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ABSTRACT  

The aim of the present paper is to analyse the performance measures of a two non-identical unit redundant system using semi-

Markovian approach. The use of non-identical unit’s redundant systems is preferred in industries but due to lack of proper 
maintenance and repair they results in decline of productivity. Hence, to enhance the reliability and productivity, beneficial 

initiative must be taken. For this purpose, a reliability model of a redundant system having one original and one duplicate unit is 

developed with an immediate repair facility. Repairman conducts the preventive maintenance of the unit after a pre-specific time 
to enhance the performance and efficiency of the system. All random variables follow Weibull distribution. Mean time to system 

failure, availability and profit function has been derived for the considered non-identical redundant system. To highlight the 

importance of the study graphs are drawn for these measures.  
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RESUMEN  

Este paper tiene por objeto  analizar  medidas del comportamiento para un sistema redundante de dos sistemas  de unidades no-

idénticas redundantes usando un enfoque semi-Markoviano. El  uso de un sistema redundante de unidades no-idénticas es preferido 
en las industrias pero debido a la falta de mantenimiento y reparación propia resulta en una declinación de la productividad. 

Entonces, para mejorar la fiabilidad y la productividad, una iniciativa beneficiosa tiene que ser tomada. Con este propósito, un 

modelo de fiabilidad de un sistema redundante que tiene una unidad original y un duplicado es desarrollado con una facilidad de 

reparación inmediata. El reparador lleva a cabo el mantenimiento preventivo de la unidad después de un tiempo  pre-especificado 

para permitir la mejoría del comportamiento de la eficiencia del sistema. Todas las variables siguen una distribución de Weibull.  

El tiempo promedio de la falla del sistema, la función de  disponibilidad y ganancia han sido derivadas para el sistema redundante 

considerado. Para destacar la importancia del estudio  gráficos son establecidos para estas medidas.  

 

1. INTRODUCTION 

 

 With the advancement of modern technology the configuration of industrial systems becomes more and more 

complex. The complexity of system reduces the quality and productivity of the system. To overcome this 

problem, system designers use cold standby redundancy as an effective technique for reliability enhancement 

of complex systems. The probability of failure of cold standby unit is zero. Air crafts, textile manufacturing 

systems, carbon recovery systems in fertilizer plants and satellite systems get high reliability using cold standby 

redundant systems.  Gopalan and Nagarwalla (1985) analysed a standby system with one repairman and 

preventive maintenance. Goel and Sharma (1989) studied the effect of slow switch and two modes of failure on 

standby system. Repairable standby system with replaceable repair facility was analysed by Cao and Wu (1989). 

Gopalan and Bhanu (1995) used concept of on-line preventive maintenance and repair for a cold standby 

system. Chandrasekhar et al. (2004) carried out a study on two-unit cold standby system with Erlangian repair 

time. Zhang and Wang (2009) suggested a geometric model for a repairable cold standby system with priority 

in use and repair. Mahmoud and Moshref (2010) analyzed effect of preventive maintenance, hardware and 

human failure on cold standby systems.  Moghaddass et al. (2011) analysed the reliability and availability of 

repairable system with repairman subject to shut-off rules. Wu and Wu (2011) developed a reliability model 
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with two cold standby units, one repairman and a switch under poisson shocks. Kumar and Malik (2012) 

developed many stochastic models for a computer system using concept of preventive maintenance after 

maximum operation time and independent h/w and s/w failure.  

Wang et al. (2006) carried out the cost benefit analysis of series systems with cold standby components. Ke et 

al. (2011) analysed a two-unit redundant system with detection delay and imperfect coverage. Ke et al. (2011) 

obtained the reliability measures of a repairable system with standby switching failures and reboot delay. Wang 

and Fang (2012) carried out the comparison of availability between two systems with warm standby units and 

different imperfect coverage.  

