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ABSTRACT
Many real-life scenarios can be modeled as Dynamic Optimization Problems (DOPs), which demand for find-

ing optimal solution over time. From the viewpoint of metaheuristics methods, DOPs have been extensively
addressed over the last two decades. One important issue in this context is how to assess the algorithm perfor-
mance. Most of current proposals rely on single information from data, which limits the notion about the overall
performance of the algorithm. So, in order to contribute to this issue, in this paper we propose a new performance
measure for algorithm assessment in evolutionary dynamic optimization. We derived our proposal from what
we considered as effectiveness in dynamic environments. Different from other existing measures, our proposal
involve not only the accuracy, but also the time (efficiency) of the algorithm. In order to illustrate its usefulness
and relationship with other literature measures an experimental analysis was conducted. Results show that the
proposed measure can be suitable employed in typical experimentation scenarios and offers new information
about the algorithms performance.
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RESUMEN
Varios escenarios reales pueden ser modelizados como Problemas Dinámicos de Optimización (PDOs), los que
exigen encontrar soluciones óptimas a lo largo del tiempo. Desde el punto de vista de métodos metaheurı́sticos,
los PDOs han sido estudiados ampliamente durante las dos últimas décadas. En este contexto un aspecto im-
portante es cómo evaluar el rendimiento del algoritmo. La mayorı́a de las propuestas actuales se basan en una
información única a partir de los datos, lo cual limita la noción acerca del rendimiento global del algoritmo. Con
el objetivo de contribuir a resolver esta problemática, en el presente artı́culo proponemos una nueva medida para
evaluar el rendimiento de los algoritmos en ambientes dinámicos. Hemos derivado nuestra propuesta a partir de
lo que consideramos como efectividad en ambientes dinámicos. Diferente a otras medidas, nuestra propuesta in-
volucra no solo la precisión del algoritmo, sino también su eficiencia. Para ilustrar su utilidad y relación con otras
medidas de la literatura hemos desarrollado un análisis experimental. Los resultados muestran que la medida
propuesta puede ser empleada en escenarios tı́picos de experimentación y al mismo tiempo ofrece información
diferente sobre el rendimiento del algoritmo.

1. INTRODUCTION

Evolutionary Dynamic Optimization (EDO) [12] is a popular research area in the field of Soft Computing [21].
Its main goal is to solve Dynamic Optimization Problems (DOPs) by evolutionary (metaheuristics) methods.
Formally, a DOP is defined as:

DOP := {max
x∈X

f (t)(x) (1)

where X ⊆ RD is the set of feasible solutions (D-dimensional search space), and f : RD×N0→ R is the objec-
tive function to be maximized at every time step t.
Over the last two decades several approaches has been proposed for solving DOPs from the viewpoint of meta-
heuristics methods, as shown in [6, 7, 12]. In addition to the optimization task, in EDO the algorithm must
implement special mechanisms for dealing with environment changes. Specially for change detection and for
adapting the search when a new environment appears. Usually, for population-based algorithms (e.g. Evolu-
tionary Algorithms and Swarm Intelligence Algorithms), adapting the search is achieved by maintaining the
population diversity with aim of avoiding convergence issues.
∗pnovoa@uteq.edu.ec
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In this context, one important research topic in EDO is the design and selection of suitable performance mea-
sures for algorithm assessment. However, from a review of the related literature it is possible to observe that
there is no measure for characterizing the algorithm in a wider perspective, that is, involving more than one
performance criteria. For instance accuracy vs. efficiency, reactiveness vs. stability [22]. Some examples of
proposals involving single information measures are the offline error [4], the adaptability [20], the best error
before the change [9], the collective fitness [11], the fitness-based statistics from [19], among others.
In order to contribute to this topic, the present work proposed a new performance measure for dynamic environ-
ments, which we have called effectiveness. Our proposal quantifies the accuracy and efficiency of the algorithm
in a single magnitude. With aims of illustrating both, how efficiency can be used in dynamic environments
and its relationship with other existing measures, we analyzed it through computational experiments. Results
showed that the proposed measure can be suitable for typical experimentation scenarios and it offers new infor-
mation about the algorithm performance.
The rest of the paper is organized as follows: in Section 2. we reviewed the previous works. Section 3. describes
our proposal, which is analyzed in Section 4.. Finally we outlined the conclusion and future works in Section 5.

