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ABSTRACT
This tutorial note deals with the class MOSIP of multiobjective semi-infinite programming problems
which are defined by finitely many objective functions and infinitely many inequality constraints in
a finite-dimensional space. This note overviews recent results on solution types, constraint qual-
ifications and optimality conditions for nonconves problems of the type MOSIP. Moreover, under
additional convexity assumptions, weak, strong and converse duality results are reviewed with re-
spect to both efficiency and weak efficiency.
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RESUMEN
Los problemas mutiobjetivos de la programación semi-definida (MOSIP por sus cifras en inglés)
tratan la miinimización de una cantidad finita de funciones en un subconjunto de un espacio de
dimensión finita que está descrito por una cantidad infinita de restricciones de desigualdad. Esta nota
presenta un resumen de los resultados más recientes con respecto a tipos de soluciones, condiciones de
regularidad del conjunto de soluciones factibles y condiciones de optimalidad en el caso no convexo.
Se revisa la dualidad débil, fuerte e inversa desde el punto de vista de la eficiencia y la eficienfcia
débil en el caso convexo.

1. INTRODUCTION

In this tutorial note we consider nonlinear and in general nonconvex multiobjective semi-infinite program-
ming problems. These are mathematical programming problems in a finite-dimensional space with finitely
many objective functions and infinitely many inequality constraints. Note that further finitely many equality
constraints could be included straightforwardly but we omitted them in order to avoid unnecessary techni-
calities.

The problem class under consideration is given by the multiobjective semi-infinite programming problem
MOSIP as follows:

MOSIP min f(x) s.t. x ∈M

with the vector f = (f1, . . . , fq)
> of objective functions fi ∈ C2(Rn,R), i = 1, . . . , q (as usual, Ck(Rn,R)

denotes the space of k-times continuously differentiable real-valued functions defined on Rn) as well as the
feasible set

M = {x ∈ Rn | g(x, y) ≤ 0, y ∈ Y }.

Here, Y ⊂ Rm is a compact and in general infinite index set and g ∈ C2(Rn × Y,R). Each element y ∈ Y
represents a corresponding inequality constraint g(., y) ≤ 0. Given a feasible point x ∈ M , the index set of
active inequality constraints at x is defined as the compact set

Y0(x) = {y ∈ Y | g(x, y) = 0}

and, obviously, each y ∈ Y0(x) is a global maximizer of the parameter-dependent function g(x, ·)|Y . The
latter means that the feasible set can be described by one non-differentiable constraint as
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M =

{
x ∈ Rn | max

y∈Y
g (x, y) ≤ 0

}
.

In this paper we will not discuss this nonsmooth approach to MOSIP.

Both multiobjective and semi-infinite programming have been very active research areas within nonlinear
differentiable mathematical programming for several decades including a huge number of applications. We
refer to [6, 14, 21, 22, 24] on semi-infinite programming and to the standard book [4] on multiobjective
programming. However, there are only a few systematic results on the combination of multiobjective and
semi-infinite programming although there are several applications for the model MOSIP; we refer e.g. to
simultaneous Chebyshev approximation [3], approximation problems in the petroleum industry [7, 8, 16] or
portfolio optimization [24]. In their recent papers [10, 11, 12], the authors tried to fill this gap to some extent
by presenting a more systematic approach to the class defined by MOSIP.

The goal of this paper is to present several important results from [10, 11, 12] as an overview in a tutorial
form. In particular, this paper is organized as follows. Section 2 contains some auxiliary results and
generalizations of solution types from multiobjective programming to problems of the type MOSIP. Section
3 covers constraint qualifications and optimality conditions for MOSIP and Section 4 duality results for
convex problems. Finally, some conclusions are given in Section 5. Note that all results presented in
this paper hold analogously for maximize- (instead of minimize-) multiobjective semi-infinite programming
problems.

2. AUXILIARY RESULTS AND SOLUTION TYPES

We start with some basic notations. If h ∈ C1 (Rn,R), then we denote by the row vector Dh (x) (Dx1h (x))
its gradient (partial gradient with respect to the subvector x1 of x) at x ∈ Rn. If h ∈ C2 (Rn,R), then the
second derivatives are defined analogously.
Given c ∈ Rn denote its components by ci, i = 1, . . . , n and for c, e ∈ Rn let
• c 5 e, if ci ≤ ei, i = 1, . . . , n,
• c < e, if ci < ei, i = 1, . . . , n,
• c ≤ e, if ci ≤ ei, i = 1, . . . , n and c 6= e.

