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ABSTRACT
Manpower optimization and job scheduling represent key elements in the Work Force Management
(WFM) field. Large-scale corporations face a trade-off, where the staff is bounded to achieve savings
but customers should receive the service effectively and timely.
A combinatorial optimization problem for contract and job scheduling is introduced, inspired in
large-scale corporations. The main simplifications in this Contract-Scheduling problem are multi-
class Poissonian customer arrivals, exponential services, one-to-one attention and fixed salaries from
the staff. The goal is to minimize the staff respecting multiple timing constraints (coming from
customers), and define atomic units inside the corporation that offer independent services.
Even under these simplifications, the problem belongs to the class of NP-Hard decision problems.
Specifically, the feasibility of Contract-Scheduling problem includes the determination of the chro-
matic number of a graph.
As a consequence, a heuristic methodology is developed for its resolution, combining Monte Carlo
simulation and a greedy-randomized technique. Numerical results confirm an intuitive contract ap-
proach is true: units should be stressed offering the maximum number of affine services, and the
staff should be kept as small as possible, respecting demand constraints.
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RESUMEN
La optimización de la fuerza laboral y la planificación del trabajo representan ele- mentos estratégicos
en la gestión empresarial. Las empresas de alto porte afrontan el compromiso de rentabilidad, donde
se debe mantener una cantidad de personal limitada y al mismo tiempo los clientes deben recibir
sus servicios efectivamente y a tiempo. En este art́ıculo se presenta un problema de optimización
combina- toria para el contrato y la asignación del trabajo, inspirado en empresas de alto porte.
La principal simplificación en este problema de Contrato-Asignación con- siste en arribos Poisson
de múltiples clases de clientes, servicios que responden a leyes exponenciales independientes, con
atención uno a uno y salarios fijos del personal. El objetivo es minimizar la cantidad total de per-
sonal respetando restric- ciones temporales (provenientes de la tolerancia de los clientes), y definir
unidades atómicas dentro de la empresa que ofrecen servicios independientes. Incluso bajo estas sim-
plifcaciones, el problema pertenece a la clase NP-Dif́ıcil. Espećıficamente, la factibilidad del problema
de Contrato-Asignación incluye la determinación del número cromático de un grafo. Como conse-
cuencia, se desarrolla una heuŕıstica para su resolución, que combina simulación por Monte Carlo y
una técnica golosa aleatorizada. La intuición sugiere que es preferible estresar unidades, ofreciendo
la máxima cantidad de servicios posible en cada una, respetando al mismo tiempo restricciones
temporales. Los resultados experimentales sugieren que esta intuición es correcta.
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1. INTRODUCTION

Manpower optimization is a field of knowledge that supports operational decisions in the leader or manager
of a corporation. A key element is to clearly determine the service offered by the corporation, its correla-
tion, the units or independent atoms that jointly compose the corporation and the whole staff or contract.
These decisions, together with innovative ideas, personnel skills and world economics in terms of investment,
determine the success of a current modern corporation. In literature reviews we can find general qualitative
tips, spider-graphs for the design of a corporation, and others [13, 5]. However, little effort has been focused
on a mathematical framework to develop a full corporation [12, 2], and most works are focused on special
cases, as call centers [3].

The goal of this paper is to present a novel and simple mathematical framework to understand the di-
mensioning and design of a corporation at its operational level. By means of a combinatorial optimization
problem, we formulate the minimum cost design of a corporation, subject to Poissonian multi-customer
arrivals, independent exponential time services and minimum quality of service (reduced waiting times) to
customers. This model also considers the level of correlation of different services, and role assignment for
different units of the corporation to be deployed.
This paper is structured as follows. Section 2. presents the terminology of graphs and complexity theory
that will be used throughout the treatment. Section 3. presents a mathematical formulation of the Contract-
Scheduling Problem (CSP), while Section 4. states that the CSP belongs to the class NP-Hard problems.
As a consequence, we develop a heuristic resolution, combining Monte Carlo simulation and a greedy notion
for the CSP, in Section 5..
In Section 6., we illustrate a coherent property of the model with sample scenarios: it is better to stress the
system, maximizing the probability of occupation for the staff. Additionally, we highlight the fact that the
number of atoms (i.e. independent units) of the corporation should be minimized. This result is intuitive,
and the theoretical foundation is highly connected with queuing systems. Concluding remarks and trends
for future work are covered in Section 7..