2. PERFORMANCE MEASURES IN DYNAMIC ENVIRONMENTS

As pointed out by [12, 22, 23] the selection of a performance measure is strongly related to what the researcher
considered as the goal of the algorithm in dynamic environments. For instance, from the definition of DOPs
given in Eq. (1) the reader can easily infer that the goal of the algorithm is to find the best solution, in terms
of the objective function (fitness), at every time step. However, other goals are also possible leading to defining
different measures.
For instance, one of the first performance measure in dynamic environments was weighted accuracy from [10].
This measure aims for characterizing the algorithm accuracy depending on the generation g (iteration):

per f Acc =
1
G

G

∑
g=1

αg ·accuracy(g) (2)

where α(g) ∈ R is the weight for generation g with g = 1, ..,G, and accuracy is defined as:

accuracy(g) =
f̂ (g)− fmin

fmax− fmin
(3)

where f̂ is the fitness (objective function value) corresponding to the best solution found by the algorithm in
generation g. Besides, fmax y fmin are the best and the worst fitness in the search space for the generation g.
As the reader can observe this measure quantify rely on the assumption that the algorithm accuracy in certain
generations are more important than in others. For instance, first generations after a change vs. generations
before a new change.
On the other hand, the offline error and the offline performance from [4], are among the most used measures
in dynamic environments. These measures focus in the error and fitness of the best solution of the algorithm,
during the execution:

o f f lineError =
1
T

T

∑
t=1

bestError(t) (4)

o f f linePer f =
1
T

T

∑
t=1

f̂ (t) (5)

where t = 1, ...,T are function evaluations. In practice, each function evaluation is considered as a time unit in
EDO. Besides, bestError(t) is defined as:

bestError(t) = | f (t)optim− f̂ (t)| (6)
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Other fitness-based measures are adaptability and stage accuracy [20]. They are defined as:

adaptability =
1
K

K

∑
k=1

(
1

Gk

Gk

∑
g=1

bestError(g)) (7)

stageAccuracy =
1
K

K

∑
k=1
| f (Gk)

optim− f̂ (Gk)| (8)

(9)

where K is the number of changes in the problem, while Gk is the number of generations within a stage k
(environment).
In [22] the author proposed two interesting measures: stability and reactivity. These measure were defined
bearing in mind different goals for an algorithm in dynamic environments:

stability(G) = max{0,acc(g−1)−acc(g)} (10)

ε− reactivity(G) = min{g′−g : g < g′ ≤ G,
acc(g′)
acc(g)

≥ (1− ε)} (11)

here, acc is an expression for computing the algorithm accuracy (e.g. Eq. 3). Besides, ε ∈R+ y g′ ∈N. Note that
stability is defined in the range [0,1] if Eq. 3 is employed for acc. However, regardless the selected expression
for acc, a value close to 0 of stability means that the algorithm is stable. On the other hand, ε − reactivity is
given by time units, that is, generations. The conceptual meaning of these the required time of the algorithm for
achieving an accuracy close to the obtained in the previous stage (e.g. before a change). Particularly, a lower
value indicates high algorithm reactivity.
Additionally, [22] explored extensions of stability and reactivity, by employing different expressions for acc.
For instance, the author considered the distance between the best solution of the algorithm and the global optima
of the problem. This measure is defined as:

bestDist(k) =

√
D

∑
d=1

(x∗d− x̂d) (12)

where x∗d and x̂d are the component d of the problem optima and algorithm best solution, respectively.
Another interesting proposal was given in [11], in which the author proposed a generation-based version of the
offline performance [4]. The author called this measure collective fitness and he defined as:

collectiveFitness =
1
G

G

∑
g=1

f̂ (g) (13)

In some cases where is known that the problem is multimodal (several solution locally optima), then it would
be interesting to analyze whether the algorithm is capable of locating these multiple solutions. Performance
measures motivated from this goal are the proposed in [2, 5]. Specifically, the first one takes into account the
error of locating the true global optima of the problem, while the second one says how many peaks (local optima
solutions) are covered by the algorithm.
In recent years, some authors have proposed more sophisticated measures. This is the case of fitness degradation
from [1], which applied linear regression to estimate the algorithm overall accuracy. Another sophisticated
approach is adopted in [19], which relied on multiple hypothesis testing for time series.
As the reader may note, one common feature of performance measures in dynamic environments is that they
rely on a single source of information. So, they characterize the algorithm from a limited viewpoint. The next
section describe our proposal for overcome this issue.