All the studies referred above, discussed reliability models of cold standby systems having identical units under 

different set of assumptions. But, many times due to economic reasons, it is not always possible to keep an 

identical unit in standby. However, a duplicate unit can be kept in standby to improve the reliability and 

availability of the system.  In most of the studies, all the researchers made the assumption that all the random 

variables related to failure time of the unit distributed exponentially and repair times are either arbitrary or 

constant distributed. But, the performance of most of the mechanical, industrial and electrical systems varies 

with respect to passes of time. So, their repair and failure is not necessarily constant distributed but may behave 

as any arbitrary distribution.  There are many distributions such as Weibull, normal, and lognormal distributions 

that are useful in analysing failure processes of standby systems. These distributions have hazard rate functions 

that are not constant over time, thus providing a necessary alternative to the exponential failure law.  

The most important probability distribution in reliability modelling is the Weibull distribution. The Weibull 

failure distribution may be used to model both increasing and decreasing failure rates. Suppose random variable 

V denotes the time to maximum operation time of an item/ device having Weibull distribution, and then its 

probability density function is denoted by
1

1( ) exp( ) f t t t   0 , 0 t and   . It is 

characterized by a hazard rate function of the form 
1( ) , 0 , 0  h t t t and   which is a power 

function.  The function ( )t  is increasing for η> 0, θ> 0 and is decreasing for η <0, θ <0. The reliability 

function is given by ( ) exp( ) R t t . Thus the failure free operating time of the system has a Weibull 

distribution with parameters θ and η. Here η is referred to as the shape parameter and θ is the scale parameter. 

Its effect on the distribution can be seen for several different values. For  <1, the probability density function 

is similar in the shape to the exponential, and for large value of   (  3), the probability density function is 

some-what symmetrical, like the normal distribution. For 1<  <3, the density is skewed. If we put   = 1 in 

pdf, Weibull distribution reduces to Exponential distribution and if   = 2, it reduces to Rayleigh distribution. 

Kumar and Saini (2014) analysed cost-benefit of a single-unit system under preventive maintenance and 

Weibull distribution for random variables. Gupta et al. (2013) discussed a two dissimilar unit cold standby 

system model by taking Weibull failure and repair distribution. But, no work related the reliability and 

performance of two non-identical units has not be found in literature.  

In the present paper, we develop a reliability model for a non-identical cold standby system for the evaluation 

of system reliability, mean time to system failure, steady state availability, busy period of server, expected 

number of repairs, expected number of visits by server and profit function of the system by considering all time 

random variables as Weibull distributed. The possible states of the proposed problem have been discussed under 

heading system description. A single repair facility has been provided to do repair and maintenance activities 

of original and duplicate unit.  After a pre-specific time unit undergoes for preventive maintenance. All random 

variables are statistically independent. Switch devices and repairs are perfect. Semi-Markov process and 

regenerative point techniques are used to draw recurrence relations for various reliability characteristics. All 

time random variables are Weibull distributed. The probability density function of maximum operation time of 

original and duplicate unit is denoted by 
1( ) exp( ) g t t t   .The pdf of failure times of the original 

and duplicate unit are denoted by 
1( ) exp( ) f t t t   and

1
2 ( ) exp( ) f t h t ht   

respectively. The preventive maintenance rate of the original and duplicate units is denoted by the probability 

density function
1

1( ) exp( ) g t t t   . The random variables corresponding to repair rate of the 

original and duplicate units have the probability density function 
1

1( ) exp( ) f t k t kt  and 
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1
3 ( ) exp( ) f t l t lt  respectively with 0t and , , , , , , 0h k l    . The probability 

/cumulative density functions of direct transition time from regenerative state iS  to a regenerative state jS  or 

to a failed state jS  visiting state ,k rS S  once in (0, t] have been denoted by qij.kr (t)/Qij. kr (t). To improve the 

importance of the study, graphical and numerical results are drawn for a particular case for mean time to system 

failure, availability and profit function.  

