w H C w H C w H C       
.   

  (2.18) 

 
2 2 2 2 2 2 '2 2 2

3 1 1 1 1 2 1( ) [( 1) ( 2 )g y x yx xMSE t Y w w C H C H C w H C       ' 2 2

1 2 1 12 ( )]yx xw w H C H C   

2 2 2 '2 '

1 1 1 2 2 1 2 12[( 1) 2 ]Y w w D w D w w D     ,                                                    (2.19) 

where  
2 2 2

1 1 1[ 2 ]y x yxD C H C H C  
  ,    

2 2

2 1 xD H C  

2 2

12 1 1[ ]yx xD H C H C   

Minimizing   ( 2.19) with respect to 1w  and  
'

2w   gives the optimum values of   1w  and 
'
2w  as  
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  and  1 2

12
1

2

1

1

w
D

D
D



 

           and    
' 12
2 1

2

D
w w

D
  

Substituting the optimum values of 1w   and  
'

2w  in (  2.19 )  , we have 

2 2

2

3 2 2

(1 )
. ( )

1 (1 )

y

g

y

C
Min MSE t Y

C




 




 
                                                          (2.20) 

2
2 212

1 1 2 2 12 2

2
3 2

12
1

2

( ) ( ) ( / )

( )

1

yx x x

g

D
D H C H C H C D D

D
B t Y

D
D

D

    



 

            (2.21) 

2

2 2
12

1

2

2

2

( ) ( )

1 ( )

yx

y yx

x

yx

y

x

C H
C C H

C H
Y

C
C

C





 
   

  
 

  
                                                            

(2.22) 

 

3.COMPARISON OF BIASES AND MEAN SQUARE ERRORS OF  1 2,g gt t   AND 3gt  

 
Now, 

1. ( )gMin MSE t

2 2 2 2

1

2 2 2

1 12

2 2 2 2

1

2 2 2

1 1

(1 )

2
[ ]

(1 )
1

2

y x

x y yx

y x

x y yx

H C C

H C C H C
Y

H C C

H C C H C









 





 
                                    

(3.1) 

2. ( )gMin MSE t =  

2 2

2

3 2 2

(1 )
. ( )

1 (1 )

y

g

y

C
Min MSE t Y

C

 

 




 
                          

(3.2) 

Thus,   1gt   will be more efficient than both 2gt   and 3gt   if 

 
2

12 0y yxC H C                                                                                                  (3.3) 

4.SOME SPECIAL CASES OF GENERALIZED CLASSES OF ESTIMATORS 
 

Defining ( )H u  differently , we can generate  special cases of the proposed generalized  classes of  minimum 

mean square error estimators. In the following we discuss  some of these  minimum mean square error 

estimators relating to ratio estimator and product estimator(Murthy,1967)and compare them as regards their 

large sample biases and mean square errors. 

 

(i)When y  and x   are positively correlated , define the minimum mean square error  estimators as 

1 1 2 ( )R

X
t w y w

x
   

2 1 2[ ( )]R

X
t y w w

x
   

3 1 2( ) (1 )R

X X
t w y w

x x
    

where  1w  and 2w  are so  chosen to make  the mean square errors to terms of order 
1n minimum. 

Thus the optimum biases and mean square errors to  (1/ )O n  are found as  
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1( )RB t 
2

2 2 2 2 2

( )

( 2 ) (1 )

yx yx x

y x yx x y

C C C
Y

C C C C C


 



   
                                                       (4.1) 

2( )RB t 
2

2
2

2

( )

1 ( )

y yx

yx
y

x

C C
Y

C
C

C








 

2

2 2

( )

1 (1 )

y yx

y

C C
Y

C


 


 

 
                                              

(4.2) 

3( )RB t 

2
2

2 22

2 2 2
2

2

( )
(1 )

1 (1 )
1 ( )

yx
y

yx

yx y
y

x

C
C

CC
Y Y

C C
C

C


 

 





  
 

 

                                             (4.3) 

1( )RMSE t 
2 2 2 2 2 2

2
2 2 2 2

(1 ) (1 )
/ (1 )

( 2 ) ( 2 )

y x y x

y x yx y x yx

C C C C
Y

C C C C C C

 
 

 


   
                              

(4.4) 

2( )RMSE t 
2 2

2
2 2

(1 )

1 (1 )

y

y

C
Y

C




 



 
                                                                                  (4.5) 

3( )RMSE t 
2 2

2
2 2

(1 )

1 (1 )

y

y

C
Y

C




 



 
                                                                                  (4.6) 

(ii)When y   and x   are negatively correlated, define the minimum mean square estimators as 

1 1 2( )P

x
t w y w

X
   

2 1 2[ ( )P

x
t y w w

X
  ] 

3 1 2( ) (1 )P

x x
t w y w

X X
    

where 1w   and 2w   are so chosen to make the minimum mean square errors to  order 
1n minimum. 

