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 ABSTRACT  

 This paper discusses the problem of estimating the finite population variance  using auxiliary  information in 

 presence of measurement errors. We have  suggested a class of estimators and  its properties are studied under 

 large sample  approximation. It has been shown that the usual  unbiased estimator and the estimators due 

 to Sharma and Singh [A generalized class of estimators for finite population variance in presence of measurement errors, 

 Journal of  Modern  Applied Statistical Methods, (2013), 12(2), 231-241.] are members of the proposed class of 

 estimators. An alternative expression of the mean squared error of one the estimator due to  Sharma  and Singh 

 [A generalized class of estimators for finite population variance in presence  of  measurement errors, Journal of 

 Modern Applied Statistical Methods, (2013), 12(2), 231- 241.]  is  also provided. The relative performance of 

 various estimators has been examined  through an  empirical study. 
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 RESUMEN 

 En este trabajo se discute el problema de estimar la varianza de una población  finita usando  información auxiliar 

 en presencia de errores de medición. Sugerimos una clase de estimadores y  sus propiedades son estudiadas bajo una  

 aproximación para muestras grandes. Se demuestra que  el usual  estimador insesgado debido a  Sharma &  Singh [A 

 generalized class of  estimators for finite population variance in presence of measurement errors, Journal of  Modern 

 Applied  Statistical Methods, (2013), 12(2), 231-241.] son miembros de la clase propuesta. Una alternativa  expresión 

 del error cuadrático medio de uno de los estimadores debido a Sharma  & Singh [A generalized class of estimators for 

 finite population variance in presence of measurement errors, Journal of Modern Applied Statistical Methods, (2013), 

 12(2), 231-241.]  Tambien se deriva. El comportamiento relativo de varios estimadores  han sido examinados a través 

 de estudio empírico. 

 

1. INTRODUCTION 

 

The statisticians are often interested in the precision of survey estimators. It is well established fact that in 

survey sampling auxiliary information is traditional used to improve the performance of an estimator of a 

parameter interest. In survey sampling, the properties of the estimators based on data generally 

presupposed that the observations are the correct measurements on characteristics being studied. 

Unfortunately this idea is not met in practice for a variety of reasons, such as non-response errors, 

reporting errors and computing errors. These sources of variability/errors usually affect a survey. In 

particular, in this paper we have focused on the problem of estimating population variance when 
measurement errors are present in the study and auxiliary variate. Various authors including Shalabh 

(1997), Manisha and Singh (2001), Maneesha and Singh (2002),  Allen et al. (2003), Singh and Karpe 
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(2007, 2008,  2009a, 2009b, 2010a, 2010b), Kumar et al (2011a, 2011b), Diana and Giordan (2012), 

Sharma and Singh (2013) and Singh et al. (2014) and others have paid their attention towards the 

estimation of parameters such as population mean Y  , variance 
2

Y and coefficient of variation YC  of 

the study variable    Y and ratio and product of two population means in presence of measurement errors. 

 A finite population },...,,,{ 321 N     of   N  objects is considered. Let us denote with Y

and X  the variable of interest and the auxiliary one , respectively , assumed to continuous , for instance, 

see, Diana and Giordan (2012,p.4303). We also assume that the population mean  X  of the auxiliary 

variable   X  is known. A sample of  n   objects is drawn from the population using simple random 

sampling without replacement (SRSWOR). We consider a situation where each variable may be observed 

with error. We assume that ix   and iy for the sampling units are observed with measurement error as 

opposed   to their true values ( iX , iY ). For a SRSWOR sampling scheme, let ( ix , iy ) be observed values 

instead of the true values ( iX , iY ) for the 
thi (i=1, 2,..., n) unit, as iii YyU                                                                

and iii XxV  ,   where iU and iV  are associated measurement errors which are stochastic in nature 

with mean ‘zero’ and variances 
2

U  and
2

V , respectively. Similarly to Singh and Karpe (2009a), we 

assume that the error variables U  andV  are uncorrelated each other and also uncorrelated with X and 

Y [independence was assumed in Singh and Karpe (2009a)]. That implies 0),( YXCov and 

),( UYCov  = ),( VYCov = ),( UXCov  = ),( VXCov   = 0),( VUCov . Let ( YX  , ) and (
2