Denote the origin in Rq by 0q and let Rq+ = {z ∈ Rq | z = 0q} . The Euclidean norm is presented by ‖·‖ and
for x ∈ Rn and a real number ε > 0 let B(x, ε) = {x ∈ Rn | ‖x− x‖ < ε}.

Types of solutions for MOSIP

We recall the following terminology for different types of solutions for a multiobjective programming problem
which can be straightforwardly applied to MOSIP.

Definition 2.1. (a) A point x ∈ M is called efficient for MOSIP if there does not exist any x ∈ M with
f(x) ≤ f(x).
(b) A point x ∈M is called weakly efficient for MOSIP if there does not exist any x ∈M with f(x) < f(x).
(c) A point x ∈ M is called locally (weakly) efficient for MOSIP on B(x, ε) if there exists a real number
ε > 0 and if there does not exist any x ∈ B(x, ε) ∩M with f(x) ≤ f(x) (f(x) < f(x)).

Note that (locally) (weakly) efficient points are sometimes also called Pareto optimal points. In order to
further characterize efficient points we recall in the following definition two concepts of proper efficient points
which where introduced by Geoffrion [5] as well as by Kuhn and Tucker [18].

Definition 2.2. (See e.g. [4, 5, 18])
(a) A point x ∈M is called locally properly efficient for MOSIP in the sense of Geoffrion (shortly: G-locally
properly efficient) if there exists a real number ε > 0 such that
• x is a locally efficient point for MOSIP with respect to B(x, ε) and
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• there exists a real number Q > 0 such that for each index i ∈ {1, . . . , q} and any x ∈ B(x, ε) ∩M with
fi(x) < fi(x) there exists an index j ∈ {1, . . . , q} such that fj(x) > fj(x) and

fi(x)− fi(x)

fj(x)− fj(x)
≤ Q.

(b) A point x ∈M is called locally properly efficient for MOSIP in the sense of Kuhn and Tucker (shortly:
KT-locally properly efficient) if there exists a real number ε > 0 such that
• x is a locally efficient point for MOSIP with respect to B(x, ε) and
• the following system has no solution d ∈ Rn :

Dfi(x)d ≤ 0, i = 1, . . . , q,

Dfk(x)d < 0, for some k ∈ {1, . . . , q},
Dgj(x)d ≤ 0, j ∈ J0(x).

By substituting B(x, ε) by M in the latter definition (and deleting the word locally), the properties of being
a G-properly efficient point for MOSIP respectively a KT-properly efficient point for MOSIP are analogously
defined.

If the point x ∈ M is a locally efficient point for MOSIP, then for any index i ∈ {1, . . . , q} and any x ∈ M
with fi(x) < fi(x) there exists an index j ∈ {1, . . . , q} with fj(x) > fj(x). If further x is a G-properly effi-
cient point for MOSIP, then the ratio between the improvement of one objective function and the decrease
of another objective function is bounded by the finite number Q > 0 in the previous definition. We also refer
to Example 4.2 in [10] as an illustration for the two different recalled concepts of proper efficiency.

Convex problems

We call MOSIP a convex problem if fi, i = 1, . . . , q are convex functions and g(·, y) is a convex function for
each y ∈ Y . Then, the convex feasible set M can be described by using cone constraints (see e.g. [23]). For
this consider the space C(Y ) of continuous real-valued functions

c : Y → R

and its dual space C(Y )∗. For c ∈ C(Y ) and µ ∈ C(Y )∗ we have the product

µ(c) = 〈µ, c〉 :=

∫
Y

c(y)dµ(y).

After defining the map

G : x ∈ Rn 7→ g(x, ·) ∈ C(Y )

and the cone

K = {c ∈ C(Y ) | c(y) > 0 for all y ∈ Y }

the feasible set of MOSIP can be rewritten as

M = {x ∈ Rn | G(x) ∈ −K} .