3. PROPOSED MEASURE

The new measure we propose is motivated by the fact that in some real-world scenarios (even for non-dynamic
environments), the final user may demand the set of best possible solutions at the minimum waste of resources
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Figure 1: Illustrative example of elapsed time in two algorithms with different performance (a), and the four
possible categories from the concepts of efficiency, accuracy and effectiveness (b).

(e.g. time). As one may note, this requirement is not new in the context of evolutionary optimization. In fact,
its accomplishment in complex environments is the main cause of the success of metaheuristics over classical
(exact) optimization methods.
What we considered as “best solution” is, of course, a relative concept that depends on the user. Mathematically
it can be modeled by assuming that it depends on a satisfaction degree ε , over of which the obtained solution
satisfies the user. Regardless the selected criteria, it is clear that the consumed time in achieving the desired
solution is an important criteria for evaluating the algorithm efficiency. Of course, other computational resources
are also important, like RAM memory or CPU time. However, defining efficiency in dynamic environments is
difficult since the algorithm is running regardless the solution quality. In other words, the execution time is
theoretically infinite [18]. One possible solution for dealing with this dilemma is to defined efficiency in terms
of the time wasted by the algorithm in order to obtain the “best solution” in every environment, but from the
viewpoint of the algorithm, that is, regardless the user. With aim of illustrate this idea, Fig. 1-a) shows the
behavior, in terms of the best solution error over time, of two different algorithms in a single environment.
Note that both algorithms obtain solutions with identical quality, however, Algorithm 1 is more efficient than
Algorithm 2, since the former converges more quickly than the second one.
More formally, we can define efficiency as follows:

Definition 1 (Efficciency). Be the environment k defined in the time interval [T min
k ,T max

k ], and x̂k the best
solution found by the algorithm A in k, then the efficiency of A in the environment k is:

e f f iciency(k)A = 1− t̂
T max

k −T min
k

(14)

where t̂ is the elapsed time by A such that: t̂ = min{t : x̂(t) = x̂k}.

As one may note the main drawback of defining efficiency like above, is the impossibility of known how
accurate the algorithm is. Fortunately, we have several options. For instance, the absolute fitness (error) of the
best solution [16, 17], the distance to the true optimum of the problem [22], among others. In general, we say
that one of these measures assesses the algorithm accuracy.
So, in our opinion the performance of one algorithm in dynamic environments depends on these two criteria
efficiency and accuracy. Intuitively, if the algorithm is efficient and accurate, then we say that it is effective.
Fig. 1-b) shows the four possible categories for an algorithm from the concepts of efficiency, accuracy and
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effectiveness. Note for example that algorithms with low levels of accuracy and efficiency are termed as no
effective, while effective on the contrary.
Assuming that both, efficiency and accuracy are measures in the range [0,1], then we can define effectiveness
as:

Definition 2 (Effectiveness). Be e f f iciency(k)A and accuracy(k)A the efficiency and accuracy of the algorithm A
in the environment k, respectively, then the effectiveness of A in k is:

e f f ectiveness(k)A = 1− ‖vA−v∗‖
‖v∗‖

(15)

where ‖·‖ is the euclidean norm, vA = (e f f iciency(k)A ,accuracy(k)A )T , and v∗ = (1,1)T .

