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ABSTRACT
In this paper we analyze a special case of Fuzzy Linear Programming (FLP) in which its constraints
are composed by fuzzy numbers contained into an interval. The binary relation between crisp
constraints and fuzzy coefficients is analyzed, and the membership degree of a random realization of
fuzzy parameters is defined. An application example is presented and solved.
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RESUMEN
En este art́ıculo analizamos un caso especial de Programación Lineal Difusa en el cual sus restricciones
se componen por números difusos contenidos en un intervalo. Se analiza la relación binaria entre
restricciones clásicas y coeficientes difusos, y se define el grado de pertenencia de una realización
aleatoria de parámetros difusos. Un ejemplo de aplicación es presentado y resuelto.

1. INTRODUCTION

Linear Programming (LP) is among the most used optimization models due to its efficiency, simplicity and
reliability. In the last decades, fuzzy sets have been incorporated into LP models to represent impreci-
sion coming from human being perceptions with successful results. Different approaches to Fuzzy Linear
Programming (FLP) problems have been presented in bibliography, Rommelfanger [18], [19], [16], [17], Zim-
mermann [20], Zimmermann & Fullér [21], Fiedler et al. [3], Ramı́k [15], [14], Ramı́k and R̆imánek [13],
Gasimov & Yenilmez [6]. Černý & Hlad́ık [2], and Hlad́ık [8] has defined two similar families of fuzzy LPs:
problems with fuzzy parameters and fuzzy constraints (FLP), and problems with fuzzy parameters and crisp
constraints.
Based on the works of Hlad́ık [8], we analyze how fuzzy coefficients operate over crisp constraints in two
ways: a constructivist (a priori) and a practical (a posteriori) approaches. The constructivist approach is
based on interval computations using α-cuts, and the a posteriori approach is based on possible choices of
the coefficients aij enclosed into fuzzy parameters which is a common case in real applications. The main
idea is to use fuzzy sets to see the behavior of the problem in advance and how a set of observed coefficients
are enclosed into the expected results.
The paper is organized into 6 sections; Section 1 introduces the main problem; Section 2 presents some basic
definitions of fuzzy sets; in Section 3 we present the fuzzy/crisp LP model; Section 4 presents a discussion
about some theoretical aspects of the extension principle for fuzzy sets; In section 5, an example is presented
and solved, and finally Section 6 presents some concluding remarks of the study.
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2. BASIC NOTATIONS

In this paper, we consider X as the powerset whose elements x ∈ X are real numbers P(X) ∈ R, and P(X)
is the class of all crisp sets. In a crisp set A ∈ X, an element x is either a member of the set or not. The
indicator function of A, χA is defined as follows:

χA(x) :=

{
1 if x ∈ A,
0 if x /∈ A.

(1)

A set S is called singleton {S} if has a single element x ∈ R. In the real numbers R, S is a constant. This
implies that χS(x) = 1, and χS(·) = 0 for every x /∈ S.

S := {x : x = S} (2)

S : X → {0, 1} (3)

Figure 1: Crisp set A and singleton S(x)

A fuzzy set Ã is a generalization of a crisp or boolean set. It is defined on an universe of discourse X and is
characterized by a Membership Function namely µÃ(x) that takes values in the interval [0,1], Ã : X → [0, 1].

A fuzzy set Ã may be represented as a set of ordered pairs of an element x and its membership degree,
µÃ(x), i.e.,

Ã = {(x, µA(x)) |x ∈ X} (4)

where F(R) is the class of all fuzzy sets.
Now, Ã is contained into a family of fuzzy sets F = {Ã1, Ã2, · · · , Ãm}, each one with a membership function
{µÃ1

(x), µÃ2
(x); · · · , µÃm

(x)}. The support of Ã, supp(Ã), is composed by all the elements of X that have

nonzero membership in Ã, this means

supp(Ã) = {x |µÃ(x) > 0} ∀ x ∈ X (5)

The α-cut of µÃ(x) namely αÃ represents the interval of all values of x which has a membership degree equal
or greatest than α, this means:

αÃ = {x |µÃ(x) > α} ∀ x ∈ X (6)
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where the interval of values which satisfies αÃ is defined by

αÃ ∈
[

inf
x

αµÃ(x), sup
x

αµÃ(x)

]
=
[
Ǎα, Âα

]
(7)

A graphical display of a triangular fuzzy set is given in Figure 2.