Nomenclature  

O Operative unit 

DCs Duplicate cold standby unit 

Do Duplicative unit is operative 

~ / * Symbol for Laplace -Steiltjes Transform (LST) / Laplace Transfor(LT) 

Ⓢ/   Symbol for Laplace-Stieltjes convolution/Laplace convolution 

Fur/FUR Denotes the failed original unit under repair/continuously under repair 

DFur/DFUR Denotes the failed duplicate unit under repair/continuously under repair 

DPm/DPM Denotes that duplicate  unit under preventive maintenance/ continuously under 

preventive maintenance 

Pm/PM Denotes that original unit under preventive maintenance/ continuously under 

preventive maintenance 

WPm/WPM Denotes that original unit waiting for preventive maintenance/ continuously waiting 

for preventive maintenance 

DWPm/DWPM Denotes that duplicate  unit waiting for preventive maintenance/ continuously waiting 

for preventive maintenance 

Fwr/FWR Original unit after failure waiting for repair/continuously waiting for repair 

DFwr / DFWR Duplicate unit after failure waiting for repair/continuously waiting for repair 

MTSF Mean Time to System Failure 

 

 

2. MODEL DESCRIPTION 

 

In this section, a stochastic model has been developed for two non-identical unit’s systems. The system may be 

any of the following states describes as follows: 

State 0:  Original unit is operative, duplicate unit in cold standby and system is in upstate. The service facility 

at 0S  remain idle. 

State 1: Original unit is under preventive maintenance after completion of maximum operation time, 

duplicate unit is operative and system is in upstate. The service facility at 1S  is busy in preventive 

maintenance of the original unit. 

State 2: Original unit is under repair after failure, duplicate unit is operative and system is in upstate. The 

service facility at 2S  is busy in repair activity of the failed original unit. 

State 3: Original unit is operative, duplicate unit is repair after failure and system is in upstate. The service 

facility at 3S  is busy in repair activity of the failed duplicate unit. 

State 4: Original unit is operative, duplicate unit is under preventive maintenance after completion of 

maximum operation time and system is in upstate. The service facility at 4S  is busy in preventive 

maintenance of the duplicate unit. 

State 5: Original unit is failed and waiting for repair, duplicate unit is continuously under preventive 

maintenance after completion of maximum operation time from previous state and system is in downstate. 

The service facility at 5S  is busy in preventive maintenance of the duplicate unit. 

State 6: Original unit is failed and continuously under repair from past state, duplicate unit is failed and 

waiting for repair and system is in downstate. The service facility at 6S  is busy in repair of the original 

unit. 
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State 7: Original unit is failed and continuously under repair from past state, duplicate unit is under waiting 

for preventive maintenance and system is in downstate. The service facility at 7S  is busy in repair of the 

original unit. 

State 8: Original unit is waiting for preventive maintenance after completion of maximum operation time, 

duplicate unit is under preventive maintenance continuously after completion of maximum operation time 

from previous state and system is in downstate. The service facility at 8S  is busy in preventive maintenance 

of the duplicate unit. 

State 9: Original unit is continuously under preventive maintenance after completion of maximum operation 

time from previous state, duplicate unit is waiting for preventive maintenance after completion of maximum 

operation time and system is in downstate. The service facility at 9S  is busy in preventive maintenance of 

the original unit. 

State 10: Original unit is continuously under preventive maintenance after completion of maximum 

operation time from previous state, duplicate failed unit is waiting for repair and system is in downstate. 

The service facility at 10S  is busy in preventive maintenance of the original unit. 

State 11: Original unit is waiting for repair, duplicate failed unit is continuously under repair from previous 

state and system is in downstate. The service facility at 11S  is busy in repair of the failed duplicate unit. 

State 12: Original unit is waiting for preventive maintenance after completion of maximum operation time, 

duplicate failed unit is continuously under repair from previous state and system is in downstate. The service 

facility at 12S  is busy in repair of the failed duplicate unit. 

Out of these, states 0S 1S 2S 3S  and 4S are the operative and regenerative states while all other are non-

regenerative and failed states. 

 

3. RELIABILITY INDICIES 

 

3.1 Transition Probabilities and Mean Sojourn Times 

 

Simple probabilistic considerations yield the following expressions for the non-zero elements 

ij ij ijp = Q ( )= q (t)dt    as                                                                (1)  

p01=


 
, p02=



 
, p10 =

h



  
, p1.10 =

h

h  
=p13.10, p19=

h



  
=p14.9,  

p20 =
k

k h  
,  p26 =

h

h k  
=p23.6, p27 =

h k



  
= p24.7, p30 = 

l

l   
,  

p3.12 =  
l



  
= p31.12, p3.11 = 

l



  
= p32.11,     p40 =



   
 , p45= 



   
 = p42.5, p48= 



   
 = p41.8  ,  p52 = p63 = p74 = p81 = p94 = p10.3 = p11.2 = p12.1 = 1                                   (2) 