2. TERMINOLOGY

In this section, the terminology used throughout this article in graph theory and computational complexity
is provided.

2.1. Computational Complexity

The class NP is the set of problems polynomially solvable by a non-deterministic Turing machine [6]. A
problem is NP-Hard if it is at least as hard as every problem in the set NP (formally, if every problem in
NP has a polynomial reduction to the former). It is widely believed that NP-Hard problems are intractable
(i.e. there is no polynomial-time algorithm to solve them). An NP-Hard problem is NP-Complete if it is
inside the class NP. Stephen Cook proved that the joint satisfiability of an input set of clauses in disjunctive
form is an NP-Complete decision problem; in fact, the first known problem of this class [4]. In this way, he
provided a systematic procedure to prove that a certain problem is NP-Complete. Specifically, it suffices to
prove that the problem is inside the class NP, and that it is at least as hard as an NP-Complete problem.
Richard Karp followed this hint, and presented the first 21 combinatorial problems inside this class [8]. In
general, given a class C of problems, the problem P is C-complete if P ∈ C and it is at least as hard as all
problems in the class C.
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A combinatorial optimization problem (COP) is to minx∈S f(x), where f is the objective function and x ∈ S,
a non-empty finite set of solutions (arg maxx∈S −f(x) = arg minx∈S f(x), maximization problems are also
COPs). The domain for x is some finite set D : S ⊆ D, and x ∈ D is called a solution (it is feasible provided
x ∈ S).
Every COP has a corresponding decision problem:

Definition 2.1. (COP − r − QUALITY ). Given a COP maxx∈S f(x) and a real number r. Does there
exist a feasible solution x such that f(x) ≤ r?

2.2. Graph Theory

A simple graph is a pair G = (V,E), where V is a nonempty set and E a symmetric binary relation on V .
If (x, y) ∈ E, we say that x and y are adjacent vertices. Let us denote [k] = {1, . . . , k}, for any positive
integer k. A k-coloring of G is a function f : V → [k] such that f(v) 6= f(w) whenever {v, w} ∈ E. Its
chromatic number κ(G) is the least positive integer such that there exists a κ-coloring (i.e. there exists a
graph-coloring f : V → [κ]). A subset V ′ ⊆ V is a vertex-cover for G if all edges from the set E are adjacent
to some v ∈ V ′. A subset of vertices V ∗ ⊆ V is independent if there is no pair of vertices v1, v2 ∈ V ∗ such
that (v1, v2) ∈ E.

The two following problems are included in Karp list of 21 combinatorial problems [8]. They have a strict
relation with Contract-Scheduling problem.

Definition 2.2. (K − COLORABILITY ). Given a simple graph G = (V,E) and a positive integer K.
Does there exist an assignment f : V → {1, . . . ,K}?

Definition 2.3. (V ERTEX−COV ER). Given a simple graph G = (V,E) and a positive integer K. Does
there exist a vertex-cover V ′ ⊆ V with |V | ≤ K?

3. CONTRACT-SCHEDULING PROBLEM

Consider a large corporation that offers services s = (s1, . . . , sn). Customers are grouped into n disjoint
classes (one per service), and their arrivals follow a Poissonian process with respective intensity rates λ =
(λ1, . . . , λn). They expect to be attended in not more than ai time units (seconds, minutes or even days,
according to the service). On the other hand, the staff offers the service following exponentially distributed
times, with respective rates µ = (µ1, . . . , µn).
The staff cannot cope with all requests (services) at the same time, mainly because these services can
be weakly correlated. As a consequence, a binary matrix M ∈ {0, 1}n×n assumes mij = 1 whenever
services si and sj can be offered by the same person, and mij = 0 otherwise. Services are assigned to
(and internally managed by) K atomic units of the corporation, with respective number of staff p1, . . . , pK .
Denote S ∈ {0, 1}K×n the scheduling matrix, such that sij = 1 whenever atom i is involved in service j, and
sij = 0 otherwise. All services must be attended by exactly one atom.
Customers are attended following a first in-first out (FIFO) queuing policy in a face-to-face communication
with some member of the staff. Specifically, the customer selects the correct atom, and looks for an idle
worker. If there is no worker available, he/she should wait in a FIFO queue. On the other hand, workers
are available when requested and not busy, and they are able to offer all services assigned to the atom where
they work.
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Let p = (p1, p2, . . . , pK) the contract vector, or complete staff, and K the size, or number of atoms inside the
corporation. If we further assume identical salaries, it is clear that the operator should minimize the staff in
order to reduce the operational costs. The Contract-Scheduling Problem (CSP) is to decide the corporation
size K, contract vector p and scheduling matrix S, respecting both timing constraints from customers and
affine services:

min
K,p,S

p =

K∑
i=1

pi (1)

s.t.

K∑
i=1

sij = 1, ∀j ∈ {1, . . . , n} (2)

sijsik ≤ mjk, ∀i ∈ {1, . . . ,K}, j, k ∈ {1, . . . , n} (3)

E(Ti) ≤ ai, ∀i ∈ {1, . . . , n} (4)

The objective (1) is to minimize the staff of the corporation. Constraint (2) states that every service must
be offered exactly by one atom. Constraint (3) confirms that the services offered by a certain atom must be
affine. Finally, Constraint (4) deserves further explanation, and states that the expected sojourn time E(Ti)
experienced by a customer from class-i must not exceed the threshold ai.
When an atom with n customers offers a single service si we have a single-class waiting system with FIFO
queuing policy, and there is an explicit expression for E(Ti) based on Erlang C Formula. If A = λ

µ denotes
the offered traffic then the probability of a customer to have a positive waiting time equals E2,n:

E2,n =
An

n!
n

n−A∑n−1
i=0

Ai

i! + An

n!
n

n−A
. (5)

After algebraic manipulation of cut-equations under stationary state [1], the mean queuing length Ln can
be found:

Ln = E2,n
A

n−A
(6)

Finally, using Little’s law [9] it turns out that the mean sojourn time Tn is related with Erlang’s C Formula:

E(Tn) =
Ln
λ

+
1

µ
= E2,n

1

nµ− λ
+

1

µ
. (7)

Expression (7) is precisely the left-hand of Constraint (4) with a singleton service associated to a certain
unit in the corporation.

To the best of our knowledge, there is no closed-form for E(Ti) in a multi-class poissonian arrival system with
exponentially distributed services, following a non-preemptive FIFO waiting policy. For this reason, atoms
offering multiple services are studied numerically here, using Monte Carlo simulation to find an unbiased
estimator for E(Ti).

4. PROBLEM COMPLEXITY

We will elucidate a connection between the scheduling part of the CSP (Constraints (2) and (3)) and a
classical decision problem coming from graph theory, called K − COLORABILITY .
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First, consider CSP1, which is Contract-Scheduling problem when each atom is assigned exactly one service.
It has several differences with CSP . The first one is that the staff is the only decision variable. Other relevant
difference with CSP is that an explicit formulation is available for CSP1:

min
pi

p =

n∑
i=1

pi (8)

s.t.

E2,pi

1

piµ− λ
+

1

µ
≤ ai, ∀i ∈ {1, . . . , n} (9)

Last but not least, a direct resolution is feasible for the CSP1. Just add staff pi in each atom until Con-
straint (9) is respected.

However, the resolution of CSP1 gives no hint to find the optimum for the CSP . Indeed, the following
result holds from elementary queuing theory:

Proposition 4.1.. The sojourn time of a customer under an M/M/2 system with arrival intensity λ is
lower than the same system under two separated M/M/1 lines, each one with intensity rate λ/2.

We can read Proposition 4.1. in terms of the CSP as follows. If we assume compatibility between services si
and sj , and further the rates respect λi = λj and µi = µj , then if we link services i and j together, we will
find a better solution for the CSP than singleton services in different atoms.
Therefore, we have an intuition that it is better to “group” the most number of services in the same unit. If we
identify “colors” to different units of the corporation, two services can have the same color if and only if they
are compatible. This elucidates a connection between K−COLORABILITY and CSP −K−QUALITY .