Figure 2: Type-1 Fuzzy set A

Here, Ã is a Type-1 fuzzy set, its universe of discourse is the set of all values x ∈ R, the support of Ã,
supp(Ã) is the interval x ∈ [Ǎ, Â] and µÃ is a triangular function with parameters Ǎ, Ā and Â. α is the
degree of membership that an specific value x has regarding A and the dashed region is an α-cut done over
Ã. A fuzzy number is then a convex fuzzy set defined over Rn, defined as follows

Definition 1 (Fuzzy Number). Let Ã ∈ F(R). Then, Ã is a Fuzzy Number (FN) iff there exists a closed
interval [a, b] 6= 0 such that

µÃ(x) =

 1 for x ∈ [a, b],
l(x) for x ∈ [−∞, a],
r(x) for x ∈ [b,∞]

(8)

where l : (−∞, a)→ [0, 1] is monotonic non-decreasing, continuous from the right, and l(x) = 0 for x < ω1,
and r : (b,∞)→ [0, 1] is monotonic non-increasing, continuous from the left, and r(x) = 0 for x > ω2.

Note that α-cuts done over fuzzy numbers are monotonically increasing/decreasing which means that given
α1 < α2, α ∈ [0, 1], then α2Ã ⊆ α1Ã, so it is clear that αÃ ⊆ supp(Ã), ∀α ∈ [0, 1].

3. FUZZY/CRISP LP MODELS

Crisp LPs i.e z = Maxx{z = c′x |Ax 6 b, x > 0} are a special cases of Fuzzy LPs (FLPs for short) in which
all parameters are defined as singletons (see (10)) and the inequality 6 bi is a set whose indicator function
is χbi(x). In crisp LPs, the membership degree a solution has is always one, so no uncertainty is involved
into the problem which means that global optimization is possible in that kind of problems.
On the other hand, FLPs involve fuzzy uncertainty Maxx{z̃ = c̃′x | Ãx . b̃, x > 0}. In this paper, all its
parameters are considered as finite-domain fuzzy numbers which means that supp(Ã) is a closed interval.
The binary relation . has been defined by Ramı́k and R̆imánek [13] which description is as follows:

Definition 2. Let Ã, B̃ ∈ F(R) be two fuzzy numbers. Then Ã . B̃ if and only if sup αÃ 6 sup αB̃
and inf αÃ 6 inf αB̃ for each α ∈ [0, 1], where αÃ and αB̃ are α-cuts of Ã and B̃ respectively, and αÃ :=
[inf αÃ, sup αÃ] and αB̃ := [inf αB̃, sup αB̃]. This binary relation satisfies the axioms of a partial order
relation on F(R) and is called the fuzzy max order.
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This binary relation (fuzzy max order) has been extended to Interval-valued fuzzy numbers by Figueroa-
Garćıa et al. [4], and Figueroa-Garćıa [5], and it can be extended to fuzzy/crisp sets as follows:

Proposition 1. Let Ã ∈ F(R) be a fuzzy number, and b ∈ P(R) be a crisp set. Then Ã . b if and only if
sup αÃ 6 b and inf αÃ 6 b for each α ∈ [0, 1], where αÃ := [inf αÃ, sup αÃ] = [Ǎα, Âα]. This binary relation
satisfies the axioms of a partial order relation on F(R) and is called the fuzzy/crisp max order.