 

It can be easily verified that p01+p02 = p10+p19+p1.10 = p10+p14.9+p10 = p20+p27+p26= p20+p23.6+p24.7 = 

p30+p3.12+p3.11 = p30+p31.12+p32.11 = p40+p45+p48= p40+p418+p425 = p52= p63= p74 = p81 = p94 = p10.3 = p11.2 = p12.1 = 

1                                                                                 (3) 

 

The mean sojourn times (i) is the state Si are  

0 = 1/

(1 1/ )

( ) 



 

 


,

'μ1 =
1 1

1 1
(1/ 1)[ ( )]

( ) ( )( )

h

h h 

 

    

   

   

,      3 = 
1/

(1 1/ )

( )l 



 

 

 
, 
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2

'μ =
1 1

1 1
(1/ 1)[ ( )]

( ) ( )( )

h

h k k h k 

 

 

   

   

,        2 =
1/

(1 1/ )

( )k h 





 

 
    

3

'μ =
1 1

1 1
(1/ 1)[ ( )]

( ) ( )( )l l l 

  

   

   

   

,    
4 1/

(1 1/ )

( ) 




  

 


 
,  

'

4  =
1 1

1 1
(1/ 1)[ ( )]

( ) ( )( ) 

  

      

   

   

    1 =
1/

(1 1/ )

( )h 



 

 

 
 

                                                                            (4) 

 

 

3.2 Reliability and Mean Time to System Failure (MTSF)          

  

By probabilistic arguments, the recurrence relations for mean time to system failure are obtained by considering 

 iφ t  the cumulative density function of first passage time from the regenerative state iS   to a failed state and 

all failed states are observed as absorbing state. The recurrence relations for  iφ t  are as follows:     

        i i, j j i,k
j k

φ t = Q t ®φ t + Q t                                    (5) 

Taking LST of above relation (5) and solving for 0 ( )s .We have  

R*(s) =
01 φ (s)

s


                                                      (6) 

The system’s reliability can be obtained by taking Laplace inverse transform of (6).  

The MTSF of the system is given by 

MTSF =
0

0

1
lim
s

φ (s)

s


 = 

N

D
  

where N = 0 01 1 02 2μ + p μ + p μ
 
and D = 01 10 02 201 p p p p                   (7) 

 

3.3 Steady State Availability  

Let  iA t denotes the probability of up-state of a system at time point ‘t’ entered regenerative state iS  at t = 

0. The recursive relations are given as  

       ( )
,
n

i i ji j
j

A t M t q t A t                                                                                (8) 

 where ,i jS S E  and can transit through n transitions. The upstate probability of system to stay 

 at a particular state is denoted by ( ).iM t  Here 0
( )t

M (t)= e
  

, 

 1
( h )t

M (t)= e
   

,
2

( k h)t
M (t)= e

  
 , 3

( l)t
M (t)= e

   
,  

( )

4 ( ) tM t e
          (9) 

Taking Laplace transformation of above equation (8) and solving for 
*

0 ( )A s . The steady state availability is 

given by  

*

0 0
0

( ) lim ( )
s

A sA s


 
2

2

N

D
                                                                                                               (10) 

where 
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2 0 41.8 14.9 31.12 13.10 42.5 24.7 32.11 23.6 42.5 14.9 32.11 13.10

41.8 24.7 31.12 23.6 1 3 13.10 4 14.9 01 42.5 24.7 32.11 23.6

02 41.8 24.7 31.12 2

( ( )((1 )(1 ) ( )

( )) (( ( ) ( ) ( ) )( (1 )

(

      

     

 

N M t p p p p p p p p p p p p

p p p p M t M t p M t p p p p p p

p p p p p 3.6 2 3 23.6 4 24.7 01 42.5 14.9 32.11 13.10

02 41.8 14.9 31.12 13.10

))) (( ( ) ( ) ( ) )( ( )

(1 )))

    

 

M t M t p M t p p p p p p

p p p p p

                     

2 0 41.8 14.9 31.12 13.10 42.5 24.7 32.11 23.6 42.5 14.9 32.11 13.10

' ' '

