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ABSTRACT
In this paper some generalized classes of minimum mean square error estimators of the finite population mean in the presence of
a single auxiliary variable are proposed and their efficiencies are compared both theoretically and with numerical illustrations.
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RESUMEN
En este paper son propuestas algunas clases de estimadores minimo cuadraticos de la media de poblaciones finitas, en la
presencia de una variable auxiliar, y sus eficiencias son comparadas teéricamente y usando ilustraciones numéricas.

1. INTRODUCTION

In large scale sample surveys the sampler looks for information on certain auxiliary variables , correlated with
the main variable under study. One of the main reasons for such endeavour is to formulate estimators of the
population mean or total of the study variable with the help of auxiliary information which are more efficient
than estimators ,not using such information. Ratio and Regression estimators (Watson,1937, Cochran,1940)
are classical estimators to estimate the population mean/total of the study variable using auxiliary
information. During last eight decades volumes of research have been undertaken to study the properties of
these estimators along with their improved versions. As most of the estimators using auxiliary information are
biased and non-linear in nature , it is relevant to discuss some classes of minimum mean square error
estimators to be used in survey sampling.

Let there be a finite population U , consisting of N units—Ul,Ug,----,UN , Where the ith unit Ui is
indexed by paired values (yi ) X,), i :11 2, sy N , corresponding to the study variable Y and the correlated

auxiliary variable X . Define Y and X asthe population means of Y and X respectively; 55 and Sf as the
finite population variances of Y and X respectively; P as the correlation coefficient between Y andX.
Further, define C, =S, IY,C =S,/ )Z,ny =p(S, IY)(S, ! X) =pCyCy.

as the coefficient of variation of Y ,coefficient of variation of X , and coefficient of covariation between

Y and X respectively.

For a simple random sample without replacement s of size n , define Y and X as the sample means of

Y and X respectively. The sample mean ¥/ is an unbiased estimator of Y with sampling variance

V(Y)=6Y°C] (1.1)
where @ = 1 —i .
n N
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When p is positive, the classical ratio estimator (Cochran,1977) of Y is

) 1.2)

with approximate mean square error to order n_l(symbolically written as O(1/ n)) given by
. 72 (2 2
MSE(Yg) =&Y “(C, +C; -2C,) (1.3)

Murthy’s(1967) product estimator of Y , when pis negative is

_ _. X

yp =Y(%)
X (1.4)

with approximate mean square error to O(1/n) given by

MSE(p) =Y %(CF +C5 +2Cyy) w5

The linear regression estimator used in sample surveys is given by

Yir =Y +b(X -X), (1.6)

where D is the sample regression coefficient of Y on X. The approximate mean square error of V,r to order
n1 is given by

MSE(Y,,) = &Y “C; (1~ p°) (L)

Srivastava (1971) proposed a general class of estimators to estimate the population mean Y ofthe study
variable Y with advance knowledge of the population mean of the auxiliary variable X given by

t,=yH(u), (18)
where u =X/ X and H(.) is a parametric function such that it satisfies the conditions
(i) H(@) =1

(ii) The first, second and higher order partial derivatives of H with respect to single variable U

exist and are known constants at a given point U =1 .These are the necessary and sufficient conditions for
the expansion of H (u) in Taylor’s series. .

Thus ,expanding H (u) about the pointU =1 ,in a Taylor’s series we have

H@u)=H[1+(u-1]

oH 10°H (1.9)
=H (1) + (U _1)[E]u:1 + (U —1)2[5 W]u:l +.

In this paper we approximate H (u) by first three terms of Taylor’s series expansion.

Also, assuming |U —:u <1 the higher order terms may be neglected.
Hence, we write
t,= yHu)=yH[L+u-1]
= oH ,r10°H
=yA+Uu-)[—] 4 +Uu-)]=—
y( ( )[ aU ]u:l ( ) [2 aUZ ]u:l)
=Y+ U-DH, +(u-1°H,), (1.10)

1,0°H
where H, :[66_I;I]u=1 and H, ZE W]u:l-
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Thus, t, =Y (1+e)A+eH, +efH, +...) (1.12)

where g, = y;Y and %=U—1=¥-

Wehave  E(ep)=E(er)=0,E(e?)=6CF, E(e?)=6CZ and E(eger) =6Cyx .

