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ABSTRACT

This paper discusses the problem of estimating the finite population variance using auxiliary information in
presence of measurement errors. We have  suggested a class of estimators and its properties are studied under
large sample approximation. It has been shown that the usual unbiased estimator and the estimators due
to Sharma and Singh [A generalized class of estimators for finite population variance in presence of measurement errors,
Journal of Modern  Applied Statistical Methods, (2013), 12(2), 231-241.] are members of the proposed class of

estimators. An alternative expression of the mean squared error of one the estimator due to Sharma  and Singh
[A generalized class of estimators for finite population variance in presence of measurement errors, Journal of
Modern Applied Statistical Methods, (2013), 12(2), 231- 241.] is also provided. The relative performance of
various estimators has been examined through an empirical study.

KEYWORDS: Population mean, Study variate, Auxiliary variates, Measurement errors, Mean squared error,
Efficiency.
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RESUMEN

En este trabajo se discute el problema de estimar la varianza de una poblacién finita usando informacion auxiliar

en presencia de errores de medicién. Sugerimos una clase de estimadoresy  sus propiedades son estudiadas bajo una
aproximacion para muestras grandes. Se demuestra que el usual  estimador insesgado debido a Sharma & Singh [A
generalized class of  estimators for finite population variance in presence of measurement errors, Journal of Modern
Applied  Statistical Methods, (2013), 12(2), 231-241.] son miembros de la clase propuesta. Una alternativa  expresion
del error cuadratico medio de uno de los estimadores debido a Sharma & Singh [A generalized class of estimators for
finite population variance in presence of measurement errors, Journal of Modern Applied Statistical Methods, (2013),
12(2), 231-241.] Tambien se deriva. EI comportamiento relativo de varios estimadores  han sido examinados a través
de estudio empirico.

1. INTRODUCTION

The statisticians are often interested in the precision of survey estimators. It is well established fact that in
survey sampling auxiliary information is traditional used to improve the performance of an estimator of a
parameter interest. In survey sampling, the properties of the estimators based on data generally
presupposed that the observations are the correct measurements on characteristics being studied.
Unfortunately this idea is not met in practice for a variety of reasons, such as non-response errors,
reporting errors and computing errors. These sources of variability/errors usually affect a survey. In
particular, in this paper we have focused on the problem of estimating population variance when
measurement errors are present in the study and auxiliary variate. Various authors including Shalabh
(1997), Manisha and Singh (2001), Maneesha and Singh (2002), Allen et al. (2003), Singh and Karpe
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(2007, 2008, 2009a, 2009b, 2010a, 2010b), Kumar et al (2011a, 2011b), Diana and Giordan (2012),
Sharma and Singh (2013) and Singh et al. (2014) and others have paid their attention towards the

estimation of parameters such as population mean ¢, , variance 0'Y2 and coefficient of variationC, of
the study variable Y and ratio and product of two population means in presence of measurement errors.
A finite population 2 ={€2,,02,,02,,...,€2,} of N objects is considered. Let us denote with Y

and X the variable of interest and the auxiliary one , respectively , assumed to continuous , for instance,
see, Diana and Giordan (2012,p.4303). We also assume that the population mean g, of the auxiliary

variable X is known. A sample of n objects is drawn from the population £2 using simple random
sampling without replacement (SRSWOR). We consider a situation where each variable may be observed
with error. We assume that x; and y; for the sampling units are observed with measurement error as

opposed  to their true values ( X;,Y;). For a SRSWOR sampling scheme, let ( X;, Y, ) be observed values
instead of the true values (X,,Y;) for the i"(i=1, 2. n) unit, as U, =y, -Y,
and V, =X, — X,

i» where U; andV, are associated measurement errors which are stochastic in nature

with mean ‘zero’ and variances 0'5 and 0'5, respectively. Similarly to Singh and Karpe (2009a), we

assume that the error variables U andV are uncorrelated each other and also uncorrelated with X and
Y [independence was assumed in Singh and Karpe (2009a)]. That implies Cov(X,Y) = Oand

Cov(Y,U) =Cov(Y,V)=Cov(X,U) =Cov(X,V) =Cov(U,V)=0. Let (4,4, )and (c% ,
Gf) be the population means and variances of the variables ( X ,Y ) respectively and p be the

correlation coefficient between the study variable Y and auxiliary variable X . LetX = nflzin X
y= n_lzinyi be the unbiased estimators of population means £, and £, respectively. We note that
s = (n—l)‘lZ:in(Xi —-X)? and 35 =(n —1)_1Z:in(yi — ¥)?%are not unbiased estimators of the
population variances (7>2( andO'f respectively. The expected values of Sf andsiin presence of

measurement errors are respectively given by E(s}) = oy + oy and E(s}) =07 + 0] .
As mentioned in Singh and Karpe (2009a) and Diana and Giordan (2012) we assume that error variance
aj and 0'5 associated with study variable Y and auxiliary variable X respectively are known. In such

situations, the unbiased estimators of Gf and Gf( are respectively given by 6Y2 = Si —JS >0 and
6i=s2-0) >0.
Further, we define & = o (L+€,)and X = u, (L+¢€,)such that E(e,)=E(e,)=0. Ignoring

finite population correction (fpc) term, we have the following results:

CZ
i)  E(})=—2,
1 né,

, ACy : o
(i) E(e,€,) = —, and to the first degree of approximation (ignoring fpc terms):
n
i) E(eg) =%,
where Ay = [y, + 7 (O-S /Ui )’ "’(2/9\(2)]v/1 = 1,(X,Y) (o4 0¢),Cy =0y | 1y,

Yo =(By(Y)=3) 7o =(ﬂ2(U)—3),,BZ(Y)=,u4(Y)/,uZZ(Y),,BZ(U)=,u4(U)/,uZZ(U),

147



w1, (Y) = E(Y, —,UY)Z,IUZ(U) =EU,; - E(Ui))2 = E(Uiz)7 w1, (Y) = E(Y, _/UY)4
u,(U)=EU; —EU,))" =EU ,4) iy, (XY) = E{(X; = gy )(Y; = 44,)%} and
0, =0 l(os +ol)and@, = l(oF +07), are reliability ratios of X and Y, respectively ,
lying between 0 and 1.
Proof of (i): We have
_ X — Hy
Hx
Squaring both sides of the above expression we have el2 = (1/;1?( Y(X =y ) sinceXx =V + X,

thereforeel2 = (1/;1?( WV + )?—yx )2 or e12 = (1/;1?( YV 2 +()Z—yx )? +2\7()?—yX )IE
where V = n‘lz:Vi :

Taking expectation of both sides of  the above expression, we have
E(e]) =@/ u))EV ")+ E(X - 14)°]

Thus (ignoring fpc term), we get

E(e)) =@/ 1)(oy In)+(ox Im)] = (nf J[1+ (oy /o)]

2
X

€

Cl

= (C/nl(o% +oi) of)] =

which proves the part(i).

Proof of (ii): We have

(6y —oy) (X—uy) 1 -
=" X2 = ——[(s; — o) — 0y (X — 1y )]
Oy Hyx Oy Hy

€,6;
Also
(-2 =>"(y, -9 =2 U, +Y,-U -Y)?
=D {U —U)? (Y, =Y)? + 20U, -0 )(Y, -Y)}
or Sj = (s> +s +2s,,), where
s5=(=D7Y U, -U)% sl =(n-D 7Y (Y, -Y)%,
Soy == U -0)(Y, -Y), U=n">"U, Y =n?>Y,.

Thus
1 _
epe, = ——[{(s§ —00) + (87 —0v) + 25,y HV +(X — 11,)}]
y Hx
1 _ _
:2—[\/(55 _O-S)"'V(Sf _6$)+2VSUY
Oy Hy

+(>?_/'lx )(SS _ULZJ)—'_()?_:UX)(S\? _0-5)+28UY (X_/'lx 1B
Taking expectation of the both sides of above expression, we have
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E(eye,) = ELSI =00 )X =11
O Hy
Thus (ignoring the fpc term), we get
E(e,e,) = 21 H12(X,Y) =(1j ﬂlz(xazY)O__x :&
Oy Hx n nNj oxoy Hy n
which proves the part(ii).

Proof of (iii): We have

&y —oy

€, = >
Oy

2 2 2

. (s; —o5 —oy)

Since JYZ = Sf, —65 , therefore €, = ! UZ 2 or
Oy
=@ GZ)(Sg +S% +2sy, —05 —0))

or
€ = (1/‘73){(55 _GLZJ )+(s; —oy)+ 25, }-
Squaring both sides of the above expression, we have
=W a){(s2 —0d)? + (st —o?)? +4s),
+2(s5 —0G)(sy —oy) +4syy (8§ —0y) +4syy (7 —0v)}-
Taking expectation of both sides of the above expression, we have
E(eé )= o)E(SS —03)* +E(s) —oy)* +4n(n—-1)*E(s, —0,)*(sy —0y)°]
Thus to the first degree of approximation (ignoring fpc term), we have

E(eé)z(ﬁj{“” (5:V) -0+ 2 (5,0) -1 + 4"““}

Y

1 2
=5 B~ 1)4{ j(ﬂz(Y) 1)+4( ﬂ
L Y
1) o ot |
== oy +2)+ (o +2)| — |+4 —
nJ| oy oy )]
1) o o. o |
=|— + — |+ 1+2—+—
n _7/2Y yZU[O'fJ [ O'f Gf’ |
B 2
1 oy o 1 oy ) 2
== + L+ 21+ 2| | == + |+ =
n 7/2Y yZU[Ujj ( O_\?J (n)|:7/2Y }/ZU[G;‘ eYz

This completes the proof of the part (iii).

o Singh and Karpe (2009a) class of estimators
Singh and Karpe (2009a) suggested two interesting classes of estimators of Gf in the presence of
measurement errors when the population mean gz, of auxiliary variable X is known, the first one is

=6%d(b), 1.1)
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where d(b) is a function of b (b=X/ 1z, ) such that d(1) =1satisfying some regularity conditions .
The second one is

ty = D(6y,b), (1.2)
where D(c?,)) = o7

It has been shown that both the classes of estimators t, and t have the same minimum MSE as
(74
min .MSE(t, ort,) = — (A, — 1°6,) (1.3)
n
which is equal to the minimum MSE of difference-type estimator
A2 —
ty =6y +W, (1, =X), (1.4)
where W, being a suitable chosen constant.