Define further

K∗ = {µ ∈ C(Y )∗ | 〈µ, c〉 ≥ 0 for all c ∈ K} .

The weighted sum optimization problem

The so-called weighted sum optimization problem (assigned to MOSIP) is defined as
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min λ>f(x) s.t. x ∈M (2.1)

with non-negative weights λ ≥ 0q, λ = (λ1, . . . , λq). A well-known relationship between solutions of MOSIP
and those of (2.1) is summarized in the following.

Lemma 2.1. (cf. e.g. [4]). Let x ∈M.
(a) If x is a global minimizer of (2.1) for some λ > 0q (λ ≥ 0q), then x is a (weakly) efficient point for

MOSIP.
(b) Suppose that MOSIP is a convex problem. Then, x is a G-properly efficient point for MOSIP if and

only if x is a global minimizer of (2.1) for some λ > 0q.
(c) Suppose that MOSIP is a convex problem. Then, x is a weakly efficient point for MOSIP if and only

if x is a global minimizer of (2.1) for some λ ≥ 0q.

3. CONSTRAINT QUALIFICATIONS AND OPTIMALITY CONDITIONS

In this section we discuss constraint qualifications for MOSIP and optimality conditions with respect to
locally weakly efficient as well as G- and KT-properly efficient points. The results are mainly taken from
[10].

Cones

For the presentation of constraint qualifications we need the following two cones.

Contingent cone T (x,M) ⊆ Rn of M at x ∈M :
d ∈ T (x,M) if and only if there exist sequences {tυ}υ∈N and {dυ}υ∈N such that tυ ↓ 0, dυ → d and

x+ tυdν ∈M for all ν ∈ N.

Cone of attainable directions A(x,M) ⊆ Rn of M at x ∈M (see [1]):

A(x,M) =

d ∈ Rn \ {0}

∣∣∣∣∣∣
There exist some τ > 0 and a continuously
differentiable arc E : [0, τ)→ Rn such that

E(0) = x, E′(0) = d, and E(t) ∈M, t ∈ [0, τ)

 .

Constraint qualifications

We recall the following four constraint qualifications.

EMFCQ: The extended Mangasarian-Fromovitz constraint qualification is said to hold at x ∈M if the set

{d ∈ Rn | Dxg (x, y) d < 0, y ∈ Y0 (x)}

is non-empty.

EKTCQ: The extended Kuhn-Tucker constraint qualification is said to hold at x ∈M if

{d ∈ Rn | Dxg (x, y) d ≤ 0, y ∈ Y0 (x)} ⊆ cl A(x,M).

EACQ: The extended Abadie constraint qualification is said to hold at x ∈M if

T (x,M) = {d ∈ Rn | Dxg (x, y) d ≤ 0, y ∈ Y0 (x)} .

SC: If MOSIP is a convex problem, then MOSIP is said to fulfill the Slater condition if there exists a point
x ∈ M such that G(x) ∈ int(−K) where int denotes the set of interior points (that is, g(x, y) < 0 for all
y ∈ Y ).
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For a deeper insight and original versions (for finite problems) on these constraint qualifications we refer to
[17, 18, 19, 20, 24, 25] as well as to [9, 24] for a detailed discussion on constraint qualifications for (generalized)
semi-infinite programming problems.

Since Y ⊂ Rm is compact, for x ∈M the set

V (x) = {Dxg (x, y) | y ∈ Y0 (x)}

is also compact. However, the convex cone hull co(V (x)) of the latter set is not closed in general; it is
well-known that for some optimality conditions in semi-infinite programming the closeness of co(V (x)) plays
a crucial role ([9, 10, 14]). The next lemma delivers some properties related to the constraint qualifications
presented above.

Lemma 3.2. (a) (see [9]) For x ∈M the following chain of implications holds:

EMFCQ holds at x → EKTCQ holds at x → EACQ holds at x.

The converse directions do not hold in general.
(b) (see [14]) If EMFCQ holds at x ∈M, then co (V (x)) is closed. The converse direction does not hold

in general.
(c) (see [4]) Assume that EACQ (or EKTCQ or EMFCQ) holds at x ∈M . If x is a G-properly efficient

point for MOSIP, then x is also a KT-properly efficient point for MOSIP.
(d) (see [2]) Suppose that MOSIP is a convex problem and that MOSIP fulfills SC. If x ∈M is a global

minimizer of (2.1) for some λ ≥ 0q , then there exists µ ∈ K∗ such that

λ
>
f(x) = inf

x∈Rn

{
λ
>
f(x) + 〈µ,G(x)〉

}
, 〈µ,G(x)〉 = 0.