Hence to first order of approximation , that is , to terms of order n_l(symbolically to O(1/n))
7\2 7212 22

MSE(t,)=E(t,-Y)"= &Y °[C, +HC +2H,C )] (1.12)

Also, to O(1/n) the bias of tg is given by

B(t,) =&Y[H,C +H,C,)1 (1.13)

The minimum value of MSE(t g) when minimized with respect to Hl gives
MinMSE(t ) = &Y °C}(1- p%) (1.14)

Thus, Srivastava (1971) concludes that if we attach any functionof u=X/ X to Yy,
the asymptotic mean square error of the resultant estimator can not be lower than that
given by ( 1.5):

Searls (1964) considered an estimator of the population mean Y given by

ysearls = ﬂ'y (1.15)

where A is a real constant to be suitably chosen.Under simple random sampling without replacement , the
minimum mean square error of the Searls’ estimator is given by

6C?
Min.MSE(Y,....) =Y? Y (1.16)
searls 1+9C§
In the following we shall consider certain general classes of minimum mean square error estimators and
compare their lower bounds to asymptotic mean square errors along with optimum biases.

2.GENERALIZED CLASSES OF MINIMUM MEAN SQUARE RATIO TYPE ESTIMATORS

Consider the following classes of estimators

(i)l =Wy +W,H (U)
(i) Lo = YW, + W, H ()]
(i) Lgs = Wy YH (U) + W, [1-H ()]
where W, and W, are real constants to be suitably determined and H (u) is as defined by

Srivastava(1971):

Class | (Cl):
tgl =Wy +w,H (u) (2.1)

Using Taylor’s series expansion of H (u) with respectto U , given in (1.9),
we have to second degree of approximation
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ty WY (L+e,) +w,(1+H,e +H.e +....)
t

gl _Y_ Y_[(W_l) +We, +W‘2(H1e1 —€* Hzef)]

where W, =% and W=W1+WI2.

Thus to first order of approximation

B(t,,) = Bias(t,,) = Y[(W—1)+w,60H,C ]
MSE(tgl) =Y *[(w-1)? +W2A1 + WIZZAZ +2WW, A, |
where A = 9C§ |

A, :6’[H12CX2 +Cy2 —2H1ny] A, :H[Hlex —C;]

Minimizing (2.4) with respectto W and W, we have

A,

1 .
and W2 =—W—=

W=
1+A - (A, A) A,

Min.MSE(T,,) = A _(A2122/ A)
1+A-(A,1A)
H/C;C:(1-p°)
H/C?+C:-2H,C,,
HfC;Cj 1-p%)
H/C?+C.-2H,C,

]

1+6

B(tgl) :Y_[(A12 — AlAz) _HZHZCX AiZ]
Al+A (AT A)]

_g7| (€ -CICH) ~HCIHC, —C))

CZ
(H{CF+C} ~2H,C, ) ~OH/CI (5 ~C})
Class Il (Cz):

t,= y[w,+w,H (u)]
Write_
tg2 =Y (1+ eO)[Wl +W, (1+ H1e1 + H2e12)]

2.2)

(2.3)

(2.4)

(2.5)

(2.6)

@.7)

(2.8)

(2.9)

=Y [w, +Ww, +W,H.e +W,H.,e +we, +Ww,e, +W,H.ee, +W,H.ee’] (210

To terms of order n_l,

B(t,,) = Bias(t,,) =Y[(Ww-2)+w,0(H,C’ + H.C,)]

(2.11)

and  MSE(t,,) =Y?[(W-1)?+W6C] +W;H/OC; +2ww,0H,C, ], (212)
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where W=W, +W,.

Minimizing ( 2.12) with respectto W and W, we have

where B =9C§, B, = (9H12Cf and B, =0H,C,, .