The MSE /variance of 6Y2 to the first degree of approximation (ignoring fpc term) is given by
2
A n o
MSE(67) =Var(6?) = —A, . (1.5)
n

It is observed from (1.3) and (1.5) that the classes of estimators t, and t, have smaller minimum MSE

than the conventional unbiased estimator & .

Sharma and Singh (2013) class of estimators

Sharma and Singh (2013) have proposed the following classes of estimators of GYZ in the presence of
measurement errors:

t, = W,G7 +W,(uy —X), (1.6)
t, =62 2—(l] exp{M} , (17)
Hyx (X+ Hyx )
and
t, = [ml&Y2 +m, (uy —X) 2—(1J exp{M} : (1.8)
Hyx (X+ Hyx )

where (W, W,,a, #,m;, m,)are suitable chosen constants. We note that the estimators t, and t, are
respectively defined on the lines of Singh et al. (1988) and Solanki et al. (2012). The minimum MSE of
the estimator t, due to Sharma and Singh (2013) is given by

4 2 2 2
min MSE(t,) = | ——* c 4AB +3BC? - AB* —-2BC” |, (1.9)
C°-AB oy

AY 2 C 2

[see, Sharma and Singh (2013,equation(12), p.235 ] where A = (—+1Jaf ,B = (AIXTXJ and
n né,

C= (Ufﬂx Cyx AJ

n

We are observed some typos on minimum MSE of t, in (1.9) obtained by Sharma and Singh (2013). The
correct proof of the minimum MSE of t; is given in the following theorem 1.1.

Theorem 1.1: The MSE of the estimator t, to the first degree of approximation is given by
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X

22 2
MSE(t,) = {a;‘ +Woy (1+ i} + W (%J —~ 2W1W2[m] —~ ZWlUf:I
n n n

=[o) +W A+Ww,B-2w,w,C —2w,o ] (1.10)
The optimum values of w, andw, along with correct minimum MSE of the estimator t, are respectively
given by

woo Bol _a[1f( AN 2T
v (aB-C?) 0, |0, n) n

. (1.11)
Coy Aol 1 A2
O TN e En S
AB-C2) | u,Cy ) 64 n) n
and
4 2ro~2 2
min MSE(t,) = | —— (C7=AB)" _ aB?+BC?
C°-AB o
Bo! 2
:0;1 l_#z :O-\L(l 1_i i 1+i _i
(AB-C*) 0, | Oy n n
_ mln-.MSE(tW) (1.12)
1+{mln .M?E(tw)}
Oy
Where
4
min .MSE(t, ) :UTY(A, - 220,) (1.13)
Proof is simple so omitted.
The minimum MSE of t, is same as that of the difference estimator t,, is given by
4
min .MSE(t,) = min .MSE(t, ) = GTY(AY - 2%0,) (1.14)

which is obtained by Sharma and Singh (2013).
The MSE of the estimator t, to the first degree of approximation (ignoring fpc term) obtained by Sharma
and Singh (2013) is given by

MSE(t,) =[(1-2m,)o, +Mm>P +m>Q—-2m,m,R], (1.15)

k’CZ Kk 2C? C?
where P = 1+i+—x——zcx Q=] 2x2x | R=g2 k2% 1 24C, X and
n  4n6, n 0y Oy n

k=Qa+p).
We are observed some typos on MSE of t;in (1.15) obtained by Sharma and Singh (2013) and hence the
minimum MSE(t, ) obtained by Sharma and Singh [2013, equation (29), p.239] is incorrect. Thus the
conclusion based on erroneous result is also not valid. The correct expressions of MSE of t,, optimum

values of M, M, and minimum MSE(t;) are given in Theorem 1.2.

