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ABSTRACT 

In recent years, there has been an increased interest in using statistical models for analysis of single dengue outbreaks based on 

the reported cumulative cases. Sometimes this type of data is collected for all urban areas in a particular region. Modeling in order 
to estimate epidemiological parameters is usually performed for each area separately, but when the interest lays on estimating the 

average behavior of a particular area in the population, and variability among and within areas, a nonlinear mixed effects model 

is recommended. In this research, we describe two approaches that provide estimates of three key epidemiological parameters: the 

turning point, the final size of outbreak, and the basic reproduction number𝑅0, using nonlinear models. The first approach consists 
of fitting an individual nonlinear model for each area separately. In the second method, we use a nonlinear mixed effects model, 

which accounts for heterogeneity between areas. In both approaches, the Richards model was used as mean structure. The proposed 

methods are applied to data of seven Primary-Health Care Areas of Plaza municipality, Havana City, Cuba during 2006 dengue 
outbreak. 
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RESUMEN 

Recientemente ha existido un interés creciente en el uso de métodos estadísticos para el análisis de brotes de dengue basado en 

casos acumulados reportados. Algunas veces este tipo de datos se colecciona para todas las áreas urbanas en una región en 
particular. La modelación, para estimar parámetros epidemiológicos, se realiza usualmente para cada área por separado, pero 

cuando el interés consiste en estimar el comportamiento promedio de un área en particular en la población, y la variabilidad entre 

y dentro de las áreas, se recomienda un modelo no lineal con efectos mixtos. En esta investigación, se describen dos enfoques que 
proporcionan estimaciones de tres parámetros epidemiológicos primarios: el acmé de la epidemia, el tamaño final y el número 

reproductivo básico  𝑅0. El primer enfoque consiste en ajustar un modelo no lineal individual para cada área por separado. En el 
segundo enfoque se utiliza un modelo no lineal con efectos mixtos, el cual tiene en cuenta la heterogeneidad entre las áreas. En 

ambos enfoque, se utilizó el modelo de Richards como estructura de la media. Los métodos propuestos son aplicados a los datos 
de siete áreas de salud primarias del municipio Plaza durante el brote de dengue del 2006. 

1. INTRODUCTION 
 

Dengue is a mosquito-borne viral infectious disease that causes significant epidemic outbreaks, particularly in 

tropical and subtropical areas [1]. In recent years, there has been an increased interest in using statistical models 

for analysis of single dengue outbreaks [2] based on the reported cumulative cases. These models capture the 

behavior of the outbreak, and also facilitate the estimation of important epidemiological parameters. 

Parameters estimation is a key step in modeling epidemiological processes [3] and it provides a useful tool to 

study the impact of intervention and control measures. Among the most important epidemiologic parameters 

are the turning point, i.e. the point in time at which the rate of accumulation changes from increasing to 

decreasing or the infection point of the logistic (S-shaped) curve in a single epidemic outbreak, the final size of 

epidemic and the basic reproduction number 𝑅0, defined as the number of secondary infections that arise from 

a typical primary case in a completely susceptible population [4, 5]. 

Modern techniques for parameter estimation of mechanistic models have gained popularity. A mechanistic 

model is one where the basic elements of the model have a direct correspondence to the underlying mechanisms 

in the system being modeled. However, maximum likelihood fitting of phenomenological models remains 
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important due to its simplicity, to the difficulty of using modern methods in the context of limited data, and to 

the fact that there is not always enough information available to choose an appropriate mechanistic model [6]. 

In particular, Hsieh et al. [4, 5] proposed to use a nonlinear model, the Richards model, to estimate these three 

key epidemiological parameters. The Richards model considers only the cumulative infective population size 

with saturation in growth as the outbreak progresses. The basic premise of the Richards model is that the 

incidence curve consists of a single peak of high incidence, resulting in an S-shaped epidemic curve and a single 

turning point of the outbreak [4, 5]. 

Sometimes, the reported cumulative cases are collected for all urban areas in a particular region, and modeling 

is usually performed for each area individually. However when the interest lays on estimating the average 

behavior of a particular area in the population and variability among and within areas, a nonlinear mixed effects 

model is recommended [7, 8].  

