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ABSTRACT

The p chart plays the important role in controlling the proportion of defective items produced. In recent years
researchers in various quality control procedures consider the possibility of misclassification errors as an important
issue. In the present paper, a method of obtaining the expression of the power of control chart for binomial distribution
(proportion of defectives) is being studied by considering approximate expressions for calculating the probabilities of
errors of misclassification due to measurement error. Formulae are derived for calculating probabilities of

misclassification due to measurement error. The relationship between apparent fraction defective (AF D) and true

fraction defective (TF D) has been used to study the power of control chart.
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RESUMEN

Las p-cartas juegan un rol importante en el control de la proporcién de articulos defectuosos producidos. En afios
recientes investigadores de varios procedimientos de control de la calidad consideran la posibilidad de errores de mala
clasificacion como un aspecto importante. En el presente trabajo, un método para obtener la expresion de la potencia de
la carta de control para la distribucién binomial (proporcion de defectuosos) ha sido estudiada considerando expresiones
aproximadas para calcular las probabilidades de error de mala clasificacion debido a errores de medicion. Férmulas son
derivadas para calcularlas. La relacion entre la aparente fraccion de defectuosos (AF D) y la verdadera (TF D)

son usadas para estudias la potencia de la carta de control.

1. INTRODUCTION

Statistical techniques now-a-days have been successfully applied to different production processes in
industries to achieve desired quality levels of manufactured products with an optimum production cost. It
is widely acknowledged within the industrial process, processes produced are often contaminated with
measurement error which can introduce serious bias in the derived results. The nature and magnitude of
measurement error and its effect on the actual performance of various control charts can be
overwhelming and studied by several researchers. For a recent and brief review see Maravelakis (2012).
See also Sankle et al. (2012) and Chakraborty and Khurshid (2013 a, b) and references therein.

To employ statistical techniques, inspections are made on the finished products, during the time of
production or after the production. In every inspection system, there may be either of two possible types
of errors: (i) a good (conforming) item to a specification may be misclassified as defective
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(nonconforming) or (ii) a defective (nonconforming) item may be misclassified as good (conforming).
These types of errors are classified as misclassification errors (or inspection errors) and are generally due
to chance causes and can be estimated (Sankle and Singh, 2012).

Misclassification is a special case of measurement error. Apparently there is no unified theory that
encompasses the key elements of misclassification error which is usually studied separately from
measurement error, though there is clearly much overlap. Misclassification errors may significantly alter
the performance of (attribute) control charts, as has been investigated by several authors, including
Dorris and Foote (1978), Case (1980), Schneider and Tang (1987), Suich (1988) and Johnson et al.
(1991). Recently Chen et al. (2011) studied inspection errors in multinomial control charts. More
recently Balamurali and Kalyanasundaran (2011) studied the effect of misclassification error on the
operating characteristic (OC) curve of analysis of means (ANOM).

The p chart plays the vital role in controlling the proportion of defective items produced. Singh et al.
(2002) illustrated cumulative sum control charts for proportions under inspection error (see also Singh
and Sayyed, 2001 for cumulative sum control charts for Poisson variables under inspection error). In the
present paper, the power of control chart for binomial distribution (proportion of defectives) is being
studied by considering approximate expressions for calculating the probabilities of errors of
misclassification due to measurement error. The relationship between apparent fraction defective

(AFD) and true fraction defective (TFD) has been used to study the power of control chart.

2. TERMINOLOGY AND FEW ASSUMPTIONS

Summarizing the following notation to be used throughout this paper, will facilitate further development.
The misclassification error may be of two types: F’1 (type I error) is the probability of classifying a good
item as a defective one and P2 (type 1l error) is the probability of classifying a defective item as good
one. Further AFD (apparent fraction defective) is the proportion of defective items if error of
misclassification is presented is denoted by 7z and TFD (true fraction defective) is the proportion of
defective items when there is no error of misclassification and is denoted by P. It is obvious that
AFD=TFD, if the error of misclassification is zero.