X  ,

2

Y ) be the population means and variances of the variables ( X ,Y ) respectively and  be the 

correlation coefficient between the study variable Y and auxiliary variable X . Let 
n

i ixnx 1
 , 


n

i iyny 1
be the unbiased estimators of population means X and Y respectively. We note that 

212 )()1( xxns
n

i ix  
 and

212 )()1( yyns
n

i iy  
are not unbiased estimators of the 

population variances 
2

X  and
2

Y respectively. The expected values of 
2

xs  and
2

ys in presence of 

measurement errors are respectively given by 
222 )( VXxsE    and 

222 )( UYysE   . 

As mentioned in Singh and Karpe (2009a) and Diana and Giordan (2012) we assume that error variance 
2

U  and
2

V associated with study variable  Y  and auxiliary variable X  respectively are known. In such 

situations, the unbiased estimators of
2

Y  and
2

X  are respectively given by  0ˆ 222  UyY s   and 

0ˆ 222  VxX s  . 

Further, we define  )1(ˆ
0

22 eYY  and  )1( 1ex X   such that 0)()( 10  eEeE . Ignoring 

finite population correction (fpc) term, we have the following results:  

(i) 

X

X

n

C
eE



2

2

1
)(  , 

(ii)       
n

C
eeE X

)( 10 , and to the first degree of approximation (ignoring fpc terms):  

(iii) 
n

A
eE Y)( 2

0 ,  

where )]/2()/([ 2222

22 YXUUYYA   , )/(),( 2

12 YXYX   , XXXC  / ,

)3)(( 22  YY  , )3)(( 22  UU  , )(/)()( 2

242 YYY   , )(/)()( 2

242 UUU   , 
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2

2 )()( YiYEY   , )())(()( 22

2 iii UEUEUEU  , 
4

4 )()( YiYEY    

)())(()( 44

4 iii UEUEUEU  , }))({(),( 2

12 YiXi YXEYX   , and 

)/( 222

VXXX   and )/( 222

UYYY   , are reliability ratios of X and Y , respectively , 

lying between 0 and 1. 

 

Proof of (i): We have  

 

X

Xx
e




1  

Squaring both sides of the above expression we have 
222

1
))(/1( XX

xe  
, 

since XVx  , 

therefore
222

1
))(/1( XX

XVe   or )](2)()[/1( 2222

1 XXX
XVXVe   , 

where 
n

i iVnV 1
. 

Taking expectation of both sides of the above expression, we have  

])()()[/1()( 2222

1 XXEVEeE
X

 
. 

 

Thus (ignoring fpc term), we get  

)( 2

1
eE )]/()/)[(/1( 222 nn XVX

  )]/(1[ 22

2

2

XV

X

X

n




















        

)]/))[(/( 2222

XVXX nC  
X

X

n

C



2

  

which proves the part(i). 

 

Proof of (ii): We have  

      

X

X

Y

YY x
ee







 )()ˆ(
2

22

10


   )])([(

1 222

2 XYUy

XY

xs 


  

Also  

22 )()1( yysn
n

i iy    
2)( YUYU

n

i ii      

)})((2)(){( 22 YYUUYYUU ii

n

i ii   

or   )2( 222

UYYUy ssss  , where  

          
212 )()1( UUns

n

i iU  
,

212 )()1( YYns
n

i iY  
, 

         ))(()1( 1 YYUUns i

n

i iUY  
, 

n

i iUnU 1
, 

n

i iYnY 1
. 

Thus  

       )}](}{2)()[{(
1 2222

210 XUYYYUU

XY

XVsssee 


  

    UYYYUU

XY

sVsVsV 2)()([
1 2222

2
 


  

               )](2))(())(( 2222

XUYYYXUUX XssXsX   . 

Taking expectation of the both sides of above expression, we have  
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Thus (ignoring the fpc term), we get 
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n

CX
  

which proves the part(ii). 

 

Proof of (iii): We have  
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Since  
222ˆ
UyY s   , therefore 

2

222

0

)(

Y
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or

)2)(/1( 22222

0 YUUYYUY ssse    

or 

 }2)()){(/1( 22222

0 UYYYUUY ssse   . 

Squaring both sides of the above expression, we have  

  
222222242

0
4)()){(/1(

UYYYUUY ssse    

         )}(4)(4))((2 22222222

YYUYUUUYYYUU ssssss   . 