In this research, we describe two approaches that provide estimates of three key epidemiological parameters: 

the turning point, the final size of outbreak, and the basic reproduction number 𝑅0, using nonlinear models. The 

first approach consists of fitting an individual nonlinear model for each area separately. In the second method, 

we use a nonlinear mixed effects model, which accounts for heterogeneity between areas. The proposed 

methods are applied to data of seven Primary-Health Care Areas of Plaza municipality, Havana City, Cuba 

during 2006 dengue outbreak. 

 
2. METHODS 

 

 Richards model for specific area 

 

Let 𝑌𝑖𝑗  a random response, which represents the cumulative number of reported cases in the health area 𝑖 at 

time𝑡𝑗. In this study, we consider the assumption that the cumulative number of reported cases, the response 

(𝑌𝑖𝑗), are normally distributed with mean 𝜇(𝑡𝑗, 𝜃𝑖) and variance 𝜎2, e.g. 𝑌𝑖𝑗~𝑁(𝜇(𝑡𝑗, 𝜃𝑖), 𝜎2) where 𝜇(𝑡𝑗 , 𝜃𝑖) 

is the known nonlinear function; 𝑡𝑗is the regressor variable and 𝜃𝑖  the parameter vector, which needs to be 

estimated. 

The mean structure 𝜇(𝑡𝑗 , 𝜃𝑖), which describes the relationship between the cumulative number of reported cases 

and the time in weeks, is the Richards model [4, 5, 9], and can be expressed as follow: 

 𝜇(𝑡𝑗, 𝜃𝑖) =
𝛼𝑖

[1+𝑘𝑖.𝑒
−𝑘𝑖𝛾𝑖(𝑡𝑗−𝜂𝑖)

]

1
𝑘𝑖

𝑖 = 1, ⋯ , 𝑛 𝑗 = 1, ⋯ , 𝐽                          
   (1) 

Where 𝜃𝑖 = (𝛼𝑖 , 𝑘𝑖 , 𝛾𝑖, 𝜂𝑖) is a health area specific parameter vector to be estimated. The parameter 𝛼𝑖 is the 

final size of the epidemic, 𝛾𝑖 is the growth rate, 𝜂𝑖 is the turning point of outbreak and 𝑘𝑖 is the exponent of 

deviation from the standard logistic curve. 

 

Nonlinear Mixed effects Model 

 

The corresponding nonlinear mixed effects model for the cumulative number of reported cases 𝑌𝑖𝑗  in the health 

area 𝑖 at time 𝑡𝑗 is 

𝑌𝑖𝑗 =
𝛼𝑖

[1+𝑘𝑖.𝑒
−𝑘𝑖𝛾𝑖(𝑡𝑗−𝜂𝑖)

]

1
𝑘𝑖

+ 𝜀𝑖𝑗                                                          
  (2) 

 

The health area-specific parameter vector is modeled as: 

𝜃𝑖 = 𝑋𝑖𝜃 + 𝑍𝑖𝑏𝑖                                                                                              (3) 

Here, 𝜃 is a fixed parameter vector, 𝑏𝑖 is a health area-specific random effects vector, and 𝑋𝑖 and 𝑍𝑖 are known 

design matrices for the fixed effects 𝜃 and the random effects𝑏𝑖, respectively: 

 

𝑋𝑖 = 𝑍𝑖 = (

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

)     𝜃 = (

𝛼
𝑘
𝛾
𝜂

)  and  𝑏𝑖 = (

𝑏𝑖1

𝑏𝑖2

𝑏𝑖3

𝑏𝑖4

)                                               (4) 

 

It follows from equation (3) that the health area-specific parameter vector can be expressed as 
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(

𝛼𝑖

𝑘𝑖

𝛾𝑖

𝜂𝑖

) = (

𝛼 + 𝑏𝑖1

𝑘 + 𝑏𝑖2

𝛾 + 𝑏𝑖3

𝜂 + 𝑏𝑖4

)                                                                                            (5) 

The random effect  𝑏𝑖 are assumed to be normally distributed as 𝑏𝑖 ∼ 𝑁(0, Ψ) and the within-group error 𝜀𝑖𝑗 ∼

𝑁(0, 𝜎2) . A general positive-definite matrix is used to represent the random-effects variance–covariance 

structure Ψ. 