Optimality conditions

The first theorem establishes a necessary optimality condition of Karush-Kuhn-Tucker type for a feasible
point being locally weakly efficient under various constraint qualification (statements (a) and (b)). As a
generalization from finite optimization, statement (c) says that this optimality condition is also sufficient if
MOSIP is assumed to be convex.

Theorem 3.1. (see [10], Theorem 4.1, Corollary 4.1, and Theorem 4.2).
(a) Let x be a locally weakly efficient point for MOSIP and assume that EMFCQ holds at x. Then there
exist yj ∈ Y0 (x) , j = 1, . . . , s, s ≤ n, a vector λ ≥ 0q and coefficients µj ≥ 0, j = 1, . . . , s such that

q∑
i=1

λiDfi (x) +

s∑
j=1

µjDxgj
(
x, yj

)
= 0. (3.1)

(b) Let x be a locally weakly efficient point for MOSIP and assume that EKTCQ (or EACQ) holds at x. If
co (V (x)) is closed, then there exist yj ∈ Y0 (x) , j = 1, . . . , s, s ≤ n, λ ≥ 0q and µj ≥ 0, j = 1, . . . , s such
that (3.1) is fulfilled.

(c) Assume x ∈M and that MOSIP is a convex problem. Furthermore, assume that there exist yj ∈ Y0 (x) ,
j = 1, . . . , s, s ≤ n,, λ ≥ 0q and µj ≥ 0, j = 1, . . . , s such that (3.1) with λ = λ and µj = µj , j = 1, . . . , s is
fulfilled. Then, x is a locally weakly efficient point for MOSIP.

In statement (a) of the previous theorem we assume EMFCQ and in statement (b) the weaker constraint
qualifications EKTCQ or EACQ (see Lemma 3.1(a)). Moreover, compared to statement (a), the additional
assumption in (b) is the closeness of the set co(V (x)) which is not fulfilled in general for MOSIP. The next
example is taken from [10] and it shows that in general EKTCQ without assuming the closeness of co(V (x))
does not imply the necessary Karush-Kuhn-Tucker condition in Theorem 3.1.
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Example 3.1. ( [10], Example 4.1)
Let n = 2, q = 2, m = 1, Y = [0, 2],

f1(x) = x1 − x2, f2(x) = −x2 and

g(x, y) = yx1 +
√

1− (y − 1)2x2.

Thus,
M =

{
x ∈ R2 | x1 ≤ 0, x2 ≤ 0

}
and x = (0, 0)> is a locally weakly efficient solution of MOSIP. We have

Y0 (x) = [0, 2], Dxg (x, y) =
(
y,
√

1− (y − 1)2
)

and we see that the set

co (V (x)) =
{
x ∈ R2 | x2 = 0, x1 ≥ 0

}
∪
{
x ∈ R2 | x1 > 0, x2 > 0

}
is not closed. On the other hand, it is A (x,M) = M, and for d ∈ R2, we get for y ∈ [0, 2] :

Dxg (x, y) d ≤ 0 if and only if yd1 +
(√

1− (y − 1)2
)
d2 ≤ 0.

The latter property implies

M =
{
d ∈ R2 | Dxg (x, y) d ≤ 0, y ∈ [0, 2]

}
and, hence, EKTCQ holds at x. Now, consider the following non-negative linear combination as in (3.1):

λ1

(
1
−1

)
+ λ2

(
0
−1

)
+

s∑
j=1

µj

(
yj(√

1− (yj − 1)2
) )

=

(
0
0

)
,

where yj ∈ [0, 2] and s ≤ 2. Any solution of the latter combination fulfills λ1 = λ2 = 0. Therefore, we have
the following situation. The set co (V (x)) is not closed, EKTCQ holds at x and the Karush-Kuhn-Tucker
condition (3.1) has no solution.