The meaning of these measure is quite simple. For instance, note that vector v∗ is composed by ideal values for
the efficiency and accuracy. So, it also represents the ideal effectiveness. On the other hand, the norm ‖vA−v∗‖
says how different is the algorithm effectiveness regarding the ideal value, which in turn is normalized by
‖v∗‖. Finally, by subtracting this normalized value from one, we give an intuitive meaning to the measure. For
example, a value closer to 0 means a low effectiveness, while a value closer to 1 the opposite.
Nevertheless, like occurring for other measures, effectiveness presents some difficulties:

1. the selected measure for accuracy requires to be normalized, so in the case we do not know which are the
best and the worst values of the measure, computing that normalization could be difficult, and

2. both criteria (e.g. efficiency and accuracy) have the same importance, so we can not use Def. (2) for
expressing the case of different importance degrees for them.

The first issue is much difficult to solve than the second one. One possible solution for this is to approach it as
a Pareto efficiency problem, that is, by applying the concept of dominance. In this way we have not rely on a
normalize value for accuracy. Alternatively, we can also normalize the accuracy by using the results obtained
by the algorithms involved in the experiments, that is, by employing the worst and the best accuracy values
found by the algorithms. Although this is an easy solution for the normalization issue, it is worth noting that the
experiment results obtained by this approach cannot be used across different studies. So, this issue will be the
subject of our future research.
Regarding to the second difficulty, an intuitive solution is to use weights for the criteria. For instance, we can
weight the component-wise difference of the vector vA−v∗. Formally we have:

‖vA−v∗‖w = ‖wT · (vA−v∗)‖ (16)

where w = (ωe,ωa) is the weight vector corresponding to the efficiency and accuracy, respectively. As a conse-
quence, we obtain a more general definition for effectiveness. In what follows, we refer it as weighted effective-
ness.

4. EXPERIMENTAL ANALYSIS

In order to analyze the proposed measure, we have designed two experiments. The first one is devoted to
illustrate how the efficacy can be employed in typical scenarios, while the second one is oriented to show the
statistical relationship between the proposed measure and others from literature. To this end we have considered
four algorithms and 36 problem instances from the Moving Peaks Benchmark [4]. Table 1 shows the default
parameter setting for MPB’s scenario 2, which was employed in the experiments. The MPB instances were
derived from the levels combination of the following factors:

• Peak function ( fp):

{Sphere, Schwe f el, Rastrigin, Ackley}

• Change frequency (∆e):

{ 1000, 5000, 10000 }.
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Parameter Setting

Dimension (D) 5

Search space (Ω,Γ) [0,100]5

Number of peaks 10

Peak heights (Hi) ∈ [30,70]

Peak widths (Wi) ∈ [1,12]

Peak function ( fp) fcone(X) =
√

∑
D
d=1 X2

d

Shift severity (sev) 1.0

Change frequency (∆e) 5000

Correlation coefficient (λ ) 1.0

Table 1: Default parameter setting for Scenario 2 from the Moving Peak Benchmark.

Parameter mQSO mQSOE mPSOD mPSODE

Number of populations 10 10 10 10

Number of conventional individuals 5 5 5 5

Number of quantum individuals 5 5 5 5

Cloud / diversity radii (rcloud / rdiv) 1.0 1.0 1.0 1.0

Exclusion radii (rexcl) 30.0 30.0 30.0 30.0

Diversity strategy Quantum indi-
viduals.

Quantum in-
dividuals. +
Control rule
for converged
populations.

Diversity after
the change.

Diversity after
the change +
Control rule
for converged
populations.

Table 2: Parameter settings for the algorithms employed in the experiments.

• Shift severity (sev):

{1.0,5.0,10.0}.

Regarding to the algorithms, we selected: the mQSO from [3], and those proposed in [13], that is, mPSOD,
mPSODE, and mQSOE. All the algorithms include several populations and detect the environment changes by
reevaluating the current best solution. Their main differences are the optimization paradigm, and the diversity
strategy for coping with the environment changes. More details can be found in the Table 2, and in the references
given below.
In general, we performed 20 runs for each pair problem-algorithm and each problem instance changed 50 times.
Regarding to the accuracy definition, we considered the fitness of the best solution of the algorithm, which is
in turn normalized by the difference between the worst and the best fitness values taking into account the three
algorithms. Finally, it is important to remark that for every run we have averaged the values of effectiveness
over 50 changes, leading to a single value of this measure.
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Figure 2: Contour maps of the effectiveness (a) and weighted effectiveness (b) for the algorithms mQSO, mP-
SOD, mPSODE and mQSOE. The results are obtained from the average of the effectiveness in all problem
instances.