The optimum biases and mean square errors  to (1/ )O n  are found as  

1( )PB t 
2 2 2

2 2 2 2 2

(1 )

( 2 ) (1 )

x y

y x yx x y

C C
Y

C C C C C




 




   
                                                  (4.7) 

2( )PB t 
2

2 21 (1 )

y

y

C
Y

C


 


 
                                                                                      

(4.8) 

3( )PB t 
2 2

2 2

(1 )

1 (1 )

y yx

y

C C
Y

C




 

 


 
                                                                                   (4.9) 

1( )PMSE t 
2 2 2 2 2 2

2
2 2 2 2

(1 ) (1 )
/ (1 )

( 2 ) ( 2 )

y x y x

y x yx y x yx

C C C C
Y

C C C C C C

 
 

 


   
                            (4.10) 

2( )PMSE t 
2 2

2
2 2

(1 )

1 (1 )

y

y

C
Y

C




 



 
                                                                              

(4.11) 
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3( )PMSE t 
2 2

2
2 2

(1 )

1 (1 )

y

y

C
Y

C




 



 
                                                                              (4.12) 

Note: For optimum values of  1w   and 2w  , 

(i) 1Rt  is more efficient than both 2Rt   and 3Rt ,which are equally efficient., 

(ii) 1Pt  is more efficient than both 2Pt  and 3Pt ,which are equally efficient, 

In practice the 1w and 2w  are to be substituted by their consistent estimates from the sample. 

 

5.  NUMERICAL ILLUSTRATIONS 
 

 Consider the following natural populations  given in  Table 1. 

 

Table 1.    Description of Populations 

Sl.no.   Source and         

Description 
N  n    2

yC  
2

xC  

1 Sukhatme and 

Chand(1977) 

y:Apple bearing trees 

x:Bushels of apples 
harvested,1959 

200 20   0.93 2.5528 4.0250 

2 Cochran(1977) 

y:No. of placebo 

children 

x:No. of paralytic 

cases 

 34 10 0.7326 1.0248 1.5175 

3 Murthy(1967) 

y:area under wheat 

1964 

x:Area under 

wheat,1963 

34       7 0.9801 0.5673 0.5191 

4 Murthy(1967) 

y :output 

x:: fixed capital 

80 10 0.9413 0.1238 0.5564 

5 Steel and 
Torrie(1960) 

y : log of leaf burn in 

seconds 

x  :chlorine % 

50 10 -0.4996 0.2307 0.5614 

6 Singh(2003) 

y.:duration of sleep 

x :age of subjects 

30 8 -0.8552 0.0243 0.0188 

 

 

 

Table 2.  Comparison of Mean square Errors excluding the constant multiplier 

 

 

Population 
1gt  2gt  3gt  /R Py y

 
y  

1 0.0050 

(2298) 

0.0153 

(751) 

0.0153 

(751) 

0.0277 

(415) 

0.1149 

(100) 

2 0.0115 

(629) 

0.0324 

(223) 

0.0324 

(223) 

0.0500 

(145) 

0.0723 

(100) 
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3 0.0006 

(10717) 

0.0025 

(2572) 

0.0025 

(2572) 

0.0026 

(2473) 

0.0643 

(100) 

4 0.0006 

(1800) 

0.0012 

(900) 

0.0012 

(900) 

0.0164 

(66) 

0.0108 

(100) 

5 0.0067 

(275) 

0.0137 

(134) 

0.0137 

(134) 

0.0346 

(53) 

0.0184 

(100) 

6 0.0001 

(2200) 

0.0006 

(366) 

0.0006 

(366) 

0.0006 

(366) 

0.0022 

(100) 

 

Note: The figures inside the brackets in Table 2 indicate the percent relative efficiency compared to that of 

the simple mean per unit estimator y . For populations (1-4) the mean square errors are computed  with 

1 1g Rt t , 2 2g Rt t  and 3 3g Rt t   and for populations (5-6) the mean square errors are computed with 

1 1g Pt t , 2 2g Pt t  and 3 3g Pt t . 

Comments: The computations with natural populations show that (i) 1Rt  is highly efficient compared  to 

2Rt ,
 3Rt , Ry  ,and  y  (ii) 1Pt  is highly efficient compared to 2Pt  , 3Pt  , Py , and  y  

 

6. CONCLUSIONS 

 

1.  To terms of order 
1n , 1gt   is   more efficient than  both 2gt  and 3gt  if 

 
2

12 0y yxC H C   

2.To terms order 
1n ,  2gt  and 3gt   have the same mean square error independent of the choice of ( )H u  

,satisfying the stated  conditions,. 

 3.The technique of constructing different classes of minimum mean square estimators using single auxiliary 

variable can be extended to the cases using more than one auxiliary variable and this problem will be 
discussed in a later paper. 

4.To first order of  approximation 1Rt  is more efficient than both 2Rt  and 3Rt  and so also 1Pt  compared 

to 2Pt  and 3Pt . 

5.The generalized classes of minimum mean square error  estimators suggested in this paper are  not 

exhaustive and  the researchers may also work with  other generalized classes of estimators. 
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