Substituting optimum values of W and W, in (2.12) we have
2 2
oC,(1-p°)

in. =Y? 213
Min.MSE(t,,) =Y L+ 0C A7) (2.13)
2
(B2oB)-0(H,CI +HC, (B, /By)
and B(tgz):Y[ 2 Bf ] (2.14)
_ 12
1+ B, B,
B C’ +||:||2ny
=—0Y o2 1 (2.15)
1-6( Cy; -C})
Class IlI (Cs)
t,s =W,yH (U) +W,[1-H ()] 2.16)

Expanding tgg in Taylor’s series and keeping terms up to second degree, we have

L= WlY_(l"'eo)(l"' He + Hzef) —W,(He + Hzef)

:Y_[W1(l+eo)(1+ H.e + Hzef)_wzl(Hle1+ Hzef)] (2.17)

where WIZ =W, Y.

Thus, to terms of order n_l,

B(t,s) = Bias(t,;) =Y[(W —1) +W6H,C, —W,0H,C: +WOH,C/]  (2.18)

MSE(tg3) :Y_z[(Wl -1)° +W120(C5 + Hfo + 2H1ny) + W'220H12CX2 —2W1W'219(H1CyX + Hfo)]
= Y_Z[(Wl ~1)°+ W12 D, + lez D, - 2W1W'2 Dp]. (2.19)

where D, =0[CZ+H/C}+2HC,] D, =6H/C;

D, =4[H,C,, +H/C] |

Minimizing (2.19) with respect to W, and W, gives the optimum values of wy and W as
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: D.
1 and WZ = W1_12
D2
12

1+ Dl—? 2

2

and W, =

Substituting the optimum values of W, and W, in ( 2.19) , we have
2 2
C,(-p%)

MinMSE(t ) =Y%9—— " " _ (2.20)
9 1+6C2(1-p°)
2
(22 D) +8(H,C,, + H,C))~0H,C2(D,, / D,)
B(ty,) =Y —2 o7 (2.21)
1+ D, — =22
2
c? H
_ (Ci_ciyzx)-'_cyx(ﬁz_Hl)
=-6Y X c 1 (2.22)
1-9(=-X —C?)
C? Y

3.COMPARISON OF BIASES AND MEAN SQUARE ERRORS OF tgl,tgz AND tg3

Now,
HICIC (1~ p?)
22 2

MinMSE t,,) = vz 0x *Cy —2RCy @)
HiCICIa—p")

1460 5

HZCZ+C2-2H,C,,

oC; (1-p*)

MINMSE(t,,) = Min.MSE(t .) =Y?2 3.2
(t;2) in (t;s) 1+ 0C21—p?) 3.2)

Thus, tgl will be more efficient than both tg2 and tgg if

C;-2HC, >0 (3.3)

4.SOME SPECIAL CASES OF GENERALIZED CLASSES OF ESTIMATORS

Defining H (u) differently , we can generate special cases of the proposed generalized classes of minimum

mean square error estimators. In the following we discuss some of these minimum mean square error
estimators relating to ratio estimator and product estimator(Murthy,1967)and compare them as regards their
large sample biases and mean square errors.

()When Y and X are positively correlated , define the minimum mean square error estimators as

_ X
e = WY +W, (?)

_ X
tRZ = y[W1 +W, (?)]
X X
trs = 1Y(¥) +W, (1_¥)

-1 ..
where wq and w, are so chosen to make the mean square errors to terms of order N ~minimum.
Thus the optimum biases and mean square errors to O(1/ n) are found as
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2
B(tRl) =0y Cyx(Cyx +Cx)
(C§ +C§ +2Cyx) +0CECH (1- p°)
2
_ (Ci-c
vy =Cy)

(Cy —Cy)

B(tRZ):—HY_
Leaci-Shy PO
Yy~ 2
CX
C2
ci- ¥
B)= o G G-
S c2 1+0C21- p?)
1+0(C§—Cy2?‘) y

cjcra-p)

2
_ CC 1-
2 x( /3) /(140 a -
(Cy +Cy +2ny)

MSE(t:,) = ov
(C§ +C§ +2Cyx)

MSE(l,) = o72_S14=7)_
1+6C5(1- p°)
SE(t,) = ov2 147D
1+6C5(1- p°)

4.1)

4.2)

4.3)

(4.4)

(4.5)

(4.6)

(iWhen Y and X are negatively correlated, define the minimum mean square estimators as

_ X
WY+W, (=
1y 2(x)
_ X
o, = y[W1+W2(?)]