41.8 24.7 31.12 23.6 1 3 13.10 4 14.9 01 42.5 24.7 32.11 23.6

'

02 41.8 24.7 31.12 23.6 2

((1 )(1 ) ( )

( )) ( )( (1 )

( )) (

      

      

  

D p p p p p p p p p p p p

p p p p p p p p p p p

p p p p p



  

 ' '

3 23.6 4 24.7 01 42.5 14.9 32.11 13.10

02 41.8 14.9 31.12 13.10

)( ( )

(1 ))

  

 

p p p p p p p

p p p p p

 
 

 

3.4 Busy Period Analysis for Server 

Let )(tBR

i ,  pm
iB t  be the probability that the server is busy in repairing and preventive maintenance of 

the unit at an instant ‘t’ given that the system entered state i at t = 0. The recursive relations for )(tBR

i  are as 

follows:  

       ( )
,
nR R

i i ji j
j

B t W t q t B t                       (11) 

       ( )
,

pm n pm
ii i j j

j

B t W t q t B t    

 where ,i jS S E  and can transit through n transitions. The upstate probability of server’s  

 business at a particular state is denoted by ( ).iW t Here ( )

2( ) k h tW t e
     , 

( )

3( ) l tW t e
    ,  

 
( )

1( ) k tW t e
     ,  

( )

4 ( ) tW t e
      . By taking Laplace transformation of (11) and solving for 

 
* ( )R

0B s . The busy period of the server due to repair is given by
* 3

0
0

2

lim
R

R R

0
s

N
B = sB (s)=

D
,  

 
* 4

0
0

2

lim
Pm

Pm Pm

0
s

N
B = sB (s)=

D
 

*

3 3 13.10 01 42.5 24.7 32.11 23.6 02 41.8 24.7 31.12 23.6

* *

2 3 23.6 01 42.5 14.9 32.11 13.10 02 41.8 14.9 31.12 13.10

where ( (0) )( (1 ) ( ))

( (0) (0) )( ( ) (1 ))

RN W p p p p p p p p p p p

W W p p p p p p p p p p p

     

    
 

 

 

and D2 is already mentioned in previous section. 

 

3.5 Expected Number of Repairs, Replacements & Visits by Server 

 Let 
R

iE (t) ,  Pm
iE t  &  iN t   be the expected number of repairs, preventive maintenances and visits by 

server in (0, t] given that the system entered the regenerative state i at t = 0. The recursive relations for 
R

iE (t)  

are given as  

     ( )
,
nR R

i j ji j
j

E t Q t E t     
    

              
(12) 

* *

4 1 4 01 42.5 24.7 32.11 23.6 02 41.8 24.7 31.12 23.6

*

4 24.7 01 42.5 14.9 32.11 13.10 02 41.8 14.9 31.12 13.10

( (0) (0))( (1 ) ( ))

( (0) )( ( ) (1 ))

PmN W W p p p p p p p p p p

W p p p p p p p p p p p

      

   
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     ( )
,
nPm Pm

i j ji j
j

E t Q t E t     
 

     ( )
,
n

i j ji j
j

N t Q t N t     
 

Where jS is any regenerative state to which the given regenerative state i transits and δj =1, if j is the 

regenerative state where the server does job afresh, otherwise δj = 0. Taking Laplace Stieltjes transformation 

of relation (12) and solving for
**

0

RE (s) . The expected numbers of repairs per unit time are given by  

 
**

0 0
0

( ) lim ( )R R

s
E sE s


  = 

5

2

RN

D
  ,   

**

0 0
0

( ) lim ( )Pm pm

s
E sE s


  =

6

2

PmN

D
,   

0 0
0

( ) lim ( )
s

N sN s


  =
7

2

N

D
                                              

                            

where  

5 32.11 31.12 30 13.10 01 42.5 24.7 32.11 23.6 02 41.8 24.7 31.12 23.6

20 23.6 24.7 32.11 31.12 30 23.6 01 42.5 14.9 32.11 13.10 02

41.8 14.9 31.12 13.10

( ) ( (1 ) ( ))

( ( ) )( ( )

(1 ))

RN p p p p p p p p p p p p p p

p p p p p p p p p p p p p

p p p p

       