Taking expectation of both sides of the above expression, we have  

])()()1(4)()()[/1()( 22222222242

0 YYUUYYUUY ssEnnsEsEeE   
 

Thus to the first degree of approximation (ignoring fpc term), we have  
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This completes the proof of the part (iii).  

 

 Singh and Karpe (2009a) class of estimators  

Singh and Karpe (2009a) suggested two interesting classes of estimators of 
2

Y  in the presence of 

measurement errors when the population mean X  of auxiliary variable X  is known, the first one is   

 )(ˆ 2 bdt Yd  ,                                                                                                                            (1.1) 
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where )(bd is a function of b )/( Xxb  such that 1)1( d satisfying some regularity conditions . 

The second one is  

 ),ˆ( 2 bDt YD  ,                                                                                                                         (1.2) 

where 
22 )1,( YYD   . 

It has been shown that both the classes of estimators dt and Dt have the same minimum MSE as 

 )()or(.min 2
4

XY
Y

Dd A
n

ttMSE 


                                                                              (1.3) 

which is equal to the minimum MSE of difference-type estimator  

 )(ˆ
2

2 xwt xYw   ,                                                                                                          (1.4) 

where 2w being a suitable chosen constant. 

The MSE /variance of 
2ˆ
Y  to the first degree of approximation (ignoring fpc term) is given by 

 Y
Y

YY A
n

VarMSE
2

22 )ˆ()ˆ(


  .                                                                                          (1.5) 

It is observed from (1.3) and (1.5) that the classes of estimators dt and Dt   have smaller minimum MSE 

than the conventional unbiased estimator
2ˆ
Y . 

 

Sharma and Singh  (2013) class of estimators  

Sharma and Singh (2013) have proposed the following classes of estimators of  
2

Y  in the presence of 

measurement errors: 

 )(ˆ
2

2

11 xwwt XY   ,                                                                                                      (1.6) 
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,                                                                         (1.7) 

and 
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,                                         (1.8) 

where ),,,,,( 2121 mmww  are suitable chosen constants. We note that the estimators 1t   and 2t  are 

respectively defined on the lines of Singh et al. (1988) and Solanki et al. (2012). The minimum MSE of 

the estimator 1t due to Sharma and Singh (2013) is given by  
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2
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4

1 23)(.min BCABBC
ABC

ABC
tMSE

Y
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,                    (1.9) 

[see, Sharma and Singh  (2013,equation(12), p.235 ] where
41 Y

Y

n

A
A 








 , 












X

XX

n

C
B



 22

and 













n

C
C XXY  2

. 

We are observed some typos on minimum MSE of 1t in (1.9) obtained by Sharma and Singh (2013). The 

correct proof of the minimum MSE of 1t  is given in the following theorem 1.1. 

 

Theorem 1.1: The MSE of the estimator 1t to the first degree of approximation is given by   
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The optimum values of 1w and 2w  along with correct minimum MSE of the estimator 1t are respectively 

given by  
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and 
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Where 

 )()(.min 2
4

XY
Y

w A
n

tMSE 


                                                                                     (1.13) 

Proof is simple so omitted. 

The minimum MSE of 2t  is same as that of the difference estimator wt  is given by    

 )()(.min)(.min 2
4

2 XY
Y

w A
n

tMSEtMSE 


                                                (1.14) 

which is obtained by Sharma and Singh (2013). 

The MSE of the estimator 3t to the first degree of approximation (ignoring fpc term) obtained by Sharma 

and Singh (2013) is given by 

 ]2)21[()( 21

2

2

2

1

4

13 RmmQmPmmtMSE Y   ,                                                  (1.15) 

where  
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)2(  k . 

We are observed some typos on MSE of 3t in (1.15) obtained by Sharma and Singh (2013) and hence the 

minimum )( 3tMSE obtained by Sharma and Singh [2013, equation (29), p.239] is incorrect. Thus the 

conclusion based on erroneous result is also not valid. The correct expressions of MSE of   3t , optimum 

values of 1m , 2m  and minimum )( 3tMSE   are given in Theorem 1.2. 