_.X X
= 1Y(Y) +W, (1_?)

where W; and W, are so chosen to make the minimum mean square errors to order N~ minimum

The optimum biases and mean square errors to O(1/n) are found as
2~2 2
CxCy(-p*)

B(tPl):_ >
(cy+cx 2Cyx) +6CZCT (L p?)
c2
B(t..)= -y — Y
(2) 1+6C5 (1~ p?)
B(tpg) y(]- ,0) ny
1+9Cy(1—p )
) 2 202, 2
MSE(t,,) = 672 cycxg—p) I(1+0 2nygl—p)
(C§+C§ —2Cyx) (C§+C% —2Cyx)

MSE(,,) =072 /00
1+6C5(1- p°)
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24 2
MSE(t,,) = ov?2 % (4.12)
1+6C5(1- p°)

Note: For optimum values of W, andW, ,

(i) try is more efficient than both tR2 and th ,which are equally efficient.,

(i) tp; is more efficient than both tp2 and tp3 ,which are equally efficient,

In practice the Wy and Wy are to be substituted by their consistent estimates from the sample.
5. NUMERICAL ILLUSTRATIONS

Consider the following natural populations given in Table 1.

Table 1. Description of Populations

Sl.no. | Source and N n o C2 C2
Description y X

1 Sukhatme and 200 | 20 0.93 2.5528 4.0250
Chand(1977)

y:Apple bearing trees
x:Bushels of apples
harvested,1959

2 Cochran(1977) 34 |10 0.7326 1.0248 1.5175
y:No. of placebo
children

x:No. of paralytic
cases

3 Murthy(1967) 34 7 0.9801 0.5673 0.5191
y.area under wheat
1964

X:Area under
wheat,1963

4 Murthy(1967) 80 10 0.9413 0.1238 0.5564
y :output
x:: fixed capital

5 Steel and 50 10 -0.4996 0.2307 0.5614
Torrie(1960)

y : log of leaf burn in
seconds

X :chlorine %

6 Singh(2003) 30 8 -0.8552 0.0243 0.0188
y.:duration of sleep
X :age of subjects

Table 2. Comparison of Mean square Errors excluding the constant multiplier

Population Vo /V 2
P t, t tys YR/Yp y
1 0.0050 0.0153 0.0153 0.0277 0.1149
(2298) (751) (751) (415) (100)
2 0.0115 0.0324 0.0324 0.0500 0.0723
(629) (223) (223) (145) (100)
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3 0.0006 0.0025 0.0025 | 0.0026 0.0643
(10717) | (2572) (2572) | (2473) (100)
4 0.0006 0.0012 0.0012 | 0.0164 0.0108
(1800) (900) (900) (66) (100)
5 0.0067 0.0137 0.0137 | 0.0346 0.0184
(275) (134) (134) (53) (100)
6 0.0001 0.0006 0.0006 | 0.0006 0.0022
(2200) (366) (366) (366) (100)

Note: The figures inside the brackets in Table 2 indicate the percent relative efficiency compared to that of

the simple mean per unit estimator Yy . For populations (1-4) the mean square errors are computed with

tgl =g, tgz =1z, and tg3 =15 and for populations (5-6) the mean square errors are computed with
ty =ty Tgo =Tpp and 3 =15,

Comments: The computations with natural populations show that (i)tRl is highly efficient compared to
tr2 tR3, YR .and Y (ii)tp; ishighly efficient compared to tps , tpg . Yp,and Yy

6. CONCLUSIONS

1. Toterms of order n_l, tgl is more efficient than both tgz and tgg if

C;-2H,C, >0

2.To terms order n_l, tgz and tgg have the same mean square error independent of the choice of H (u)

,satisfying the stated conditions,.

3.The technique of constructing different classes of minimum mean square estimators using single auxiliary
variable can be extended to the cases using more than one auxiliary variable and this problem will be
discussed in a later paper.

4.To first order of approximation tgy is more efficient than both tg> and tgzz and so also tp; compared

o tpo and tpg.

5.The generalized classes of minimum mean square error estimators suggested in this paper are not
exhaustive and the researchers may also work with other generalized classes of estimators.
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