Theorem 4.1.. CSP − r −QUALITY belongs to the class of NP-Hard decision problem.

Proof. We will show that r−COLORABILITY is included in CSP−r−QUALITY . Consider a corporation
with vanishingly small arrivals and extremely large service rates. Therefore, Constraint (4) is fulfilled with
only one worker, and the sum-staff equals the corporation size K in the constructed instance. Non-compatible
services (nodes) should be assigned to different units (colors). Finding the least number of units (colors)
is precisely the chromatic number of a graph. As a consequence, r − COLORABILITY is included in
CSP − r −QUALITY , and CSP − r −QUALITY is an NP-Hard decision problem.

5. HEURISTIC RESOLUTION

In order to understand the structure of the problem, a greedy resolution is first defined, and then we
tune it with randomization and sophistication to get higher performance. Theorem 4.1. gives a one-to-one
correspondence between graph-coloring and scheduling. Consider the graph G = (V,E) of unrelated services,
where its nodes are the services V = {s1, . . . , sn}, and nodes si and sj share and edge if and only if Mij = 0
(this is exactly when these services cannot be offered by the same unit). By Theorem 4.1., every graph-
coloring for G respect Constraints (2) and (3). Reciprocally, all service assignment into units are represented
by a graph-coloring for G, where services are nodes and units are different colors for each node. As a
consequence, the scheduling block consists of Constraints (2) and (3), whereas the contract block consists of
Constraints (4).
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A greedy notion for this problem is to attack first the Scheduling block (find a graph coloring for G), and
then to assign the lowest feasible number of staffs in each unit respecting the contract block. Observe that
customers are organized by a queuing system. A classical result from queuing theory is that the sojourn time
in a single M/M/1 queue with arrival rate nλ is better than the sojourn time under n independent M/M/1
queues with intensity rates λ. In the CSP, the number of queues is exactly the size of the corporation (i.e.
the number of units). From Theorem 4.1., this number is minimized when we find the chromatic number for
the graph with unrelated services G, so we should find a graph coloring for G using the minimum number
of colors.
Algorithm SolveCSP returns a feasible solution for the CSP. It receives the vector rates λ, µ, patience
vector a, compatibility matrix M , and returns the pair (S, p) (note that the corporation size K is the
number of rows from S). Line 1 constructs the graph G of unrelated services given the compatibility
matrix M . Function Complement simply describes the graph G with adjacency matrix M , this is, the
complementary binary matrix of M . In Line 2, a feasible graph-coloring for G is found. Even though there are
elementary ways to find a graph coloring, the heart and sophistication of this algorithm is hidden in Function
GraphColoring. Different implementations for GraphColoring will be cited in following paragraphs. Once
a feasible scheduling is found, we know the services assigned for each atom of the corporation. In Lines 4 to 6
(i.e. for cycle) the simulation is carried-out, in order to find the minimum staff for each atom. Each unit-staff
pi is fixed as the minimum possible (starting from pi = 1 in Line 3), and tuned in Lines 4 and 5 to the
minimum that fullfils Constraint. Function MonteCarlo contains an explicit end-to-end simulation of the
whole corporation. Given a staff pi for atom i, it checks whether E(Ti) ≤ ai or not, for a fixed staff pi. The
lowest staff pi that respects the family of Constraints (4). Each unit staff is tuned by a classical bipartition
technique, starting from pi = 1 and doubling in each iteration, until Condition (4) is met for some power ki,
i.e. pi = 2ki . The root is finally found between 2ki−1 and 2ki by bipartition.

Algorithm 1 (S, p) = SolveCSP (a, λ, µ,M)

1: G = Complement(M)
2: S = GraphColoring(G)
3: p← 1K
4: for i = 1 TO K do
5: pi ← Bipartition(MonteCarlo(pi, ai, λi, µi))
6: end for
7: return (S, p)

Now, let us focus on possible implementations for GraphColoring. There are two wide approaches for graph
coloring: finding either sequential or independent sets (or mixtures). A sequential graph-coloring considers a
certain ordering on their vertices and assigns colors in that order to the vertices, trying to use the minimum
number of colors. The other approach tries to find packages of independent node-sets, and assigns a different
color for each package.
Theoretical properties of the chromatic number and graph coloring are detailed in Handbook of Combina-
torics [7]. The reader interested in algorithms in graph coloring is invited to consult a recent survey of graph
coloring in [11].
In this section we will sketch two independent-based algorithms for graph coloring, called Lazy Recursive
Largest First [10], or LRLF , and EXTRACOL.