4.1. Using the effectiveness measure

To see how the four algorithms can be evaluated using the effectiveness measure, in Fig. 2-a) we plotted
through contour maps, their corresponding effectiveness levels, that is, according to their levels of efficiency
and accuracy. Particularly, Fig. 2-b) shows a weighted variant of the effectiveness. In this case, our intention
was to illustrate the case when the user consider that the accuracy is more important than the efficiency. Note
that since the employed weights are different, then the effectiveness function is clearly affected (see the contours
of Fig. 2 -b).
The first conclusion that we can derive from the results of Fig. 2 is that all algorithms have a low level of
efficiency, which means that they obtain the best solution too close of the occurrence of a change in the envi-
ronment. Regarding the accuracy, algorithms mQSO, mQSOE and mPSODE are better than mPSOD. Finally,
if we consider the effectiveness, algorithms mQSO and mQSOE are the best ones in Fig. 2-a), while the mQSO
is the best in the case of the weighted case Fig. 2-b).

4.2. Relationship with other measures

On the other hand, with aims of discovering the relationship between our measures and others from literature,
we proceed with a correlation analysis. In that sense, we employed the Pearson’s coefficient for expressing
not only the strength, but also the direction of the correlation. The measures considered from literature were:
the distance to the optimum before the change [22], the best error before the change [8, 15], the stability [22],
reaction [22], and the offline error [4]. Besides, we consider interesting to include the efficiency measure (Eq.
14) in our correlation analysis. See Table 3.
In Fig. 3 we have drawn the Pearson’s correlation coefficients for the two variants of effectiveness. Note that
we have distinguished through different colors the significant and no significant correlation. As we can see
in Fig. 3-a) the effectiveness positively correlates with efficiency and its weighted variant. Of course, the
correlation is stronger in the latter case. Additionally it negatively correlates with the best error before the
change and reactivity, being its correlation with the rest no significant (at least for the employed data). On
the other hand, it is worth noting that the weighted effectiveness (Fig. 3-b) has a quite strong correlation with
respect to the distance to the optimum. It is obvious that the employed weights have an important impact in
the measure. However, compared with the others, our measures have not correlation coefficients greater(resp.
lower) than 0.5(resp. -0.5). This indicates that our proposals offer new information for assessing the algorithm
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Performance Measure Formula

Distance to the optimum before the change [22] avgBestDist(K) = 1
K ∑

K
k=1 bestDist(k)

Best error before the change [8] avgBestErrorBe f (K) = 1
K ∑

K
k=1 bestError(k)

Stability [22] avgStability(K) = 1
K ∑

K
k=1 stability(k)

Reactivity ε− reactivity [22] avgReactivity(K)
ε = 1

K ∑
K
k=1 reactivity(k)

Offline error [4] o f f lineError(K) = 1
T ∑

T
t=1 bestError(t)

Efficiency avgE f f iciency(K) = 1
K ∑

K
k=1 e f f iciency(k)

Effectiveness avgE f f ectiveness(K) = 1
K ∑

K
k=1 e f f ectiveness(k)

Table 3: Selected performance measures for experimental analysis.
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Figure 3: Pearson’s correlation coefficient (α = 0.05) for the effectiveness (a) and weighted effectiveness (b)
vs. other measures.

performance.

5. CONCLUSION AND FUTURE WORKS

In this paper we proposed a new measure for assessing algorithm effectiveness in dynamic environments. Our
proposal is based in the concepts of efficiency and accuracy, which are two important criteria in optimization.
From the conducted experimental analysis it is possible to conclude that the proposed measure results infor-
mative enough for algorithm comparison, and also it offers a new perspective to assess algorithms in dynamic
environments. However, we found as major drawback the normalization of the accuracy, since it depends on the
best and worst value of the problem.
Our future research will be oriented to: the exploration of other accuracy criteria and the examination of the dis-
crimination power of the proposed measure when statistical tests are used for algorithm comparison. Besides,
we plan to include our performance measures in DynOptLab [14], a software for experimentation in dynamic
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environments, and to explore discrete optimization problems.
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