 

Theorem 1.2: The correct MSE of the estimator 3t to the first degree of approximation [ignoring fpc 

term] is given by  
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3 amamammamamtMSE Y                               (1.16) 

The optimum values of 1m and 2m   along with minimum MSE of 3t are respectively given by  
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Proof: Expressing the estimator 3t  at (1.8) in terms e’s we have  
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We assume that 11 e so that  11 e is expandable. Expanding the right hand side of (1.19), 

multiplying out and neglecting terms of e’s having power greater than two we have  
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where )2(  k . 

Taking expectation of both sides of (1.20) we get the bias of 3t  to the first degree of approximation 

(ignoring fpc term) we have  
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Squaring both sides of (1.20) and neglecting terms of e’s having power greater than two we have  
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Taking expectation on both sides of (1.22) we get the MSE of 3t  to the first degree of approximation 

(ignoring fpc term) as  

 ]2221[)( 52413212

2

21

2

1

4

3 amamammamamtMSE Y  .                            (1.23) 

Minimizing (1.23) with respect to 1m and 2m  we get the optimum values of 1m and 2m   as given in (1.17). 

Substituting the optimum values 
10m and 

20m [as given in (1.17)] in place of 1m and 2m respectively, we 

get the minimum MSE as given in (1.18).Thus, the theorem is proved. 

In this paper we have suggested a more general class of estimators of the population variance 
2

Y of the 

study variable  Y   when the population mean X of the auxiliary variable  X  is known,   in presence of 

measurement errors. It is identified that the usual unbiased estimator
2ˆ
Y  , and the ratio-type estimator 

)/(ˆ 2 xt XYR   due to Singh and Karpe (2009a) and the estimators proposed by Sharma and Singh 

(2013) are member of suggested class of estimators. Properties of suggested class of estimators are 

studied under large sample approximation. An empirical study is carried out to demonstrate the 

performance of the proposed class of estimators with other existing estimators. 

 

2. THE PROPOSED CLASS OF ESTIMATORS  

We define the class of estimators for the population variance  
2

Y  of the study variable Y  as  
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where ),,,,,( 21 mm are suitably chosen constants. It is to be mentioned that the class of 

estimators t  reduces to the following set of known estimators of the population variance 
2

Y as 

(i) 
2

0
ˆ

Yt  for )1,0,0,0,0,1(),,,,,( 21 mm ,    [Usual unbiased estimator] 
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 [Sharma and Singh 

(2013) estimator] 
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[Sharma and Singh (2013) estimator] 
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[Sharma and Singh (2013) estimator] 

Many more acceptable estimators can be generated from the class of   estimators t  defined by (2.1). 

To obtain the bias and MSE of t  in terms e’s we have  
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Expanding the right hand side of (2.2), multiplying out and neglecting terms of e’s having power greater 

than two, we have  
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Taking expectation of both sides of (2.3) we get the bias of the class of estimators t  to the first degree of 

approximation (ignoring fpc term) as  
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Squaring both sides of (2.3) and neglecting terms of e’s having power greater than two we have  
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Taking expectation of both sides of (2.5) we get the MSE of t  to the first degree of approximation 

(ignoring the fpc term) as  
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Differentiating (2.6) partially with respect to 1m and 2m  and equating them to zero, we have  
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After simplification of (2.7) we get the optimum values of 1m and 2m  as 
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Thus the resulting minimum MSE of the proposed class of estimators t  is given by  
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Thus we establish the following theorem. 

 

Theorem 2.1: To the first degree of approximation, 
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with equality holding if 
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where
)0(im ’s , i=1,2; are given by (2.8).   

Special Case: For 1m =1, the class of estimators t  at (2.1) reduces to the class of estimators: 
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Inserting 1m =1, in (2.4) and (2.6) we get the bias and MSE of the estimator 
)1(t to the first degree of 

approximation, respectively as         
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The )( )1(tMSE is minimized for  
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Thus the resulting minimum )( )1(tMSE is given by 
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Thus we established the following corollary. 