It is assumed that the measurements have been taken only to classify the production items into acceptable
and rejectable units with certain specifications that can be expressed in terms of mean and standard
deviation of the measurable quality characteristics.

The quality characteristic X is normally distributed with mean £/ and standard deviation o,
2

exp _Lyxead gy

1
f(X)dx=—"+~——=
) o,N2rx 2\ o,

The variable V is normally distributed with mean X and standard deviation o,

2
1 1({v—-x
f(v)dv=——+—=exp| —=| —— | |dv
o, N2x 2\ o,
The units beyond X = 12+ K o, are defective and the units within X = 22+ K & are non-defective.

3. EVALUATING PROBABILITIES OF MISCLASSIFICATION

Here we have classified the production process, after measurement into one of the two categories. They
are either conforming (good) or non-conforming (defective) units. If I:’1 is the probability of

misclassification of a conforming unitand P, is the probability of misclassification of a non-conforming
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unit, then owing Singh (1964) with the above mentioned assumptions (Section 2), P, and P, can be
evaluated as

'Tj‘p(x) dx[1- Fc}p(v) dv]

(1) —Ko‘p —Kop

and
jf(x)dx If(v)dv—k_}?(x)dx f?%v)dv
(p2) —KG —KU

In fact F’1 and P2 are the inspection risks, which are the type I and type Il errors and take the values
between 0 and 1.
The approximate expressions for P1 and P2 (Singh, 1964) are:

R =2T(h,a)+{®(k)-D(h)}

3)
and
P, =2T (h,a)—{®(k)-®(h)}
) (4)
Ko
a=o,/o, h=——= \/m d(X) = N jexp{—%vz}d
and

. EXp —1h2(1+x2)
1 J- 2
Jor s 1+x?

Here, 1.5 < K <3 and (o, /o, )< 0.5 hold good for finding P, and P, . Singh (1964) studied

T(h,a)= dx.

measurement error in acceptance sampling plan and calculated F’1 and F’2 based on the graphic
representation of the probabilities of misclassification data for different values of K and a = O'e/O'p

It has been shown by Lavin (1946) that due to misclassification error, the probability of acceptance of the
lot will be obtained by replacing true fraction defective (TFD) P by the apparent fraction defective (
AFD ) 7 where

7=P1-P,)+P,1-P).

7 yields a random variable X whose binomial distribution has parameter 77 instead of P. See also
Collins and Case (1976), Johnson et al. (1991) and Mittag and Rinne (1993) for published material based
on Lavin equation.

4. POWER OF CONTROL CHART FOR PROPORTIONS DATA
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The data can often represented by a binomial distribution if it consists number or proportion of units
having a specific attribute. In this section we develop the expression for the power of control chart for
binomial (p-chart) under misclassification due to measurement error. Recently Khoo (2013) presented
power functions for Shewhart control chart.

Following Kanazuka (1986), the power of detecting the change of process for the control chart is given
by

P, =P{X >UCL}+P{X <LCL}
where UCL and LCL are upper and lower control limits respectively.

RS . n(l-7)
Thus under misclassification the control limits for binomial (p-chart) are 77 * K T and

centre line CL is 7z. Hence, the power of the control chart under misclassification is

UCL-1 n LCL n
P, =|1- “(L-)" |+ “(L-m)"e.
e MR Dy W
(5)

The operating characteristic (OC) curve, under misclassification, which illustrates the probability that a
sample fraction defective X, / N, will fall within control limits as a function of the error process fraction
defective 7T is given by

P(D= > (X” }r*e -z,

Xe=LCL e
(6)
5. EXAMPLE AND ILLUSTRATION

Consider the data for fraction defective ( P -chart), where 4 samples, each of size 15 were inspected and
number of defectives along with proportions of defectives are obtained as follows:

Sample # Number of Fraction
defects defectives
(d) P=(d,/n)
1 1 0.07
2 4 0.27
3 2 0.13
4 5 0.33

Here overall sample proportion of defectivesis P = P = 0.2 and its standard deviation is

pd-p)

Op = T =0.10. For our analysis we have kept p = P = 0.2, the overall sample
proportion of defective fixed and the values of N being changed in different situations to see the effect of
the size of the sample on the power of control chart.
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6. CALCULATIONS AND CONCLUSIONS

To obtain the power of control chart (P,) and operating characteristic (OC) curve ( P, (7)) under
misclassification error we have to first find 7 = P(1—P,) + F,(1— P) based on the approximate

expressions for P, and P, (Equations 3 and 4).