Proof. To show how this binary relation relates a convex fuzzy number to a crisp constraint, we will prove
the three main partial ordering conditions: i) (reflexivity): it is clear that αÃ 6 αÃ∀α ∈ [0, 1] and b 6 b.
If Ã 6 b then αÃ 6 b∀α ∈ [0, 1] which means Âα 6 b∀α ∈ [0, 1]. ii) (antisymmetry): the only case in
which Ã 6 b and Ã > b lead to Ã = b is the case µA(x) = χb(x) which is equivalent to say that Ã and b
are crisp sets (i.e sets with the same indicator function). iii) (transitivity): suppose that Ã 6 b and we
introduce a new crisp set {c : b 6 c}. If αÃ 6 b,∀α ∈ [0, 1] and b 6 c then αÃ 6 c,∀α ∈ [0, 1]. On the
other hand, we can consider the case in which two fuzzy numbers Ã and C̃ where C̃ 6 Ã which implies
αC̃ 6 αÃ,∀α ∈ [0, 1], so if Ã 6 b and C̃ 6 Ã then we have C̃ 6 Ã 6 b, which concludes the proof.

Figure 3 shows the binary relation .. Note that Ã . b since suppÃ 6 b which is equivalent to say Â 6 b.

Figure 3: Fuzzy/crisp binary relation .

Some practical optimization applications have well defined cost structures and well bounded constraints, but
sometimes the technological coefficient matrix (a.k.a technological matrix) contains non-probabilistic uncer-
tainty coming from different sources. This uncertainty sometimes is measured using human like language
through human perception about different variables while well defined costs and constraints can be defined
as singletons/crisp sets.
To exemplify a fuzzy/crisp LP problem think on a situation in which a company has a reliable cost structure, a
well defined inventory system, and clearly defined human resources policies. On the other side, human time
consumption, manufacturing time consumption, and raw materials consumption are not usually constant
since they contain some degree of uncertainty. In this case, the system is composed by crisp costs/constraints
and fuzzy technological coefficients, so it is a fuzzy/crisp LP problem. An LP formulation for this fuzzy/crisp
problem is:

z̃∗ = Maxx{z̃ = c′x | Ãx . b, x > 0} (9)

This model can be solved using the extension principle or approximation techniques. For instance, the
Zimmermann’s soft constraints problem is solved via an auxiliary variable λ that operates as the maximum
satisfaction degree between fuzzy constraints and a symmetric fuzzy objective function, and other fuzzy LPs
can be solved using a similar reasoning.
An approach to find an appropriate way for modeling fuzzy functions is given by the Zadeh’s Extension
principle (see Bellman & Zadeh [1], Klir & Yuan [9]). Let f be a function f : X1, X2, · · · , Xn → z, and Ãi
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be a fuzzy set in Xi, i = 1, 2, · · · , n with xi ∈ Xi, then we have

z̃ = f(Ã1, Ã2, · · · , Ãn)(z) = sup
z=f(x1,x2,··· ,xn)

min
i

[Ã1(x1), Ã2(x2), · · · , Ãn(xn] (10)

Then, the extension principle is useful to project any function e.g z = f(x1, x2, · · · , xn) into a fuzzy set
of solutions z̃ using the memberships of Ã1(x1), Ã2(x2), · · · , Ãn(xn). Some comments about the use of the
extension principle to the model (9) are provided as follows.

4. COMMENTS ON THE EXTENSION PRINCIPLE FOR FLP PROBLEMS

In general, the problem of finding a global optimal solution of an FLP is more complex than a crisp LP since
we have infinite combinations of Ãx∗ 6 b̃ which leads to the same value z and lead to an NP-hard problem
(see Kreinovich & Tao [11], Heindl, Kreinovich & Lakeyev [7], Lakeyev & Kreinovich [12], and Kreinovich,
Lakeyev & Noskov [10]).
There are different ways to obtain the set of optimal solutions of a fuzzy/crisp LP that depend on the point
of view of the analyst. In this paper we consider three possible ways to compose the set of optimal solutions
of a fuzzy/crisp LP: a first abstract or analytical approach based on the use of the extension principle,
a second constructivist approach based on α-cuts, and a third approach called operation points based on
possible realizations of Ã.