 

Corollary 2.1: To the first degree of approximation, 
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Remark 2.1: Suppose that the observations for both the variables X and Y are recorded without error. The 

MSE of the proposed class of estimators‘t’ to the first degree of approximation is given by   
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The ttMSE )(  at (2.10) is minimum when 
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Thus the resulting minimum value of ttMSE )(  is given by 
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Corollary 2.2: To the first degree of approximation, 
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with equality holding if                                       
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Remark 2.2: Let the observations on both the variables X and Y be recorded without error. Then MSE of 

the of the estimators‘
)1(t ’ to the first degree of approximation is given by   
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which is minimum when 
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Thus the resulting minimum MSE of  
)1(t  is given by 
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Thus we arrived at the following corollary. 

 

 Corollary 2.3: To the first degree of approximation, 
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with equality holding if 
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From (2.17) and (2.20) we have  
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which is always positive. It follows that the proposed class of estimators is more efficient than the 
)1(t

family of estimators when both the variables (Y, X) are measured without error.      

 

3. EFFICIENCY COMPARISONS    

To the first degree of approximation (ignoring fpc term), the MSE of the ratio estimator 

 xt XYR /ˆ 2   is given by  
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From (1.3), (1.5) and (3.1) we have  
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From (3.2) and (3.3) we have the inequalities: 

 )ˆ()oror(.min 2

YwDd MSEtttMSE                                                                                     (3.4) 

and 

 )()oror(.min RwDd tMSEtttMSE                                                                                      (3.5) 

It follows from (3.4) and (3.5) that the difference estimator )or( Ddw ttt is more efficient than the usual 

unbiased estimator 
2ˆ
Y  and the ratio estimator Rt  due to Singh and Karpe (2009a). 

From (2.14) and (2.9) we have  
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Thus we have the inequality: 

 )ororor(.min)(.min )1( Dwd ttttMSEtMSE                                                                      (3.7) 

Combining (3.4), (3.5) and (3.7) we have the following inequalities:    

 )ˆ()ororor(.min)(.min 2

)1( YDwd MSEttttMSEtMSE                                                (3.8) 

 )()ororor(.min)(.min )1( RDwd tMSEttttMSEtMSE                                                  (3.9) 

It follows from (3.8) and (3.9) that the proposed class of estimators ‘ t ’ is more efficient than the usual 

unbiased estimator 
2ˆ
Y , ratio estimator Rt due to Singh and Karpe(2009a), the difference-type estimator wt

or 2t  due to Sharma and Singh (2013) , the classes of estimator( dt , Dt ) due to Singh and Karpe(2009a) 

and the proposed family of estimators )1(t . 

From (1.12) and (2.9) we have that  
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It follows that the proposed class of estimators‘ t ’ is more efficient than the class of estimator 1t due to 

Sharma and Singh (2013) as long as the condition (3.9) is satisfied. Thus to obtain the estimators better 

than Sharma and Singh (2013) estimator 1t from the proposed class of estimators ‘ t ’ one should select the 

values of scalars ),,,(  in such a way that the condition (3.9) is satisfied. 

Further from (1.8) and (2.9) it can be shown that the proposed class of estimators‘ t ’ is better than the 

class of estimators ‘ 3t ’ due to Sharma and Singh (2013) if the following inequality:  
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holds true. 

We not that ia ’s and iA ’s (i= 1 to 5) depend on the values of scalars ),,,(  , therefore to obtain the 

estimators better than Sharma and Singh (2013) estimator ‘ 3t ’ one should select the values of the scalars

),,,(   in such a manner that the condition (3.10) is satisfied. 

From (2.14) and (2.20) we have  
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            (3.11) 

which is always positive. Thus the proposed )1(t  family of estimators has larger MSE in presence of 

measurement errors than in the error free case. 

Again from (2.6) and (2.17) we note that     
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It can be shown that the difference  0])(.min)(.[min  ttMSEtMSE
 
which follows that t  family 

of estimators has larger MSE in presence of measurement errors than in the error free case. 

We note from (3.11) and (3.12) that the presence of measurement errors associated with both the 

variables(Y, X) increases the MSEs of proposed class of estimators ( t , )1(t ). Thus the presence of 

measurement errors disturb the optimal properties of suggested class of estimators ( t , )1(t ). 