Theorem 1.2: The correct MSE of the estimator t,to the first degree of approximation [ignoring fpc
term] is given by
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MSE(t,) = oy [1+m’a, + m;a, —2m,m,a, — 2m,a, +2m,a;] (1.16)
The optimum values of m, and m, along with minimum MSE of t, are respectively given by
_ (aza4 B a3a5)

Y (ae,-a) i
_ (asa4 — a1a5) .
? (alaz - asz)
and
2 2
min .MSE(t,) = o, |1— (@2, 2a3a4a52+a1a5) : (1.18)
(ala‘Z - as)
2 2,2
where a, = |1+ L[ A, +Cx _oiac, |[.a, =[ ZSx ] a, =| x| 1o KCx |
n 20, né, n Oy
_ 2
a, =1+ KC, /1+(k 2)C , 85 = ey andr:ﬂ—é.
2n 46, 2n6, oy
Proof: Expressing the estimator t, at (1.8) in terms e’s we have
ty =[Woy (1+€,) — M,y el]{z -(1+e)” eXp(ﬂJ}
2+e
pe(,. &)
:[W165(1+€0)mzﬂxel]{2(1+el)a exp{Tl(lJrElj ]} (1.19)

We assume that |el| <1so that (1+ e )a is expandable. Expanding the right hand side of (1.19),
multiplying out and neglecting terms of e’s having power greater than two we have

k k(k —2 k k
t3;a;{ml{l+eo—§el— (8 )ef—zeoel}—mzr(el—gefﬂ

k k(k -2 k k
(ts—a;‘);a;{ml{lwo—zel— ( )ef—Eeoel}—mzr(el—zefj—l}, (1.20)

or

8
where kK = 2a + ) .

Taking expectation of both sides of (1.20) we get the bias of t; to the first degree of approximation
(ignoring fpc term) we have

k k(k—z)ci_ycx}+ k C2

B(t.)2o?m<l+e, ——e, — m,r— -1 2
(t;) O'Y[ 1{ 0T 8 6, 2 n 2 2nd, ] (1.21)

Squaring both sides of (1.20) and neglecting terms of e’s having power greater than two we have

k
2\2 o 4 2 2 2 2,.2,2 2
(t;-oy) =Uv{1+ m1{1+ 2e, —ke, +¢; +Ee1 —2keye, p+more; —2mm,r(e, +ee, —ke;)

K k(k-2) , k K
—2ml{1+ &~ 58 —Tef —Eeoel}+ 2m2r(el —Eef). (1.22)
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Taking expectation on both sides of (1.22) we get the MSE oft, to the first degree of approximation
(ignoring fpc term) as

MSE(t,) = oy [1+m’a, + m;a, —2m,m,a, — 2m,a, — 2m,a,]. (1.23)
Minimizing (1.23) with respect tom, and m, we get the optimum values of m, and m, as given in (1.17).
Substituting the optimum values m,,and m,, [as given in (1.17)] in place of m,and m, respectively, we
get the minimum MSE as given in (1.18).Thus, the theorem is proved.
In this paper we have suggested a more general class of estimators of the population variance JYZ of the
study variable Y when the population mean z, of the auxiliary variable X is known, in presence of
measurement errors. It is identified that the usual unbiased estimator &YZ , and the ratio-type estimator

ty =G”f (#y 1X) due to Singh and Karpe (2009a) and the estimators proposed by Sharma and Singh

(2013) are member of suggested class of estimators. Properties of suggested class of estimators are
studied under large sample approximation. An empirical study is carried out to demonstrate the
performance of the proposed class of estimators with other existing estimators.

2. THE PROPOSED CLASS OF ESTIMATORS
We define the class of estimators for the population variance o-Y2 of the study variable Y as

— \7 —

A X _ X

t= mlaf(—] +m, (uy —X) 5+(1—5)( ] exp{’g( )} , (2.1)
Hx Hx (X + y)

where (M, M, , &, ,1,0) are suitably chosen constants. It is to be mentioned that the class of

estimators t reduces to the following set of known estimators of the population variance JYZ as
(i) t, =67 for (M, m,,, 5,n,6) =(10,0,001), [Usual unbiased estimator]

(i) t; =0y (,u_x jfor (m;,m,,a, B,n,0) =(1,0,0,0,-11), [Singh and Karpe (2009a) estimator]
X

(i) t,=w,E7 +w,(uy —X)for (M, m,,,B,1,8)=(W,,W,,0,0,01) [Sharma and Singh
(2013) estimator]

(iv) t,=6¢ 2—(—} [ﬂ( 'uX)} for , (m,m,,a B,n0)=010¢,p0.2)
Hx (X + py) ’

[Sharma and Singh (2013) estimator]

(V) ty =[m, Gy +m, (s ~X)] 2‘(] EXp
Hy

[Sharma and Singh (2013) estimator]
Many more acceptable estimators can be generated from the class of estimators { defined by (2.1).
To obtain the bias and MSE of t in terms e’s we have

t= [mlo-\? A+e)A+e)" - mzﬂxel]{é‘ +(1-9)1+¢e)” exp[zie; J}

1

ﬁ(( ))] for(m;,m,,, B,1,6) = (ml’mz’aﬁoz)
X+

=o [m @L+e,)1+e)” —m,re, RS+ (@1-5)L+e,)” exp{ﬁ (1+ 2)} (2.2)

Expanding the right hand side of (2.2), multiplying out and neglecting terms of e’s having power greater
than two, we have
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tzaf[ml{n e, + 6k, + ke, +%ef}—m2r(el +@efj]

or

(t—af)zaf[ml{H e, + 6B, + 8,8, +%ef}—m2r(el + k(12—5) efj—l], 2.3)

where @ = {77 + @} and 6" = [477(77 -)+k@-9)(4n+k - 2)].