LRLF is a greedy algorithm based on the classic Recursive Largest First, or RLF for short [10]. Basically,
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it implements the same coloring strategy that the classic one, but exploits possible savings computations
during runtime and performs faster than the original algorithm due to Frank Thomson Leighton [14]. The
RLF pseudocode is sketched as follows:

Algorithm 2 C = RLF (G)

1: while |V | > 0 do
2: P ← V
3: U ←
4: AddNewColor(C)
5: vc ←MaxInducedDegree(G,P, V )
6: end while
7: while |P | > 0 do
8: Coloring(C, vc)
9: MoveAdjacents(vc, P, U)

10: ReduceGraph(G, vc)
11: vc ←MaxInducedDegree(G,P,U)
12: end while
13: return C

The general idea of this algorithm is coloring as many vertex as possible with the same color per iteration,
building packages of independent sets in each iteration. It begins with choosing the vertex with maximum
induced degree from P taking account another set (V if U is empty or U in other case). All vertex inside
do/while loop are assigned the same color (line 7). Once this is done, the algorithm moves the adjacent
vertex from P to U (line 8) and removes the processed one from G, including its edges (node induction).
Unlike RLF , LRLF optimizes the way of getting the best vertex for each step calculating the induced degree
in a lazy manner inside Function MaxInducedDegree. For further details in RLF and LRLF , the reader
is referred to [10].
On the other hand, EXTRACOL algorithm is designed to coloring large graphs [15]. In fact, the authors
recommend its application to graphs with one thousand nodes or more. It is based on “reduce and solve”
approach, and combines an initial preprocessing stage that shrinks the graph until its small enough to apply
efficiently a coloring algorithm to the residual graph. Roughly, the algorithm implements the following
pseudocode:

Algorithm 3 C = Extracol(G)

1: while |V | > q do
2: D ← DisjointIndependetSets(G)
3: ReduceGraph(G,D)
4: AddNewColor(C1, D)
5: end while
6: C2 ← ColorResidualGraph(G)
7: C ←MergeColoring(C1, C2)
8: return C

Typically the algorithms based on reduction notion extracts one independent set per iteration. The block of
Lines 1 to 5 (while loop) implements a new way to build independent sets. Instead of getting an independent

179



set at a time, Function DisjointIndependetSets returns a set containing the greatest number of pairwise
disjoint independent sets (Line 2), in order to maximize the vertex removing process (line 3) and getting the
smallest residual graph for the next iteration step. Finally, all vertex involved in independent sets contained
in D can be assigned the same color due to its disjoint nature (Line 4).
Function DisjointIndependetSets does the hard work by combining a Taboo Search algorithm called ATS
(Adaptative Taboo Search) to get de independent sets, with Set Theory properties to determine if such sets
are disjoint. The independent set extraction and graph reduction strategies can be seen in [15]. On the other
hand, the second block of Lines 6 and 7 takes the residual graph from the previous block and applies any
coloring procedure (Line 6). The performance of Function ColorResidualGraph determines the quality of
the solution. In fact, the author designed a competitive memetic algorithm called MACOL [15].