 

4.  EMPIRICAL STUDY 

We have considered the hypothetical data given in Gujarati and Sangeetha (2007, Table13.2, p.539) as 

hypothetical population in our study. The variables are:  

 

Table 4.1: Parameter values from empirical data 

N   Y  X  
2

Y  
2

X    2

U  
2

V  )(2 Y  )(2 U  

1

0 

0.011

2 
127 170 

1277.999

8 

3300.000

0 

0.964

1 

32.400

1 

32.399

8 
1.9026 17.1860 

 

iY =True consumption expenditure,  

iX =True income,  

iy =Measured consumption expenditure,  
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ix =Measured income,  

 

To illustrate our results we have taken sample size 4n . To judge the merits and inflation in the MSE 

/min.MSE of the different estimators of the population variance
2

Y , we have computed the relative MSE/ 

min.MSE of the estimators when both the variables are measured (i) without error and (ii) with error by 

using the formulae:  
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(ii)  
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for different values of the scalars ),,,(  .  

Finds are given in Table 4.2 to 4.5. 

It is observed from Table  4.2 to 4.5 that the proposed class of estimators ‘ t ’ has smaller MSE/ min.MSE 

for suitable values of scalars ),,,(   considered in the Table 4.2 to 4.5, than the usual unbiased 

estimator  
2ˆ
Y , ratio-type estimator Rt due to Singh and Karpe(2009a) , the difference-type estimator wt , 

the estimators  1t , 2t and 3t  due to Sharma and Singh (2013)and the classes of estimator dt and Dt  

envisaged by  Singh and Karpe (2009a). Thus there is enough scope of selecting the values of the scalars 

),,,(  in order to obtain estimators better than
2ˆ
Y , Rt , 1t , 2t , 3t  and wt  from the proposed class 

of estimators t . We have traced from Table 4.2 to 4.5 that the proposed class of estimators has least 

)(.min tMSE =78190.8652(without error) and )(.min tMSE = 912406.5384 for ),,,(  = (2,-1, 

1/2, 0). It follows that the measurement error inflates the )(.min tMSE considerably. So our 

recommendation is that the practitioner should be very cautious while measuring the units.  
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Table 4.2: The relative MSE / min.MSE and the MSE / min.MSE of the usual unbiased estimator
2ˆ
Y  , 

Singh and Karpe’s (2009a) estimators and Sharma and Singh’s (2013) estimators with and without 

measurement errors for 0 and 2 . 

Estimator 

The estimators without 

measurement error 

The estimators in presence of  

measurement error 

Contribution of measurement 

error 

relative 

MSE/ 

relative 

min.MSE 

 MSE/ 

min.MSE 

relative 

MSE/ 

relative 

min.MSE 

 MSE/ 

min.MSE 

relative 

MSE/ 

relative 

min.MSE 

 MSE/ 

min.MSE 

2ˆ
Y  0.2257 368557.3115 1.6118 2632519.4268 1.3861 2263962.1153 

Rt  0.2523 412100.8937 1.6387 2676520.7781 1.3864 2264419.8844 

2t , wt  0.2256 368506.4031 1.6118 2632469.0135 1.3862 2263962.6104 

1t  0.1841 300668.9623 0.6212 1014623.5204 0.4371 713954.5581 

)0,1(3  t  0.1744 284763.2181 0.6194 1011729.8893 0.4450 726966.6712 

)1,0(3  t  0.1766 288430.2323 0.6191 1011157.7120 0.4425 722727.4797 

)1,1(3  t  0.1756 286777.0035 0.6220 1015902.6897 0.4464 729125.6862 

)1,1(3  t  0.1766 288430.2323 0.6191 1011157.7120 0.4425 722727.4797 

)1,0(3  t  0.1975 322548.7531 0.6259 1022217.2612 0.4284 699668.5081 

)0,1(3  t  0.2168 354079.4977 0.6329 1033722.9633 0.4161 679643.4656 

)2,1(3  t  0.1841 300668.9623 0.6212 1014623.5204 0.4371 713954.5581 

)1,2(3  t  0.1756 286777.0035 0.6220 1015902.6897 0.4464 729125.6862 

 

 

Table 4.3: The relative MSE / min.MSE and the MSE / min.MSE of the suggested class of estimator t  with 

and without measurement errors for 5.0 and 0 . 