Taking expectation of both sides of (2.3) we get the bias of the class of estimators t to the first degree of
approximation (ignoring fpc term) as

*~2 2
B(t);af[ml{u OAC 9 CX}—mzrk(l_é) C —1]_

M 2 no, (2.4)
Squaring both sides of (2.3) and neglecting terms of e’s having power greater than two we have
(t-o2)? = a;‘[l+ mf{1+ 28, + 266, + €. + 468, +[%*+ ezjef}+ m?re
- 2m1m2r{e1 8,8, + [0 + k(12— %) jef}
_ 2m1{1+ e, + 6o, + 0o e, + %*ef} + 2m2r(e1 + k(12— %) e’ ﬂ : (2.5)

Taking expectation of both sides of (2.5) we get the MSE of t to the first degree of approximation
(ignoring the fpc term) as

MSE(t) = oy [1+mZA + m; A, —2mm, A, —2m A, +2m, A;] (2.6)

1 o ,,)\C: r’c’
=|1+=| A, +401C, +| —+0° |=-X || A, = X
& { n(A{ ’ (4 ngﬂ i (n‘ng

Agzrc_x ﬂ+{g+M}C_X ’A4= 1+C_X 9/1+9CX
n 2 0y n 86,

A :(Mjc—x,r:’u—éand k=(f+2a).

2n 0y oy
Differentiating (2.6) partially with respect tom, and m, and equating them to zero, we have
- m A
- Aa Az m, - As
After simplification of (2.7) we get the optimum values of m, and m, as
m _ (A2A4 - AsAs)
1(0) — 2
(AA, - A) 8)
(AA - AA)

Mo = A2
(AA, - A)
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Thus the resulting minimum MSE of the proposed class of estimatorst is given by
: Al -2AAA + AN
mln.MSE(t):a;{l— (AA; = 2A, 4A52 AlAF’)}. (2.9)
(AA, - A)

Thus we establish the following theorem.

Theorem 2.1: To the first degree of approximation,

MSE(t) > 0{1— (A A —2AA A + ALAE?)}

(AA, - A;)
with equality holding if
m, =My, }
m, =m,q,
where M)

Special Case: For M, =1, the class of estimators t at (2.1) reduces to the class of estimators:
— \7 _ a —
~ X _ X X—=
ty =| Sy (—] +m,(uy = X) ||+ (1—5)(—j exp{M} : (2.10)
X Hx (X+ p15)

Inserting M, =1, in (2.4) and (2.6) we get the bias and MSE of the estimator t
approximation, respectively as

’s , i=1,2; are given by (2.8).

« to the first degree of

ol 6°C rk(1-5)C:
B(t,)=—-|{04+ xiCc, -m, — 2%
( (1)) 0 H 8nX } X 2 ‘9x (2.11)
and
MSE(t(l))=G{(1[1+Al—2A4+m§A2 -2m, (A, - A)]. (2.12)
The MSE(t ,, ) is minimized for
m, = (ASA;A“*) =M, (say) (2.13)
2

Thus the resulting minimum MSE(t ,, ) is given by
I RY: 2
min MSE(t,,) :03{1+ A -2A, —w} :GTY(AY ~2%0,)
2
= min .MSE(t, ort, ort;) (2.14)

Thus we established the following corollary.

Corollary 2.1: To the first degree of approximation,

min .MSE(t ) > O'$|:1+ A -2A, —(AGZ\—AS)Z} :%YZ(AY - 2%6,)
(A - A) _ 0, (2+{(&Cx)/6,})

with equality holding if m, = mj, = .

A, rC

Remark 2.1: Suppose that the observations for both the variables X and Y are recorded without error. The
MSE of the proposed class of estimators‘t’ to the first degree of approximation is given by
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MSE(t), = oy[1+mZA, +m; A, —2mm, A, —2m A, +2m,A, ], (2.15)

where A, = {1+%(ﬂ2(y) —1)} A, = (rnzgxz ] A, = rCnX {z +(9+@ch } ,

A, = {1+ C—X(e,u 0°Cy ﬂ A= (%J |
n 8 2n

The MSE(t), at (2.10) is minimum when

m, = (AZtA4t — ASIASI) _ mIo
(Alt AZt - Aazt)

(2.16)
_ (AStA4t _AltASt) .
m, = 2y~ My
(Alt A2t - A3t)
Thus the resulting minimum value of MSE(t), is given by
2 2
min .MSE(t), = 0';{1— (Ao A = 285 Ay AS; A ASt)}. (2.17)
(Ait A2t - A3t)

Corollary 2.2: To the first degree of approximation,
MSE(t) > 0_4{1_ (A2t Aft _2A3t A4tASt + AltASZt):|
t =y .
(An AQt - A32t)

with equality holding if
m, = mfo }
m, = m;o |
where mi*0 ’s (i=1, 2); are given by (2.16).