      

 

 

 

6 10 14.9 13.10 40 42.5 41.8 14.9 01 42.5 24.7 32.11 23.6 02 41.8 24.7

31.12 23.6 40 42.5 41.8 24.7 01 42.5 14.9 32.11 13.10 02 41.8 14.9 31.12 13.10

(( ) ( ) )( (1 ) (

)) (( ) )( ( ) (1 ))

PmN p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p

        

       
 

 

7 01 02 41.8 14.9 31.12 13.10 42.5 24.7 32.11 23.6 42.5 14.9 32.11 13.10

41.8 24.7 31.12 23.6

( )(((1 )(1 )) (( )

( )))

N p p p p p p p p p p p p p p

p p p p

       



 

and D2 is already mentioned in previous section. 

 

4. PROFIT ANALYSIS 

 

The net profit in steady state incurred by the system model can be obtained as follows: 

0 0 1 0 2 0 3 0 4 0 5 0

Pm R Pm RP K A K B K B K E K E K N     
                              (13) 

K0 = Revenue generated by system per unit up-time 

Ki = Expenditure per unit time on different repair activities 

 

5. CASE STUDIES WITH DISCUSSIONS 

 

(i) When shape parameter 0.5   then maximum operation /failure of original unit/failure of duplicate 

unit/preventive maintenance/ repair of original/repair of duplicate unit time distributions reduce to:  

11
1 1

2 3 , 1

( ) , ( ) , ( ) , ( )
2 2 2 2

( ) , ( ) ; 0 , , , , 0
2 2

where

tt t k t

h t l t

k
g t e f t e g t e f t e

t t t t

h l
f t e f t e t and h k l

t t

   

   

  

 

   

   

          (14) 

(ii) When shape parameter 1.0   then failure/preventive maintenance/arrival time of the 

server/replacement/transition rate/ repair time distributions reduce to exponentials, then  

1
1 1 1

2 3 , 1

( ) , ( ) , ( ) , ( )

( ) whe, ( ) ; 0 , , , 0r ,e

tt t kt

ht lt

g t e f t e g t e f t ke

f t he f t le t and h k l

   

   

  

 

   

   
                                           (15) 
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 (iii) When shape parameter 2.0   then failure/preventive maintenance/arrival time of the 

server/replacement/transition rate/ repair time distributions reduce to Rayleigh having the pdf-  
22 2 2

1

2 2

1 1 1

2 3 , 1

( ) 2 , ( ) 2 , ( ) 2 , ( ) 2

wh( ) 2 , ( ) 2 ; 0 , , , ,e e 0r

tt t kt

ht lt

g t e f t e g t e f t ke

f t he f t le t and h k l

   

   

  

 

   

   
                                   (16) 

 

6. NUMERICAL RESULTS 

 
Table 1: MTSF vs. Failure Rate (β) for various values of shape parameter 

Β α=2,η=0.5, 
γ=5,k=1.5, 
h=0.009, 
l=1.4 

α=2,η=0.5, 
γ=7,k=1.5, 
h=0.009, 
l=1.4 

α=2,η=0.5 
γ=5,k=1.5, 
h=0.009, 
l=1.4 

α=2,η=0.5, 
γ=7,k=1.5, 
h=0.009, 
l=1.4 

α=2,η=0.5, 
γ=5,k=1.5, 
h=0.009, 
l=1.4 

α=2,η=0.5 
γ=7,k=1.5 
h=0.009 
l=1.4 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.10 

4.9918    

4.7950    

4.6123    

4.4423    

4.2836    

4.1351    

3.9960    

3.8654    

3.7426 

3.6268 

11.7910   

10.7622    

9.8940    

9.1515    

8.5094    

7.9487    

7.4548    

7.0165    

6.6251 

6.2733 

5.9647    

5.7599    

5.5696    

5.3921    

5.2264    

5.0712    

4.9255    

4.7886    

4.6596 

4.5379 

13.8080   

12.6725   

11.7138   

10.8934   

10.1835    

9.5632    

9.0165    

8.5310    

8.0970 

7.7067 

8.9395    

8.6486    

8.3781    

8.1260    

7.8904    

7.6698    

7.4627    

7.2680    

7.0846 

6.9116 

20.8745   

19.1946   

17.7760   

16.5621   

15.5116   

14.5936   

13.7844   

13.0659   

12.4235 

11.8458 

 