The next theorem refers to a necessary optimality condition of Karush-Kuhn-Tucker type for a G-properly
efficient point. Note that a main difference to Theorem 3.1 is that the coefficients λi, i = 1, . . . , q are now
strictly positive (λ > 0q). In statement (b) we will consider separately the convex case again.

Theorem 3.2. (see [10], Theorem 4.4 and Corollary 4.4).
(a) Let x ∈ M be a G-properly efficient point for MOSIP and assume that EACQ holds at x and that
co(V (x)) is a closed set. Then, there exist yj ∈ Y0 (x) , j = 1, . . . , s, s ≤ n, a vector λ > 0q and coefficients
µj ≥ 0, j = 1, . . . , s such that (3.1) is fulfilled.

(b) Assume x ∈M and that MOSIP is a convex problem. Furthermore, assume that there exist yj ∈ Y0 (x) ,
j = 1, . . . , s, s ≤ n,, λ > 0q and µj ≥ 0, j = 1, . . . , s such that (3.1) with λ = λ and µj = µj , j = 1, . . . , s is
fulfilled. Then, x is a G-properly efficient point for MOSIP.

By the relationship between KT-properly efficient points and G-properly efficient points stated in Lemma
3.1(c), the assumptions (G-properly efficient point and EACQ) in statement (a) of the previous theorem imply
that x is a KT-properly efficient point for MOSIP. Analogously, in statement (b) of this theorem, under the
additional assumption that EACQ holds at x, we would obtain that x is a KT-properly efficient point for
MOSIP.
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4. DUALITY FOR CONVEX PROBLEMS

Throughout this section assume that MOSIP is a convex problem. We will present two theorems concerning
weak, strong and converse duality with respect to efficiency and to weak efficiency. These results are taken
from the recent paper [12] that also contains results for the nonconvex case which, however, are due to their
technicality beyond the scope of this tutorial note.
We start by considering the following dual multiobjective programming problem of Lagrange type [15]:

D-MOSIP max v s.t. (λ, µ, v) ∈ DM

with the feasible set

DM=

{
(λ, µ, v) ∈ int Rq+ ×K∗ × Rq | λ>v ≤ inf

x∈Rn

{
λ>f(x) + 〈µ,G(x)〉

}}
,

The following theorem states duality results for efficient points of the latter (maximize-) multiobjective
programming problem as well as G-properly efficient points for MOSIP.

Theorem 4.3. (see [12], Theorem 2.3).
(a) (Weak duality). For all x ∈M and all (λ, µ, v) ∈ DM we have

λ>v ≤ λ>f(x).

(b) (Strong duality). Assume x ∈ M and that MOSIP fulfills SC. If x is a G-properly efficient point for
MOSIP, then there exists an efficient point

(
λ, µ, v

)
∈ DM for D-MOSIP with f(x) = v.

(c) (Converse duality). Assume that MOSIP fulfills SC and that M is compact. If
(
λ, µ, v

)
∈ DM is an

efficient point for D-MOSIP, then there exists a G-properly efficient point x ∈M for MOSIP with f(x) = v.

The strong duality result in statement (b) of the previous theorem holds under the assumption that x is a
G-properly efficient point for MOSIP. The following example illustrates that we would not get an analogous
result under the weaker assumption that x is an efficient point for MOSIP (but not a G-properly efficient
one).

Example 4.2. (see [12], Example 2.4). Let MOSIP be defined as n = 2, q = 2, Y = [0, 1], x = (x1, x2)>,
f1(x) = x1, f2(x) = x2 and
g(x, y) = x1(y − 1)− x2

√
1− (y − 1)2 − y +

√
1− (y − 1)2.

A short calculation shows that the set of efficient points for MOSIP is{
x ∈ R2 | (x1 − 1)2 + (x2 − 1)2 = 1, 0 ≤ xi ≤ 1, i = 1, 2

}
.

Now, we consider the efficient point x = (1, 0)> which is not a G-properly efficient point for MOSIP. This
can easily be seen by the following observation (which is taken from [4, Example 2.40]). Define the efficient
points (

x1(γ)
x2(γ)

)
=

(
1− γ

1−
√

1− γ2

)
, γ ∈ (0, 1].