. K . o
Table 1 gives the values of h = ﬁ for different combinations of & = O'e/Gp and T(h,a).

a’+1
Here we have used Monte Carlo simulation to find T (h,a). True values of fraction defective P can be
obtained from the normal probability table for different values of K. The values of P, and P, for
different combinations of T (h,a) and ®(h) for fixed K have been tabulated in Table 1. It has been
observed from Table 1 (A-G) that for fixed K, the values of P, and P, show a decreasing trend if the

measurement error a = 0, / O, decreases. On the other hand, we also observe that for fixed

a=0,/c, thevaluesof P, is greater than P, and when h= K then P, = P,.
1

. exp[—1 h?(1+ xz)}
Table 1: Values of T (h a) = 2
| " ey 1+ x?

P =2T(h,a)+{®P(k)—D(h)} and P, =2T (h,a) —{D(k)—D(h)}

dx, d(h).

Table 1-A: When K=15 and (D(K) = 09332

a:o'e/o'p h= K T(h,a) (D(h) Pl P2
va?+1
0.5 1.34 0.07039360 0.9099 0.16408720 | 0.11748720
0.4 1.39 0.05503907 0.9177 0.12557814 | 0.09457814
0.3 1.44 0.04001047 0.9251 0.08812094 | 0.07192094
0.25 1.46 0.03294319 0.9279 0.07118638 | 0.06058638
0.20 1.47 0.02635462 0.9292 0.05670924 | 0.04870924
0.15 1.48 0.01970635 0.9306 0.04201270 | 0.03681270
0.10 1.49 0.01305494 0.9319 0.02740988 | 0.02480988
0.05 1.50 0.00646451 0.9332 0.01292902 | 0.01292902
Table 1-B: When K =175 and (D(K) =0.9599
a=o,/0, he K T(h,a) | ®(h) P P,
va?+1

05 157 0.04915861 | 0.9418 | 0.11641722 | 0.08021722

0.4 1.63 0.03763664 0.9484 0.08677328 0.06377328

0.3 1.68 0.02722368 | 0.9535 | 0.06084736 | 0.04804736

0.25 1.70 0.02237561 0.9554 0.04925122 0.04025122

0.20 1.72 0.01759671 0.9573 0.03779342 0.03259342

0.15 1.73 0.01315372 0.9582 0.02800744 0.02460744

0.10 1.74 0.008706727 0.9591 0.018213454 | 0.016613454

0.05 1.75 0.004304809 0.9599 0.008609618 | 0.008609618
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Table 1-C: When K = 2.0 and ®(K) =0.9772