Estimator 

The estimators without 

measurement error 

The estimators in presence of  

measurement error 

Contribution of measurement 

error 

relative MSE/ 

relative 

min.MSE 

 MSE/ 

min.MSE 

relative MSE/ 

relative 

min.MSE 

 MSE/ 

min.MSE 

relative MSE/ 

relative 

min.MSE 

 MSE/ 

min.MSE 

)0,1(  t  0.1247 203615.3673 0.6158 1005818.6132 0.4911 802203.2459 

)1,0(  t  0.1657 270582.4329 0.6209 1014036.2218 0.4552 743453.7889 

)1,1(  t  0.0479 78190.8652 0.6065 990597.1042 0.5586 912406.2390 

)1,1(  t  0.1657 270582.4329 0.6209 1014036.2218 0.4552 743453.7889 

)1,0(  t  0.1837 300045.2222 0.6182 1009706.7709 0.4345 709661.5487 

)0,1(  t  0.1660 271164.6867 0.6104 997012.5083 0.4444 725847.8216 

)2,1(  t  0.1838 300206.6878 0.6217 1015339.4798 0.4379 715132.7920 

)1,2(  t  0.0479 78190.8652 0.6065 990597.1042 0.5586 912406.2390 
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Table 4.4: The relative MSE / min.MSE and the MSE / min.MSE of the suggested class of estimator t  with 

and without measurement errors for 5.0 and 5.0 . 

Estimator 

The estimators without 

measurement error 

The estimators in presence of  

measurement error 

Contribution of measurement 

error 

relative MSE/ 

relative 

min.MSE 

 MSE/ 

min.MSE 

relative MSE/ 

relative 

min.MSE 

 MSE/ 

min.MSE 

relative MSE/ 

relative 

min.MSE 

 MSE/ 

min.MSE 

)0,1(  t  0.1596 260717.6283 0.6192 1011262.6608 0.4596 750545.0325 

)1,0(  t  0.1757 286983.9528 0.6214 1014857.7883 0.4457 727873.8355 

)1,1(  t  0.1345 219749.1476 0.6151 1004555.9719 0.4806 784806.8243 

)1,1(  t  0.1757 286983.9528 0.6214 1014857.7883 0.4457 727873.8355 

)1,0(  t  0.1845 301285.2360 0.6200 1012703.1225 0.4355 711417.8865 

)0,1(  t  0.1779 290532.9829 0.6165 1006941.3326 0.4386 716408.3497 

)2,1(  t  0.1838 300206.6878 0.6217 1015339.4798 0.4379 715132.7920 

)1,2(  t  0.1345 219749.1476 0.6151 1004555.9719 0.4806 784806.8243 

 

Table 4.5: The relative MSE / min.MSE and the MSE / min.MSE of the suggested class of estimator t  with 

and without measurement errors for 1 and 5.0 . 

Estimator 

The estimators without 

measurement error 

The estimators in presence of  

measurement error 

Contribution of measurement 

error 

relative MSE/ 

relative 

min.MSE 

 MSE/ 

min.MSE 

relative MSE/ 

relative 

min.MSE 

 MSE/ 

min.MSE 

relative MSE/ 

relative 

min.MSE 

 MSE/ 

min.MSE 

)0,1(  t  0.1144 186923.7927 0.6119 999475.6790 0.4975 812551.8863 

)1,0(  t  0.1430 233540.7463 0.6152 1004829.8059 0.4722 771289.0596 

)1,1(  t  0.0743 121384.4391 0.6068 991013.5722 0.5325 869629.1331 

)1,1(  t  0.1430 233540.7463 0.6152 1004829.8059 0.4722 771289.0596 

)1,0(  t  0.1725 281798.6453 0.6160 1006170.0334 0.4435 724371.3881 

)0,1(  t  0.1755 286623.0564 0.6136 1002127.7779 0.4381 715504.7215 

)2,1(  t  0.1619 264496.0006 0.6166 1007065.5390 0.4547 742569.5384 

)1,2(  t  0.0743 121384.4391 0.6068 991013.5722 0.5325 869629.1331 
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