 

Basic reproduction number 𝐑𝟎 

 

The initial exponential growth rate of an epidemic is an important measure of disease spread, and is commonly 

used to infer the basic reproduction number𝑅0. 𝑅0 is determined by 𝛾 and the distribution of the generation 

interval, i.e. the time between a case and the secondary cases resulting from it.  

For an infection where all secondary infections are exactly equal to the mean generation interval 𝑇 , the 

distribution conforms to a so-called delta distribution. It has been shown mathematically that, given the growth 

rate 𝛾, the expression 𝑅0 = 𝑒𝛾𝑇 provides the upper bound of the basic reproduction number regardless of the 

distribution of the generation interval used [10]. 

To take into account the extrinsic and intrinsic incubation periods as well as the duration of viraemia, we use 

an estimated generation time of  𝑇 = 19 days or 𝑇 =
19

7
 weeks with a range of 16–34 days [4]. The ESTIMATE 

statement from NLMIXED procedure in SAS [11] was used to compute approximate standard errors for the 𝑅0 

estimates using the delta method. The approximate standard error for 𝑅0 estimate using the delta method is 

given by the expression 𝑆𝐸(𝑅0) ≈ 𝑇𝑒𝛾𝑇𝑆𝐸(𝛾). 
 

3. APPLICATION TO THE DATA  

 

Dengue outbreak data 

  

The research was conducted in all Primary-Health Care Areas of the municipality of Plaza, a part of Havana 

City, where cases were reported during 2006 dengue outbreak. The seven areas are numbered as follows: 1 (“15 

y 18”), 2 (“19 de Abril”), 3 (“Corynthia”), 4 (“Moncada”), 5 (“Puentes Grandes”), 6 (“Plaza”) and 7 (“Rampa”). 

The data used in this study is the weekly distribution of confirmed Dengue cases per Health Area by date of 

onset of symptoms. The weekly data were converted into cumulative case curves. 

 

Model for specific health area 

 

The nonlinear Richards model in equation (1) was fitted for each health area separately by using NLMIXED 

procedures in SAS [11] and nlsList function from nlme package in R software [12]. Figure 1 shows the 

individual fitted models of the seven Primary-Health Care Areas. Table 1 shows the health area-specific ML 

parameter estimates (and 95% CI). A remarkable variability is observed in the individual parameter estimates. 

Table 1: Parameter estimates of Richards model and 𝑅0 estimate for specific health area. 

Áreas 𝜶 𝜼 𝜸 𝒌 𝑹𝟎 
15 y 18 420.05 (415.36,424.75) 13.76 (13.53,13.99) 1.07 (0.65,1.48) 0.40 (0.21,0.58) 18.22 (0*,38.94) 

19 de Abril 524.14 (520.35,527.93) 13.87 (13.70,14.03) 0.73 (0.60,0.85) 0.64 (0.49,0.79) 7.17 (4.75,9.59) 

Corynthia 381.09 (374.98,387.19) 14.79 (14.42,15.17) 0.59 (0.42,0.77) 0.92 (0.50,1.34) 5.00 (2.60,7.40) 

Moncada 431.13 (425.10,437.16) 14.92 (14.63,15.22) 0.69 (0.49,0.89) 0.74 (0.44,1.04) 6.48 (3.02,9.94) 

P. Grandes 215.32 (211.11,219.52) 12.58 (11.97,13.18) 0.51 (0.31,0.72) 1.08 (0.38,1.79) 4.03 (1.77,6.30) 

Plaza 399.14 (387.35,410.94) 11.73 (11.39,12.07) 1.12 (0.56,1.68) 0.36 (0.14,0.57) 20.67 (0*,52.05) 

Rampa 460.88 (456.82,464.93) 14.01 (13.81,14.21) 0.96 (0.68,1.25) 0.50 (0.31,0.68) 13.66 (3.15,24.17) 
* Max (0, lower bound) 

Although the models for specific health areas fit the data well, from our point of view, this approach has 

limitations. It uses 28 coefficients to represent the individual cumulative cases profiles and does not take into 

account the obvious similarity among the individual curves, indicated in Figure 1. This approach (individual 

nonlinear model for each area separately) is useful when one is interested in modeling the behavior of a 

particular, fixed set of areas, but it is not adequate when the areas are regarded as sample from a (perhaps 

hypothetical) population and inference should focus on this population. 
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Figure 1: Individual fitted (red line) and observed (dot) cumulative number of cases of the seven Primary-

Health Care Areas. 