4.1. ANALYTICAL APPROACH

Formally speaking, the solution of any FLP is given by the Bellman-Zadeh’s decision making principle [1]
where the idea is to maximize the membership degree of the intersection among all fuzzy/crisp constraints.
This way, the fuzzy set of optimal solutions of an LP problem with crisp fuzzy costs/constraints/coefficient
matrix is given as follows:

µz̃(z) = sup
z=c̃′x∗

min
k
{c̃, b̃1, · · · , b̃n, Ã} (11)

where z̃ = µz̃(z) is the fuzzy set of optimal solutions in which decision making is done, b̃ is the set of fuzzy
constraints, Ã is the set of fuzzy technical coefficients, and c̃ is the set of fuzzy costs.
In general, the solution of any set of equations via extension principle leads to an NP-Hard problem since
(in theory) every single value z ∈ supp(z̃) can be obtained by an infinite amount of combinations of Ãx and
b̃ at an infinite amount of membership degrees, so there is no a polynomial time algorithm that computes z̃
in its pure form.
More specifically, the optimal solution of any fuzzy/crisp problem is only located at a extreme point con-
formed by a set of k ∈ K ⊇ Nn self called binding constraints whose solution maximizes z = c′x. A crisp
optimal solution x∗ is then the set of decision variables that solves c̃, Ãx 6 b while maximizing z = c′x∗,
and x∗ is a function of the values of Ã associated to x∗ i.e Ãk,∗ in the k ∈ K binding constraints since the

extreme point that leads to z is defined by Ãk,∗x 6 bk, this is z∗ = f(Ãk,∗x
∗ 6 b). This is:

µz̃(z
∗) = sup

z∗=c̃′x∗
min
k
{c̃∗, b̃1, · · · , b̃k, · · · , b̃K , Ãk,∗} (12)

where z̃ is the fuzzy set of optimal solution in which decision making is done, b̃k, k ∈ K is the kth binding
constraint, ÃK,∗ is the set of fuzzy technical coefficients that compose ÃK,∗x

∗ . b̃k, and c̃∗ is the set of fuzzy
costs associated to the set of optimal variables of the problem x∗.
Eq. (12) opens the door to simplify the computation of the membership of any solution of an FLP since x∗

is in fact located at binding constraints, so both non-binding constraints and non-basic decision variables
does not affect the membership of z̃.
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4.2. CONSTRUCTIVIST α-CUTS APPROACH

To avoid NP-Hard implementations of (12), we propose to compute α-cuts to approximate the set of optimal
solutions. In our case, we propose to compute αÃ and obtain a set of optimal solutions through the extension
principle, as follows:

ẑα = Maxx{c′x : Âαx . b, x > 0} (13)

žα = Maxx{c′x : Ǎαx . b, x > 0} (14)

z̃ = f(Ã)(z) =
⋃

α∈[0,1]

α · f(αÃ)(z) (15)

As z comes from an optimization method over x and we use αÃ to approximate z̃ then we have saved
computations in the min operator of the extension principle since all cuts have α ∈ [0, 1] membership; and
as z is also a single optimal value for LP problems, then it is reasonable to think that the Max operator
leads to a single solution that comes from only from their binding constraints, this is:

αz̃ = f α(Ã1, Ã2, · · · , Ãn)(zα) = f(αÃ1(x1), αÃ2(x2), · · · , αÃn(xn))(zα)

Both the analytical and constructionist methods allow to know in advance the behavior of the optimal
solutions of the problem, so they are a priori approaches. Note that the analytical approach can lead to
NP-Hard implementations, and the constructionist approach need as much α-cuts as possible to get an
appropriate approximation of z̃.

4.3. OPERATION POINTS

In practice, there is no any certainty of reaching a desired set of values A ∈ supp(Ã). Usually, the analyst
should set the system in terms of a desired point (i.e minimal uncertainty) in order to get its best performance,
but it does not mean that it will happen.
Now, if the analyst has choices (a.k.a realizations of Ã) or operation points then decision making can be
improved because the analyst can set the system at different points, so if it does not reach a expected result,
the analyst can compare its current performance to a set of possible choices in order to see how good its
performance is. To do so, we define an operation point as follows:

Definition 3 (Operation point). An operation point of Ã is a set of observed values of A namely Ar
contained into supp(Ã), which leads to an optimal solution x∗, and zr.

The membership degree that any operation point coming from Ar regards only to a set of k ∈ K ∈ m
binding constraints namely bk where b ⊆ bk. Note that the optimal solution of any LP only involves
binding constraints and basic optimal variables x∗ where non-binding constraints does not allocate an optimal
extreme point and non-optimal decision variables does not affect the solution. As z comes from x∗ then we
can use (12) to compute the membership degree of any operation point. To do so, we provide the following
proposition.