Remark 2.2: Let the observations on both the variables X and Y be recorded without error. Then MSE of
the of the estimators*t o to the first degree of approximation is given by

MSE(t(l))t = af[1+ A1t — 2A4t + m22A2t — ZmZ(ASt - ASt )] (2.18)
which is minimum when
(Ay —Ay) -
m, = M =My, (2.19)
AZt

Thus the resulting minimum MSE of t,, is given by

(6]
min .MSE(t,), = a;‘{u A, —2A, —(AS/;—As)Z} - “TYZ(ﬂ2 Y)-1-2%). (220

Thus we arrived at the following corollary.

Corollary 2.3: To the first degree of approximation,

min MSE(t,), m&{u T ;\Aﬁt)z} -7 (B 1)
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(A —Ay) _(a+6Cy)

with equality holding if m, =m, . = = .
2 2(0)t AZ»[ er

From (2.17) and (2.20) we have

4 2
. . o -A, )+ -
min .MSE(t,,, ), — min .MSE(t), = — [ (A = Au) + Ay (f‘a Aol (2.21)
Ax = Ay)
A2t (Alt 2t t
which is always positive. It follows that the proposed class of estimators is more efficient than the t(l)
family of estimators when both the variables (Y, X) are measured without error.

3. EFFICIENCY COMPARISONS
To the first degree of approximation (ignoring fpc term), the MSE of the ratio estimator

t, =&2(uy 1X) isgiven by
4
MSE(t,) = 2L [A, —24C, +(C216,)] (31)
n
From (1.3), (1.5) and (3.1) we have

oy A0,

MSE(6¢) — min MSE(t, ort, ort,)=—"""—%>0 (3.2)
n

O'Y2 (10, —C, )2

MSE(t; ) — min .MSE(t, ort, ort, ) = >0 (3.3)
X
From (3.2) and (3.3) we have the inequalities:
min .MSE(t, ort, ort, ) < MSE(S7 (3.4)
and
min .MSE(t, ort, ort,) < MSE(t;) (3.5)

It follows from (3.4) and (3.5) that the difference estimator t,, (td OrtD) is more efficient than the usual

unbiased estimator &f and the ratio estimator t, due to Singh and Karpe (2009a).
From (2.14) and (2.9) we have

(A3 _As)z (AzAf _2A3A4A5 + A1A52)

min MSE(t,, ort, ort, ort,)—min MSE(t) = oy | A, —2A, - +
1 ° ' ‘ Az (A1A2 _Aaz)
—A — 2
ot AR AR AT
A (AA, - A)
Thus we have the inequality:
min .MSE(t) < min .MSE(t, ort, ort, ort,) (3.7)
Combining (3.4), (3.5) and (3.7) we have the following inequalities:
min .MSE(t) < min .MSE(t,,, ort, ort, ort,) < MSE(Gy) (3.8)
min .MSE(t) < min .MSE(t, ort, ort, ort,) < MSE(t) (3.9

It follows from (3.8) and (3.9) that the proposed class of estimators ‘1’ is more efficient than the usual
unbiased estimator 6'5 , ratio estimator t ; due to Singh and Karpe(2009a), the difference-type estimatort,,

or t, due to Sharma and Singh (2013) , the classes of estimator(t,,t,) due to Singh and Karpe(2009a)

and the proposed family of estimators t
From (1.12) and (2.9) we have that

(O
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n

(3.93)

1 i[l AYj_ﬁ " [ -2ann cAK)
gx '9x n (A1A2_A32)

It follows that the proposed class of estimators‘t’ is more efficient than the class of estimator t; due to
Sharma and Singh (2013) as long as the condition (3.9) is satisfied. Thus to obtain the estimators better
than Sharma and Singh (2013) estimator t; from the proposed class of estimators “t > one should select the

values of scalars (&, 5,17, ) in such a way that the condition (3.9) is satisfied.
Further from (1.8) and (2.9) it can be shown that the proposed class of estimators‘t’ is better than the
class of estimators ‘ {;* due to Sharma and Singh (2013) if the following inequality:

{(azaf _Zasa4a5 +a1a52)}[(A2Aj _2A3A4A5 +A1A52)}
(a1a2 _aaz) (A1Az _Asz)

(3.10)

holds true.
We not thata, ’s and A, ’s (i= 1 to 5) depend on the values of scalars (&, f3,77,0), therefore to obtain the
estimators better than Sharma and Singh (2013) estimator “t,* one should select the values of the scalars

(a, B,17,6) iin such a manner that the condition (3.10) is satisfied.