a=o,/o, he K T(h,a) | ®(h) P, P,
Jal+1
0.50 1.79 0.03308721 0.9633 0.08007442 0.05227442
0.40 1.86 0.02471443 0.9686 0.05802886 | 0.04082886
0.30 1.92 0.01745997 0.9726 0.03951994 | 0.03031994
0.25 1.94 0.01433163 0.9738 0.03206326 | 0.02526326
0.20 1.96 0.01125022 0.9750 0.02470044 | 0.02030044
0.15 1.98 0.008244447 0.9761 0.017588894 | 0.015388894
0.10 1.99 0.00545368 0.9767 0.01140736 | 0.01040736
0.05 2.00 0.002692772 0.9772 0.005385544 | 0.005385544
Table 1-D: When K = 2.25 and (D(K) =0.9878
a=o,/o, he K T(h,a) | ®(h) P, P,
Jal+1
0.50 2.02 0.020711060 | 0.9783 | 0.050922120 | 0.031922120
0.40 2.09 0.015359960 | 0.9817 | 0.036819920 | 0.024619920
0.30 2.16 0.010555770 | 0.9846 | 0.024311540 | 0.017911540
0.25 218 0.008656291 | 0.9854 | 0.019712582 | 0.014912582
0.20 2.20 0.006785243 | 0.9861 | 0.015270486 | 0.011870486
0.15 2.23 0.004852139 | 0.9871 | 0.010404278 | 0.009004278
0.10 224 0.003208399 | 0.9875 | 0.006716798 | 0.006116798
0.05 2.25 0.001582424 | 0.9878 | 0.003164848 | 0.003164848
Table 1-E: When K = 2.50 and (D(K) =0.9938
a=o,/o, he K T(h,a) | @(h) P, P,
Jal+1
0.50 224 0.012561410 | 0.9875 | 0.031422820 | 0.018822820
0.40 2.33 0.008819303 | 0.9901 | 0.021338606 | 0.013938606
0.30 240 0.006015980 | 0.9918 | 0.014031960 | 0.010031960
0.25 243 0.004810231 | 0.9925 | 0.010920462 | 0.008320462
0.20 245 0.003766157 | 0.9929 | 0.008432314 | 0.006632314
0.15 248 0.002681432 | 0.9934 | 0.005762864 | 0.004962864
0.10 2.49 0.001772875 | 0.9936 | 0.003745750 | 0.003345750
0.05 2.50 0.008734041 | 0.9938 | 0.001746808 | 0.001746808
Table 1-F: When K = 2.75 and q)(K) =0.9970
a=o,/o, he K T(h,a) | ®(h) P P,
Jal+1
0.50 247 0.0070560530 | 0.9932 | 0.017912106 | 0.010312106
0.40 2.56 0.0049003870 | 0.9948 | 0.012000774 | 0.007600774
0.30 2.64 0.0032323650 | 0.9959 | 0.007564730 | 0.005364730
0.25 2.67 0.0025776230 | 0.9962 | 0.005955246 | 0.004355246
0.20 2.70 0.0019622790 | 0.9965 | 0.004424558 | 0.003424558
0.15 2.72 0.0014301680 | 0.9967 | 0.003160336 | 0.002560336
0.10 2.74 0.0009200657 | 0.9969 | 0.001940131 | 0.001740131
0.05 2.75 0.0004528698 | 0.9970 | 0.000905740 | 0.000905740
Table 1-G: When K = 3.00 and (D(K) =0.9987
a=o,/o, he K T(h,a) | ®(h) P, P,
a’+1
0.50 2.69 0.003860856 | 0.9964 | 0.010021712 | 0.005421712
0.40 2.79 0.002578258 | 0.9974 | 0.006456516 | 0.003856516
0.30 2.88 0.001637422 | 0.9980 | 0.003974844 | 0.002574844
0.25 291 0.001302675 | 0.9982 | 0.003105350 | 0.002105350
0.20 294 0.000988815 | 0.9984 | 0.002277630 | 0.001677630
0.15 297 0.000698636 | 0.9985 | 0.001597271 | 0.001197271
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0.10 2.99 0.000448474 0.9986 0.000996947 | 0.000796947
0.05 3.00 0.000220578 0.9987 0.000441156 | 0.000441156

Note: The function | (h, a) has been tabulated by Owen (1956) and Smirnov and Bolsev (1962). Interested readers may obtain a
simple QBASIC program from the first author.

The relationship between apparent fraction defective (AFD) and true fraction defective (TFD) is

shown in Table 2 and Figure 1.
Table 2: Relationship between TFD(= P) and AFD (= 72') when K =2.0

P P P P
a=05|a=0.10 | a=0.15
0 | 0005385 | 0011407 | 0017589
001 ] 0015280 | 0021119 | 0027259
0.02 | 0025170 | 0030971 | 0.036929
003 | 0035116 | 0040753 | 0.046600
0.04 | 0044955 | 0050535 | 0.056270
005] 0054846 | 0060317 | 0065940

It is observed that for fixed K and a= o, / O, as the values of the true fraction defective (P)
increase, the values of 77 i.e., apparent (observed) fraction defective also increase and also for fixed P,

as the values of measurement error & = o, / O, increase, there is considerable increase in the values of
.
Figure 1: Relationship between apparent fraction defective (AF D) and true fraction defective (TF D)

4 N

——23=0.10

.