Proposition 2. Let x∗ be the optimal decision variables of an LP problem, zr = c′x∗ be its optimal value
given Ar ∈ supp(Ã), µz̃(zr) be the membership degree of c′x∗ projected over z̃, and Ar;k,∗ = µAr;k,∗ be the

membership degree of the values of Ar associated to x∗ and the kth binding constraint over Ã. Then, the
membership degree of zr given bk and Ar is:

µz̃(zr : bk, Ar) = min
k
{Ar;1,∗, · · · , Ar;k,∗, · · · , Ar;K,∗}, (16)

where k ∈ K is the set of all binding constraints.
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Proof. Let Ar ∈ supp(Ã) be a random realization of Ã, and χbk be the indicator function of the kth binding
constraint k ∈ K. We can rewrite the problem as:

µz̃(zr : bk, Ar) = sup
zr=c′x∗

min
k
{Ar;1,∗, · · · , Ar;k,∗, · · · , Ar;K,∗, χb1 , · · · , χbk , · · · , χbK},

where it is clear that
min{Ar;k,∗, χbk} = Ar;k,∗ ∀x∗, k ∈ K,

so we can rewrite the problem as:

µz̃(zr : bk, Ar) = sup
zr=c′x∗

min
k
{Ar;1,∗, · · · , Ar;k,∗, · · · , Ar;K,∗},

in which the solution of z = c′x for Ar is supposed to be single optimal zr = c′x∗, so the sup (union) operator
operates over the K binding constraints which in turn solve x∗ as its global solution. This leads to only
solve the intersection among the K binding constraints which compose the vertex in which the K binding
constraints reach the optimal value zr = c′x∗ with x∗ as its solution, this is (sup mink∈K → mink∈K). This
allows us to rewrite the problem as:

µz̃(zr : bk, Ar) = min
k
{Ar;1,∗, · · · , Ar;k,∗, · · · , Ar;K,∗}

which concludes the proof.

This means that the membership degree of zr given Ar is only given by Ar;k,∗ since the value zr = c′x∗

in LPs is single optimal (iff the problem is feasible), so the computation of supzr=c′x∗ leads to the same
value for all extreme points provided by the K binding constraints at a minimum uncertainty (maximum
membership) computed using the sup operator.
Also note that an operation point has a smaller membership degree over Ã than the fuzzy global optimal
solution provided by the extension principle since it provides the maximum satisfaction degree among all
possible choices. This way, while an operation point can overpass the value of z provided by the extension
principle, it should definitely has a smaller satisfaction degree of either the goal or a binding constraint.
Proposition 2 solves the intersection among fuzzy coefficients, its crisp constraints, and the goal through
the inf or min operator, and the union of all possible combinations of zr = c′x∗ through the sup or Max
operator. In the case of an optimal LP, we have only two cases: a single optimal solution x∗ (the most
possible case), or multiple solutions, so the sup operator is only useful in the second case where multiple x∗

should be compared.

5. AN EXAMPLE

Suppose that a company has to plan production quantities (in thousands) of two products x1 and x2, where
a sold unit returns c1 = 2 and c2 = 3 thousand USD per unit, and its manufacturing requires two raw
materials which are available by b1 = 12 and b2 = 15 tons, respectively. The material consumption aij per
product x1, x2 is uncertain since historical data is absent, so the analyst is encouraged to find a way to plan
the best production quantities that maximize profits.
Given hypothetical normal operation conditions, it is supposed that the material consumption per product
should be a11 = 1, a12 = 4, a21 = 3 and a22 = 2, but it is a hard supposition since we do not have historical
information about the material consumption in order to verify the performance of the company. To have a
better idea about the system, we have to ask the people involved into production planning, so we enquire to
system’s experts (people on manufacturing, engineering, mechanical processes, etc) about their perception
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around material consumption of every product. The description of the FLP is given next:

z = Max 2x1 + 3x2

s.t.