Nonlinear Mixed effect model  

 

As in this case, the interest lays on estimating the average behavior of a health area in the population and the 

variability among and within health areas, a mixed-effects model is developed. A crucial step in the model-

building of mixed-effects models is deciding which of the coefficients in the model need random effects to 

account for their between-areas variation and which can be treated as purely fixed effects.  

Our modeling strategy was to fit different models taking into account in each model different parameters with 

random effects. Within the strategy, no parameters with random effects were considered at first. Then, all 

combinations of parameters with random effects were used. In all cases, the 𝛼 parameter, the final size of the 

epidemic, was considered as random effect for its great variability. Table 2 shows the Akaike information 

criteria (AIC) and Bayesian information criteria (BIC) for nonlinear mixed models with all combinations of 

parameter with random effects, and parameter estimates for the best fitted nonlinear mixed effects model by 

using NLMIXED procedures in SAS [11] and nlme() function from nlme package in R software [12].  

 

Table 2: AIC and BIC for nonlinear mixed models with different random effects (a), parameter estimates for 

nonlinear mixed model with lowest AIC and BIC (b) and the correlation matrix of random effects (c). 
a  b c 

Random effects AIC BIC Parameters Estimate (se)  

- 1730.0 1745.3 Fixed effects  

𝛼 1434.7 1453.0 𝛼 406.76 (33.31) 

𝛼, 𝜂 1135.6 1160.0 𝑘 0.5176 (0.062) 

𝛼, 𝛾 1410.1 1434.5 𝛾 0.8691 (0.080) 

𝛼, 𝑘 1438.7 1463.1 𝜂 13.5559 (0.39) 

𝛼, 𝜂, 𝑘 1124.2 1157.7 Residual variance  

𝛼, 𝜂, 𝛾 1127.8 1161.3 𝜎2 38.3170 (4.65) 

𝛼, 𝑘, 𝛾 1307.4 1340.9 Random effects  Correlation Matrix 

𝛼, 𝜂, 𝛾, 𝑘 1132.8 1177.93 𝑆𝑡𝑑𝐷𝑒𝑣(𝑏𝑖1) 88.0630 (23.55)  𝛼 𝑘 

   𝑆𝑡𝑑𝐷𝑒𝑣(𝑏𝑖2) 0.03025 (0.012) 𝑘 0.262  

   𝑆𝑡𝑑𝐷𝑒𝑣(𝑏𝑖4) 1.0139 (0.27) 𝜂 0.559 0.934 

 

The lowest AIC and BIC was obtained for the model with the parameters 𝛼, 𝑘 and 𝜂 as random effects, i.e. 

considering only the 𝛾 as a fixed parameter. As the key epidemiological parameter R0 is derived from 𝛾, then 

R0 parameter estimate, and therefore the transmission, would be the same for each health area if this model is 

considered, i.e. R0 = 10.58 (4.22,16.94) . Although the best fit is obtained for this model, it might make no sense 

from an epidemiological point of view, in which case it is better for inference to use the model when the 
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parameters with random effects are 𝛼, 𝜂 and 𝛾, having an AIC = 1127.8 and BIC = 1161.3 very similar to the 

above. 

The near-zero estimate for standard deviation of the 𝑘 random effect suggests that this term could be dropped 

from the model. The remaining estimated standard deviations suggest that the other random effects should be 

kept in the model. In order to test if 𝑘 random effect can be removed from the model, a likelihood ratio test was 

performed. The results are shown in table 3. The inclusion of 𝑘 random effects causes a significant improvement 

in the log-likelihood. 