\ 4

- J
Table 3 and Figure 2 (A and B) depict the effect of K on probabilities of misclassification of

conforming units ( Pl) and non-conforming units ( Pz). For fixed a = Je/ap , if we increase the

:

values of K, there is a decreasing trend for P, but for fixed K, the values of P, increase as
a= Ge/dp is increased. The same trend being observed for Table 3B. shows the graphic
representation between K and probabilities of misclassification. One can also calculate P, and P,

from the graphs (Figure 2) by knowing the standard deviation o, of measurement error (which assumes

same for all the values of K).
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Table 3: Probabilities of misclassification of conforming units ( Pl) and non conforming units ( P2 ) for different values of K and

a=o,/oc,.

K a=0.10

a=0.15

a=0.20

R

P,

R

P

R

P

1.50 | 0.027409880

0.024809880

0.042012700

0.036812700

0.056709240

0.048709240

1.75 | 0.018213454

0.016613454

0.028007440

0.024607440

0.037793420

0.032593420

2.00 | 0.011407360

0.010407360

0.017588894

0.015388894

0.024700440

0.020300440

2.25 | 0.006716798

0.006116798

0.010404278

0.009004278

0.015270486

0.011870486

2.50 | 0.003745750

0.003345750

0.005762864

0.004962864

0.008432314

0.006632314

2.75 | 0.001940131

0.001740131

0.003160336

0.002560336

0.004424558

0.003424558

3.00 | 0.000996947

0.000796947

0.001597271

0.001197271

0.002277630

0.001677630

A

///
e
77

-

AFD (=Pi) ——2a=0.5

TFD (=P)
o J

Figure 2 (A): The effect of K on probabilities of misclassification of conforming units ( Pl)
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Figure 2 (B): The effect of K on probabilities of misclassification of conforming units ( P2 )
Table 4 (A-D) gives us the idea how the values of AFD ( /7) values influence the control limits for
fraction defective charts. It has been observed from the table that for fixed K, the values of both UCL
and LCL increase as there is an increase in the values of a = Ge/O'p. For fixed a = O'e/O'p , the
difference between UCL and LCL increases as we go on increasing K when the corresponding
values of 77 decrease (which depends on P, P, and P) . Itis observed that the range of UCL and
LCL is less when the size of the sample is increased.
Table 4: Values of 7T and control limits ( LCL and UCL) for different values of K , Pl P ,a= O'e/O'p and N

forfixed P=P = 0.2
Table4A: =0, /0, =0.05

n=15 n=50
K R P 4 LCL | UCL | LCL | UCL

1.50 | 0.012929020 | 0.012929020 0.2078 0.0506 0.3649 0.1217 0.2939
1.75 | 0.008609618 | 0.008609618 0.2052 0.0227 0.3877 0.1053 0.3051
2.00 | 0.005385544 | 0.005385544 0.2032 0 0.4110 0.0894 0.3170

2.25 | 0.003164848 | 0.003164848 0.2019 0 0.4351 0.0742 0.3296
2.50 | 0.001746808 | 0.001746808 0.2010 0 0.4597 0.0593 0.3427
2.75 | 0.000905740 | 0.000905740 0.2006 0 0.4849 0.0449 0.3563
3.00 | 0.000441156 | 0.000441156 0.2003 0 0.5102 0.0305 0.3701
Table 4 B: aZGe/Gp =0.15
n=15 n=>50
K| P P, 7 | LCL [UCL | LCL |UCL

1.50 | 0.042012700 | 0.036812700 0.2262 0.0642 0.3882 0.1375 0.3149
1.75 | 0.028007440 | 0.024607440 0.2175 0.0311 0.4039 0.1154 0.3195
2.00 | 0.017588894 | 0.015388894 0.2110 0.0003 0.4217 0.0956 0.3264
2.25 | 0.010404278 | 0.009004278 0.2065 0 0.4417 0.0777 0.3353