From (2.14) and (2.20) we have
oy o, ) ‘ Yo
min MSE(t,,,) - min MSE(t ), =—| 75| — | +2 —| +—5—>5 (3.11)
n o (oyx +oy)

which is always positive. Thus the proposed t(l) family of estimators has larger MSE in presence of

measurement errors than in the error free case.
Again from (2.6) and (2.17) we note that

min MSE(t)—mm MSE(t) _ 04[(A2t Aft _2A3t A4t A‘St + AltAﬁzt) (AZAf _2A3A4A5 +A1A52):|
. . =

' (AltAZt_Aszt) (AiAz_A?,z)
(3.12)
It can be shown that the difference [min .MSE(t) —min .MSE(t),]> 0 which follows that t family

of estimators has larger MSE in presence of measurement errors than in the error free case.
We note from (3.11) and (3.12) that the presence of measurement errors associated with both the

variables(Y, X) increases the MSEs of proposed class of estimators (t,t(l)). Thus the presence of

measurement errors disturb the optimal properties of suggested class of estimators (t ,t(l) ).

4, EMPIRICAL STUDY
We have considered the hypothetical data given in Gujarati and Sangeetha (2007, Table13.2, p.539) as
hypothetical population in our study. The variables are:

Table 4.1: Parameter values from empirical data

2 2 2 2
Nl Hy |y o o P o oy, | B(Y) | B (U)
1 | ooi 1277999 | 3300000 | 0964 | 82400 | 32399
! ) 127 | 170 ! 0 ) A : 19026 | 17860

Y, =True consumption expenditure,
X, =True income,

Y; =Measured consumption expenditure,
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X;=Measured income,

To illustrate our results we have taken sample sizen=4. To judge the merits and inflation in the MSE

/min.MSE of the different estimators of the population variance O'Y2 , We have computed the relative MSE/

min.MSE of the estimators when both the variables are measured (i) without error and (ii) with error by
using the formulae:

(i)
)

. Relative MSE(62) = M = 1(/32 (Y)-1), (4.2)

oy n
. Relative MSE(tR)zﬁftR):%[(ﬂz(Y)—lﬁ (of —ZJCX], (4.2)

Y
«  Relative min. MSE(t,0rt,.) = n-MSE(t,0rt, ) :%(/32 (¥) - A% -1) @3)

Y
- 2 2
. Relative min. MSE(t), = min -ME’E(t)t z{l_ (A A —2A4 Ay As; +AAL)
Y (An A2t - ASt)
(4.4)
(i)
~2
. Relative MSE(67) = &EO-Y) _1 A, (4.5)
n
Y
2
. Relative MSE(tR)=£§tR)=l(AY —I—C—X—lecxj (4.6)
oy n 0y
. Relative min. MSE(t,ort ) = min .MSE4(t20rtW) 2%(AY -2’0, ) (4.7
Oy

- 2 2

. Relative min. MSE(t) = min 'M4SE(t) = {1— (AA - 2A3A4A52+ AR )} (4.8)
y (AA, - A)

for different values of the scalars (¢, 3,7,0).

Finds are given in Table 4.2 to 4.5.
It is observed from Table 4.2 to 4.5 that the proposed class of estimators ‘t’ has smaller MSE/ min.MSE

for suitable values of scalars (&, 5,77,0) considered in the Table 4.2 to 4.5, than the usual unbiased
estimator (3Y2 , ratio-type estimator t; due to Singh and Karpe(2009a) , the difference-type estimator t,,,
the estimators {;,t,andt; due to Sharma and Singh (2013)and the classes of estimator t,andt,
envisaged by Singh and Karpe (2009a). Thus there is enough scope of selecting the values of the scalars
(a0, B,1m,0)in order to obtain estimators better than 6'5 , tp, 1, 1,, t; andt,, from the proposed class

of estimatorst. We have traced from Table 4.2 to 4.5 that the proposed class of estimators has least
min .MSE(t) =78190.8652(without error) and min .MSE(t) = 912406.5384 for (&, ,717,0) = (2,1,

1/2, 0). It follows that the measurement error inflates the min.MSE(t) considerably. So our
recommendation is that the practitioner should be very cautious while measuring the units.
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Table 4.2: The relative MSE / min.MSE and the MSE / min.MSE of the usual unbiased estimatoré'Y2 ,
Singh and Karpe’s (2009a) estimators and Sharma and Singh ’s (2013) estimators with and without
measurement errors for 7 =0andd = 2.

The estimators without

The estimators in presence of

Contribution of measurement

measurement error measurement error error
Estimator i MSE/ i MSE/ e MSE/
relative min.MSE relative min.MSE relative min.MSE
min.MSE min.MSE min.MSE