Then, the term

f1(x)− f1(x(γ))

f2(x(γ))− f2(x)
=

γ

1−
√

1− γ2

becomes unbounded as γ ↓ 0. Hence, x is not a G-properly efficient point for MOSIP.
We will show now that there does not exist any efficient point (λ, µ, v) for D-MOSIP with f(x) = v. Suppose
the contrary and let (λ, µ, f(x)) ∈ DM be an efficient point for D-MOSIP. Then f1(x) = 1, f2(x) = 0 and

λ
>
f(x) = λ1 ≤ inf

x∈R2

{
λ
>
f(x) + 〈µ,G(x)〉

}
≤ inf
x∈M

λ
>
f(x).
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By x ∈M , it follows that

λ
>
f(x) = λ1 = inf

x∈M
λ
>
f(x) = inf

x∈M

{
λ1x1 + λ2x2

}
and hence

λ1 ≤ λ1x1 + λ2x2 for all x ∈M. (4.1)

Since λ > 02, there exists always a point x̃ ∈M with

x̃ ∈
{
x ∈ R2 | (x1 − 1)2 + (x2 − 1)2 = 1, 0 < xi < 1, i = 1, 2

}
and λ1x̃1 + λ2x̃2 < λ1 which contradicts (4.1).

Now, we consider weakly efficient points for the following dual multiobjective programming problem

Dw-MOSIP max v s.t. (λ, µ, v) ∈ DwM

with the feasible set

DwM =

{
(λ, µ, v) ∈

{
Rq+ \ {0q}

}
×K∗ × Rq | λ>v ≤ inf

x∈Rn

{
λ>f(x) + 〈µ,G(x)〉

}}
.

The difference between the feasible sets DM and DwM is that in the latter one some (but not all) coefficients
of λ may vanish. The final theorem delivers duality results for weakly efficient points for Dw-MOSIP as well
as weakly efficient points for MOSIP.

Theorem 4.4. (see [12], Theorem 2.5).
(a) (Weak duality). There does not exist any pair of points (x, (λ, µ, v)) ∈M ×DwM with f(x) < v.
(b) (Strong duality). Assume x ∈ M and that MOSIP fulfills SC. If x ∈ M is a weakly efficient point for
MOSIP, then there exists a weakly efficient point (λ, µ, v) ∈ DwM for Dw-MOSIP with f(x) = v.
(c) (Converse duality). Assume that MOSIP fulfills SC and that M is compact. If (λ, µ, v) ∈ DwM is a
weakly efficient point for Dw-MOSIP, then there exists a weakly efficient point x ∈ M for MOSIP with
v = f(x).

5. CONCLUSIONS

In this tutorial note we reviewed several properties of the problem class MOSIP: solution types, constraint
qualifications, optimality conditions and, under additional convexity assumptions, also weak, strong and
converse duality with respect to efficiency and weak efficiency. As mentioned above, there exist only a few
results towards a systematic approach to this combination of multiobjective and semi-infinite programming
although there are several applications for this model. We mainly presented results from the recent papers
[10, 11, 12]. For further studies note that the paper [12] also discusses duality results for the nonconvex case.
In this latter case several technical assumptions (such as reduction approach and p-power transformation)
are applied locally around the point under consideration. Moreover, in this case the terminology of KT-
and G-locally properly efficient points as defined in Section 2 is used. Altogether, there are still many open
questions within this class of problems which combines multiobjective and semi-infinite programming.
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[10] GUERRA-VÁZQUEZ, F., RÜCKMANN, J.-J.[2014]: On proper efficiency in multiobjective semi-
infinite optimization. In: Xu, H. et al. (eds.): Optimization and Control Techniques and Appli-
cations. Springer, New York 115-135.
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[22] REEMTSEN, R., RÜCKMANN, J.-J. (EDS.) [1998]: Semi-Infinite Programming. Kluwer, Boston.

[23] SHAPIRO, A. [2009]: Semi-infinite programming, duality, discretization and optimality conditions.
Optimization 58, 133-161.

[24] STEIN, O. [2003]: Bi-level Strategies in Semi-Infinite Programming. Kluwer, Boston.)

[25] TAPIA, R.A., TROSSET, M.W. [1994]: An extension of the Karush-Kuhn-Tucker necessity conditions
to infinite programming. SIAM Review 36, 1-17.

225