250 | 0.005762864 | 0.004962864 | 02036 | 0 04635 | 00612 | 03460
2.75 | 0.003160336 | 0.002560336 | 0.2020 | 0 04871 | 00459 | 03581
3.00 | 0.001597271 | 0001197271 | 02010 | 0 05114 | 00310 | 03710

Table4C: =0, /0, =0.25
L] | | _n=15 | _n=50 |
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K R P, T LCL | UCL | LCL |UCL
150 | 0071186380 | 0.060566380 | 02448 | 0.0783 | 04113 | 0.153 | 0.3360
175 | 0049251220 | 0.040251220 | 02314 | 0.0408 | 04220 | 0270 | 0.3358
2.00 | 0.032063260 | 0.025263260 | 0.2210 | 0.0067 | 04353 | 0.1036 | 03384
225 | 0019712582 | 0.014912562 | 02128 | 0 04506 | 0.0826 | 03430
2550 | 0.010920462 | 0.008320462 | 0.2071 | 0 04687 | 00638 | 03504
2.75 | 0.005955246 | 0.004355246 | 0.2039 | 0 04900 | 00472 | 03606
3.00 | 0.003105350 | 0.002105350 | 0.2021 | 0 05132 | 00317 | 03725

Table4D: @ =0, /0, =0.50
n=15 n=50

K R P, 4 LCL | UCL | LCL |UCL
150 | 0164087200 | 0.117487200 | 03078 | _0.1290 | 04866 | 02099 | 04057
175 | 0116417220 | 0.080217220 | 02771 | 0.0822 | 04793 | 0.1663 | 0.3879
2.00 | 0.080074420 | 0.052274420 | 0.2536 | 0.0289 | 04783 | 0.1305 | 03767
225 | 0050922120 | 0031922120 | 02344 | 0 | 04805 | 0.0996 | 03692
250 | 0031422820 | 0.018822820 | 02214 | 0 | 04894 | 00746 | 03682
2.75 | 0.017912106 | 0.010312106 | 02123 | 0 | 05027 | 00533 | 03713
3.00 | 0010021712 | 0.005421712 | 02069 | 0 | 05207 | 00350 | 03788

Table 5 (A-K) shows the different values of power of control chart ( F’d ) for the corresponding values of
7T . Here we observe how power curve ( Pd ) changes for different values of N, K, a= O'e/O'p :
UCL and LCL. From the Table 5 (A, B, C) it is observed that values of P, go on decreasing as we
increase K (K =1.5t0 K =3)for fixed a=0, /0, and P, = P,. Also no change in the values of
Pd being observed if there is marginal increase in the values of & = O'E/O'p for fixed N and fixed K.
But if we increase the size of the sample (Table 5 D) for fixed K and F’1 = P2 there is a change in the
values of P, . The values of the power ( P, ) is less if the size of the sample is larger for fixed

a= O'e/O'p . Itis also understood from the Table 5 (E), that the values of the power ( P, ) is more, if N

increased along with the value of & = O'e/O'p :

It has been observed from the Table 5 that as we go on increasing the shift of the process parameter, there
is an increase in the power of the control chart for fixed & = O'E/O'p ,n, K, UCL and LCL.

Thus, smaller the deviation, smaller the power of the test. As we increase a = Ge/Gp , keeping other
parameters fixed, it has been observed from the table that P2 (type 11 error) value increases for fixed
deviation, and P, values tend to decrease as there is an increase in deviation. Higher values of P, may
involve cost. Thus, where it is necessary to have a sample of small size, Pd should be set at a relatively
high level so that the resultant P, value does not become a matter of excessive concern. Increase in the
sample size N also shifts the power curve upward. Graphical representation for some values of Pd for
the Table 5 (A, B, C) is shown in Figure 3 for different values of K.