Table 2: Availability vs. Failure Rate (β) for various values of shape parameter 

  α=2,η=0.5, 

γ=5,k=1.5, 

h=0.009, 

l=1.4 

α=2,η=0.5, 

γ=7,k=1.5, 

h=0.009, 

l=1.4 

α=2,η=1, 

γ=5,k=1.5, 

h=0.009, 

l=1.4 

α=2,η=1, 

γ=7,k=1.5, 

h=0.009, 

l=1.4 

α=2,η=2, 

γ=5,k=1.5, 

h=0.009, 

l=1.4 

α=2,η=2, 

γ=7,k=1.5 

h=0.009 

l=1.4 

0.01 0.9394 0.9724 0.8941 0.9367 0.8715 0.9109 

0.02 0.9347 0.9674 0.8916 0.934 0.8701 0.9092 

0.03 0.9299 0.9625 0.8892 0.9312 0.8687 0.9076 

0.04 0.9252 0.9576 0.8869 0.9285 0.8673 0.906 

0.05 0.9205 0.9527 0.8845 0.9259 0.8659 0.9044 

0.06 0.9158 0.9478 0.8821 0.9232 0.8645 0.9028 

0.07 0.9112 0.943 0.8798 0.9206 0.8632 0.9012 

0.08 0.9065 0.9382 0.8775 0.918 0.8619 0.8996 

0.09 0.9019 0.9333 0.8752 0.9154 0.8605 0.8981 

0.1 0.8973 0.9286 0.873 0.9129 0.8592 0.8966 
 

Table 3: Profit vs. Failure Rate (β) for various values of shape parameter 

 

  

α=2,η=0.5, 
γ=5,k=1.5, 
h=0.009, 
l=1.4 

α=2,η=0.5, 
γ=7,k=1.5, 
h=0.009, 
l=1.4 

α=2,η=1, 
γ=5,k=1.5, 
h=0.009, 
l=1.4 

α=2,η=1, 
γ=7,k=1.5, 
h=0.009, 
l=1.4 

α=2,η=2, 
γ=5,k=1.5, 
h=0.009, 
l=1.4 

α=2,η=2, 
γ=7,k=1.5 
h=0.009 
l=1.4 

0.01 4357.7 4522.4 4178.2 4384.1 4134.2 4329 

0.02 4331.4 4494.8 4165.1 4369.2 4126.6 4320.1 

0.03 4305.1 4467.4 4152 4354.4 4119.1 4311.3 



255 

 

0.04 4279 4440.1 4139.1 4339.8 4111.6 4302.7 

0.05 4252.9 4413 4126.3 4325.3 4104.3 4294.1 

0.06 4227.1 4385.9 4113.6 4311 4097 4285.6 

0.07 4201.3 4359 4101 4296.8 4089.8 4277.2 

0.08 4175.7 4332.2 4088.5 4282.7 4082.6 4268.9 

0.09 4150.2 4305.6 4076.2 4268.8 4075 4260.7 

0.1 4124.9 4279 4064 4255 4068.5 4252.6 

 

 

 
 

Figure. 1: Steady State Availability vs. Failure Rate 

 

 

Figure. 2: Profit vs. Failure Rate 
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7. CONCLUSION 

 

For a particular case, having values 2, .5, 5, .009, 1.5,  1.4h k l         behaviour of various 

reliability measures such as MTSF, availability and net expected steady state profit of the system discussed here 

for a two-unit cold standby system under Weibull failure and repair laws. The values of iK   for profit function 

are assumed as 0 1 2 3 4 55000, 500, 400, 350, 300, 325K K K K K K      . From the 

numerical results depicted above in Table’s 1-3 shows that the MTSF, availability and profit of the system 

declines with the increase of failure rate (β) and shape parameter (η) while values of these parameters increase 

with increment of the repair rate and preventive maintenance rate( ). Finally, we conclude that by increasing 

the repair rate of the original and duplicate unit system can be made more profitable. 

RECEIVED: JUNE 2015 

REVISED: MARCH 2016 
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