6. RESULTS

We will illustrate the effectiveness of the heuristic here introduced, takingGraphColoring either as EXTRACOL
or LRLF . The main purpose is to confirm or reject our intuition that it is better to define corporations
with the least number of units (which is precisely the chromatic number in graphs), or not.
In order to carry-out different executions, an 8-core, 8GB RAM PC was used, with OMNeT++ Network
Simulator Framework (to develop Monte Carlo simulation), C++ as programming language.
Additionally, in order to respect the nature of a massive corporation, we took DIMACS instances of graphs
with at least one thousand nodes. We test an heterogeneous variety of instances including random graphs
(with prefix DSCJ), flat graphs (prefix “flat”) and large random graphs (prefix C), each of them representing
compatibility matrices.
Table 1 summarizes the basic information of the fourteen different tests, where we introduce all graphs to
LRLF and EXTRACOL. The large running times represent the whole time of customers arrivals and
services in Monte Carlo simulation, using OMNet++. It is worth to mention that the real CPU execution
time lasts a few hours. The key is that the simulation is fastened, and the same conclusions hold as in
real time executions. In order to have a faithful comparison, the virtual simulation times and customers
inter-arrival times are identical for both EXTRACOL and LRLF .
Table 2 presents the results obtained for the corresponding instances. It can be appreciated that EXTRACOL
outperforms LRLF in almost all cases in the sense that the number of colors used in EXTRACOL is lower
than using LRLF except for the DSCJ100.9 instance, where LRLF got lesser amount of colors (one less).
Additionally, the whole staff in the corporation is consistently lower under EXTRACOL even for the in-
stance mentioned above, that is why we think that this small difference may be due to the random nature of
certain aspects of the algorithm and for differences in how both coloring strategies perform grouping tasks
in units. This suggests that our intuition is true: it is better to define corporations with the least number of
units. Further experiments confirm this intuition.

7. CONCLUDING REMARKS

In this paper a combinatorial optimization problem, called Contract-Scheduling Problem, was introduced.
It joints two stages of Scheduling (i.e. assignment of services to unit-atoms of the corporation) and Contract
(i.e. to determine the required staff for each atom), offering a minimum prestablished level of service to
customers. A special case of Contract-Scheduling occurs when the assignment stage is one-to-one, this
is, each atom is assigned exactly one service (CSP1). Inspired in the complexity of the determination of
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Table 1: Fourteen executions, covering seven DIMACS instances, EXTRACOL and LRLF .

Instance Coloring Sim. Time (h) Inter-Arrivals (h)

DSJC1000.1 LRLF 24302 0, 25

DSJC1000.1 EXTRACOL 24302 0, 25

DSJC1000.5 LRLF 6232 0, 39

DSJC1000.5 EXTRACOL 6232 0, 39

DSJC1000.9 LRLF 6232 0, 39

DSJC1000.9 EXTRACOL 6232 0, 39

flat1000 50 0 LRLF 6232 0, 39

flat1000 50 0 EXTRACOL 6232 0, 39

flat1000 60 0 LRLF 6232 0, 39

flat1000 60 0 EXTRACOL 6232 0, 39

C2000.5 LRLF 59897 0, 62

C2000.5 EXTRACOL 59897 0, 62

C4000.5 LRLF 1465 0, 09

C4000.5 EXTRACOL 1564 0, 09

Table 2: Four executions, covering two DIMACS instances, EXTRACOL and LRLF .

Colors Staff Coloring Time (s) Execution Time (s)

279 2456 0, 131 15011

261 2358 105, 572 17830, 8

106 2547 0, 389 5805, 89

101 2452 598, 368 7192, 73

24 2152 0, 534 20171, 9

25 2151 5, 826 22006, 5

107 2482 0, 365 6243, 71

100 2363 27, 792 6385, 56

109 2499 0, 349 5858, 14

100 2380 28, 327 6708, 91

195 5615 1, 603 70465, 3

187 5421 436, 25 76834, 2

354 6704 8, 815 12803, 1

312 6612 1093, 66 16202, 9
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the chromatic number in graphs, we proved that CSP belongs to the class of NP-Hard problems. As a
consequence, we develop a heuristic resolution.
We proceed in two stages. The first one is Scheduling, where different services where assigned to atoms
inspired in graph-coloring techniques. The second one is Contract. Here, we define the minimum staff for
each atom by means of Monte Carlo simulation.
It is known from queuing theory that, under homogeneous Poisson arrivals and exponential services, the
performance in terms of waiting times is better in one queue that in more. Following this hint, we remark
that in the scheduling stage we stressed each atom, assigning the maximum number of compatible services.
Finally, numerical results confirm this intuitive idea: it is better to build the minimum number of independent
units, each one focused on compatible services. However, there are different colorings to achieve the chromatic
number of a graph, and they lead to different staff levels.
As a future work, we would like to further analyze multidimensional arrivals and waiting times, queuing
policies, introduce graph colorings with higher-performance and develop a full study on a real corporation.
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