Table 5: Power of control chart for proportions under misclassification (due to measurement error)

Table: 5 A Table: 5B Table:5C
a=o,/0,=0.05 a=o,/0,=0.05 a=o,/0,=0.05
n=15 K=15 n=15 K=2 n=15 K=3
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P =P, =0.01292902 P, = P, =0.005385544 P, = P, =0.0004411564
CL=3.1, UCL=5, CL=3,UCL=5,LCL=0 | CL=3.005,UCL=7,
LCL=1 LCL=0
T Py Py Py
0.01 0.9904 0.8601 0.8601
0.02 0.9674 0.7386 0.7386
0.04 0.8811 0.5421 0.5421
0.05 0.8296 0.4634 0.4633
0.07 0.7196 0.3370 0.3367
0.09 06117 0.2443 0.2432
0.10 05617 0.2081 0.2062
0.15 0.3354 0.1042 0.0910
0.20 03313 0.0963 0.0533
0.25 0.3937 0.1618 0.0700
035 06623 04373 0.2468
0.45 0.8813 0.7393 0.5479
0.50 0.9413 0.8491 0.6964
0.65 0.9972 0.9876 0.9578
0.75 0.9999 0.9992 0.9958
Table: 5E Table:5F
a=o,/0,=050 | a=0,/c,=0.50
Table: 5D p=p=0.2
a=o,/0,=0.05 p=p=0.2 n=20,K=3
n=20, K=15 P, =0.1640872 P, =0.005421712
P, =P, =0.01292902 | P, =0.1174872 CL=4,UCL=9,
CL=4.156, CL=6.16, LCL=0
UCL=7, LCL=1 UCL=9, LCL=3
T Py Py P
0.01 0.9831 1.0000 0.8179
0.02 0.9401 0.9994 0.6676
0.04 0.8103 0.9926 0.4420
0.05 0.7358 0.9841 0.3585
0.10 03941 0.8671 0.1217
0.20 0.1559 0.4214 0.0215
0.25 0.2385 0.2661 0.0441
0.35 0.5855 0.2820 0.2378
0.40 0.7505 0.4204 0.4044
0.45 0.8702 0.5906 0.5857
0.50 0.9432 0.7496 0.7483
0.65 0.9887 0.9804 0.9804
Table:5H
Table: 5G a=o,/c, =015
a=o,/0,=0.15 p=p=0.2
n=50, K=15 P, =0.0015972714
P, =0.0420127 , P, =0.0368127 P, =0.0011972714
CL=11.31, UCL=19, LCL=3 CL=10,UCL=25, LCL=0
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T Pd Pd
0.01 0.9984 0.6050
0.02 0.9822 0.3642
0.05 0.7604 0.0769
0.07 0.5327 0.0266
0.10 0.2503 0.0052
0.20 0.0082 0
0.25 0.0293 0.0001
0.35 0.3784 0.0207
0.40 0.6644 0.0978
0.50 0.9675 0.5561
0.60 0.99948 0.942656
0.65 0.99997 0.989956
0.75 0.9999 0.999962
Table: 5 1 Table:5J Table: 5 K
when AFD=TFD) | when AFD=TFD) | when AFD=TFD)
r=p=p=0.2 r=p=p=02 r=p=p=02
n=15 K =15 n=20 K=15 n=50, K=3
CL=3,UCL=5, CL=3, CL=3,UCL=18,
LCL=1 UCL=6,LCL=1 | LCL=2
T=p Py P ¥
0.01 0.9904 0.9904 0.9862
0.02 0.9647 0.9647 0.9216
0.05 0.8296 0.7361 0.5404
0.10 0.5617 0.4030 0.1117
0.20 0.3313 0.2650 0.0004
0.25 0.3937 0.4071 0.0552
0.35 0.6623 0.7567 0.4940
0.40 0.7879 0.8749 0.7631
0.45 0.8813 0.9948 0.9235
0.50 0.9413 0.9793 0.9836
0.65 0.9973 0.9997 0.9999
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Figure 3: Relationship between 7T and Pd for the Table 5 (A, B, C) for different values of
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