6‘5 0.2257 368557.3115 1.6118 2632519.4268 1.3861 2263962.1153
tR 0.2523 412100.8937 1.6387 2676520.7781 1.3864 2264419.8844
t2 , tW 0.2256 368506.4031 1.6118 2632469.0135 1.3862 2263962.6104
tl 0.1841 300668.9623 0.6212 1014623.5204 0.4371 713954.5581
U=t p=0) 01744 284763.2181 0.6194 1011729.8893 0.4450 726966.6712
t3(a:0,ﬂ:l) 0.1766 288430.2323 0.6191 1011157.7120 0.4425 722727.4797
t3(a:1,ﬁ:1) 0.1756 286777.0035 0.6220 1015902.6897 0.4464 729125.6862
t3(a:1,ﬂ:—1) 0.1766 288430.2323 0.6191 1011157.7120 0.4425 722727.4797
t3(a:0,ﬂ:—1) 0.1975 322548.7531 0.6259 1022217.2612 0.4284 699668.5081
t3(a:71,ﬁ:0) 0.2168 354079.4977 0.6329 1033722.9633 0.4161 679643.4656
t3(a:71,ﬂ:2) 0.1841 300668.9623 0.6212 1014623.5204 0.4371 713954.5581
t3(a:2,ﬁ:—1) 0.1756 286777.0035 0.6220 1015902.6897 0.4464 729125.6862

Table 4.3: The relative MSE / min.MSE and the MSE / min.MSE of the suggested class of estimator t with
and without measurement errors for 7 =0.5and o =0.

The estimators without

The estimators in presence of

Contribution of measurement

measurement error measurement error error
Estimator relit;:;et iI\\//IeSE/ MSE/ relite::;et il\\//IeSE/ MSE/ rel?rt;;/aet il\\//IeSE/ MSE/
min.MSE min.MSE min.MSE min.MSE min.MSE min.MSE

t(a:l $=0) 0.1247 203615.3673 0.6158 1005818.6132 0.4911 802203.2459
t(a:O p=1) 0.1657 270582.4329 0.6209 1014036.2218 0.4552 743453.7889
t(a:1 B=1) 0.0479 78190.8652 0.6065 990597.1042 0.5586 912406.2390
t(a:l p=-1) 0.1657 270582.4329 0.6209 1014036.2218 0.4552 743453.7889
t(a:O p=-1) 0.1837 300045.2222 0.6182 1009706.7709 0.4345 709661.5487
t(a:—l $=0) 0.1660 271164.6867 0.6104 997012.5083 0.4444 725847.8216
t(a:—l $=2) 0.1838 300206.6878 0.6217 1015339.4798 0.4379 715132.7920
t(a:z p=-1) 0.0479 78190.8652 0.6065 990597.1042 0.5586 912406.2390
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Table 4.4: The relative MSE / min.MSE and the MSE / min.MSE of the suggested class of estimator t with
and without measurement errors for 7 =0.5and 6 =0.5.

The estimators without

The estimators in presence of

Contribution of measurement

measurement error measurement error error
Estimator rele;te:;;et il\\//IeSE/ MSE/ rele;t;;; il\\I/IeSE/ MSE/ rela:g;; i(\//IeSE/ MSE/
min.MSE min.MSE min.MSE min.MSE min.MSE min.MSE

t(a:l £=0) 0.1596 260717.6283 0.6192 1011262.6608 0.4596 750545.0325
t(a:O B=1) 0.1757 286983.9528 0.6214 1014857.7883 0.4457 727873.8355
t(a:1 B=1) 0.1345 219749.1476 0.6151 1004555.9719 0.4806 784806.8243
P 0.1757 286983.9528 0.6214 1014857.7883 0.4457 727873.8355
Tim0 p—1) 0.1845 301285.2360 0.6200 1012703.1225 0.4355 711417.8865
t(a:—l 5=0) 0.1779 290532.9829 0.6165 1006941.3326 0.4386 716408.3497
t(a}l £=2) 0.1838 300206.6878 0.6217 1015339.4798 0.4379 715132.7920
t( 0.1345 219749.1476 0.6151 1004555.9719 0.4806 784806.8243

a=2,p5=-1)

Table 4.5: The relative MSE / min.MSE and the MSE / min.MSE of the suggested class of estimator t with
and without measurement errors for 7 =1land o = 0.5.

The estimators without

The estimators in presence of

Contribution of measurement

measurement error measurement error error
Estimator relz:tel:;et iI\\//IeSE/ MSE/ relitf::/aet i'\\//IeSE/ MSE/ rele;'g;;i il\\//IeSE/ MSE/
min.MSE min.MSE min.MSE min.MSE min.MSE min.MSE

t(a:l $=0) 0.1144 186923.7927 0.6119 999475.6790 0.4975 812551.8863
t(a:O B-1) 0.1430 233540.7463 0.6152 1004829.8059 0.4722 771289.0596
t(a:l £=1) 0.0743 121384.4391 0.6068 991013.5722 0.5325 869629.1331
t(a:1 B=-1) 0.1430 233540.7463 0.6152 1004829.8059 0.4722 771289.0596
t(a:O B=-1) 0.1725 281798.6453 0.6160 1006170.0334 0.4435 724371.3881
t(a:—l $=0) 0.1755 286623.0564 0.6136 1002127.7779 0.4381 715504.7215
t(a}l £=2) 0.1619 264496.0006 0.6166 1007065.5390 0.4547 742569.5384
t 0.0743 121384.4391 0.6068 991013.5722 0.5325 869629.1331

(a=2,=-1)
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