1̃11x1 + 4̃12x2 . 12 (17)

3̃21x1 + 2̃22x2 . 15 (18)

xj > 0

Finally, the experts provide pessimistic and optimistic perceptions around a aij which are used to construct
triangular fuzzy sets due to its simplicity and efficiency for computing purposes. The complete description
of every Ãij is shown next:

µÃ11
= T (0, 1, 3), µÃ12

= T (2, 4, 7),

µÃ21
= T (1, 3, 5), µÃ22

= T (0, 2, 5)

And the set z̃ of optimal solutions computed using the constructivist approach through 10 α-cuts is shown
in Figure 4.

Figure 4: Set of optimal solutions z̃

The set z̃ comprises all possible values of z that can occur in a real scenario, coming from pessimistic to
optimistic values passing through the most possible values (like z̄ = 13.5 with membership one). The worst
possible scenario leads to ž and the best possible scenario leads to ẑ while the most possible scenario leads
to z̄ as shown as follows:

z̄ = 13.5 ⇔ x∗1 = 3.6, x∗2 = 2.1
ž = 6.75 ⇔ x∗1 = 2.25, x∗2 = 0.75
ẑ = 48 ⇔ x∗1 = 15, x∗2 = 6

Now, what if we tried to set the system to go to ẑ (best returns), but we simply failed in doing it? Now
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suppose that our best tryout was to set the system in the following way:

z = Max 2x1 + 3x2

s.t.

1.8x1 + 2.8x2 . 12 (19)

1.4x1 + 2.9x2 . 15 (20)

xj > 0

In this case we have that Ar = {A11 = 1.8, A12 = 2.8;A21 = 1.4, A22 = 2.9} whose membership degrees are
µA11

= 0.6, µA12
= 0.4;µA21

= 0.2, µA22
= 0.7, then our solution zr = 13.33 ⇔ x∗1 = 6.666, x∗2 = 0 is pretty

much closer to the expected value z̄ than the best possible scenario. In this case, we have only one optimal
variable x∗1 and the binding constraint is k = 1. Its computation comes from Eq. (16):

µz̃(zr = 13.33 : b1, A11 = 1.8) = min{0.6} = 0.6

Note that the second constraint is not involved in this computation since it is not a binding constraint having
no effect over zr, as well as the second decision variable x2 since it is not optimal. The satisfaction degree
of zr is clearly inferior to what is expected if the system was set using an α-cuts approach. On the other
hand, the use of the extension principle to get z = 13.33 leads to an infinite amount of choices of Ar that
can reach z = 13.33 which basically untractable.

6. CONCLUDING REMARKS

The set of solutions z̃ can be used as a priori solution of the problem, since it maps all possible scenarios of
the problem passing through its expected value.
When using a realization Ar to find an optimal operation point, then it could not be as satisfactory as the
solution provided by αÃ. This means that random operation points lead to less satisfaction degrees of what
the experts expect from the system.
The analyst should keep in mind that there is no any guarantee that desired values of Ã can be used in real
applications, so our proposal helps decision making since we provide a simple way to get a priori solutions
in order to see the behavior of the system given certain operation conditions, and a method to compute the
satisfaction degree of a posteriori realization Ar which is a common case.
The application example shows that a priori solutions z̃ are different to a posteriori solutions zr even when
it is a small example. It is important to note that simpler methods are desirable in decision making, so we
have provided a complementary tool to enrich it.
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sures for interval type-2 fuzzy numbers Discrete Applied Mathematics, 197(1):93–102.

[5] FIGUEROA-GARCIA, J. C. and HERNANDEZ-PEREZ, G. (2014): On the computation of the distance
between interval type-2 fuzzy numbers using α-cuts In IEEE, editor, Proceeedings of NAFIPS 2014,
pages 1–5. IEEE.

[6] GASIMOV, R. N. and sat YENILMEZ, K. (2002): Solving fuzzy linear programming problems with
linear membership functions Turk J Math, 26(2):375–396.

[7] HEINDL, G., KREINOVICH, V., and LAKEYEV, A. V. (1998): Solving linear interval systems is
NP-Hard even if we exclude Overflow and Underflow Reliable Computing, 4(4):383–388.
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