 

Table 3: Likelihood ratio test for the model with 𝛼, 𝜂 as random effects versus the model with 𝛼, 𝜂, 𝑘 as 

random effects. 
Model AIC BIC logLik Test L. Ratio p-value 

Model 1 (𝛼, 𝜂 ) 1135.607 1060.006 -559.80    

Model 2 (𝛼, 𝜂, 𝑘 ) 1124.182 1157.731 -551.09 1 vs 2 17.42 6e-04 

 

 
Figure 2: Pairs plot for the random-effects estimate corresponding to the model with 𝛼, 𝜂, 𝑘 as random 

effects. 

 

The estimated correlation of 0.934 between 𝜂and  𝑘 suggests that the estimated variance-covariance matrix is 

ill-conditioned and that the random-effects structure may be over-parameterized. The scatter-plot matrix of the 

estimated random effects provides a useful diagnostic plot for assessing over-parameterization problems. The 

nearly perfect alignment between 𝜂 and  𝑘 random effects (Figure 2) further indicates that the model is over-

parameterized. The large correlation between 𝑘 and 𝜂 random effects and the small correlation between these 

random effects and the 𝛼  random effect suggest that a block-diagonal Ψ  could be used to represent the 

variance–covariance structure of the random effects. In order to test if a block-diagonal Ψ could be used to 

represent the variance–covariance structure of the random effects, a likelihood ratio test was performed (Table 

3). The large p-value for the likelihood ratio test and the smaller values for BIC corroborated the block-diagonal 

variance–covariance structure. 

 

Table 4: Likelihood ratio test for the model with variance-covariance matrix Ψ positive-definite versus the 

model with variance-covariance matrix Ψ block diagonal. 
Model AIC BIC logLik Test L. Ratio p-value 

Model 1 (Ψ positive-definite) 1124.182 1157.731 -551.09    

Model 2 (Ψ Block diagonal) 1124.365 1151.814 -553.18 1 vs 2 4.18 0.1235 
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Figure 3: Scatter plot of standardized residual versus fitted values (Left panel) and normal plot of 

standardized residual (Right panel) for the model with variance-covariance matrix Ψ Block diagonal. 

 

The plot of standardized residuals versus the fitted values corresponding to the model with 𝛼, 𝜂, 𝑘 as random 

effects and with variance-covariance matrix Ψ block diagonal presented in the left panel of Figure 3,  shows 

that the residuals are distributed symmetrically around zero with an approximately constant variance. It does 

not indicate any departures from the nonlinear mixed effects model assumptions, except for some possible 

outlying observations for the Health area 6 (Plaza). The normal probability plot of the standardized residual, 

shown in the right panel in Figure 3 does not indicate any violations of the normality assumption for the within-

group errors. 

 
Figure 4: Population predictions (population), within-group predictions (area), and observed cumulative 

number of cases (dot) versus time in week, for the best-fitted mixed model. 

 

The plot of the augmented predictions in Figure 4 gives a final assessment of the adequacy of this model. For 

comparison and to show how individual effects are accounted for in the nonlinear mixed effects model, both 

the population predictions (corresponding to random effects equal to zero) and the within-group predictions 

(obtained using the estimated random effects) are displayed. Note that the within-group predictions are in close 

agreement with the observed cumulative cases, illustrating that the nonlinear mixed effects model can 

accommodate individual effects. 
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4. CONCLUSIONS 

 

Modeling dengue outbreak data collected for all urban areas in a particular region is usually performed for each 

area separately. In this study, we described two approaches to estimate three key epidemiological parameters: 

turning point, final size and the basic reproduction number. The first approach consisted in fitting an individual 

nonlinear model for each area separately and the second approach proposed to use a nonlinear mixed effects 

model.  Both approaches were applied to data of seven Primary-Health Care areas of Plaza Municipality, 

Havana, Cuba, during 2006 dengue outbreak.  

For this particular setting, the second approach is highly recommended because the areas are regarded as sample 

from a population and it does not ignore variability among and within areas. However, the first approach 

constitutes a powerful tool for the model building of the second approach because the individual estimates can 

suggest the type of random effects structure to use and also provide starting values for the parameters. 

The best-fitted nonlinear mixed effects models were obtained for the models with the parameters 𝛼, 𝑘, 𝜂 and 

𝛼, 𝜂, 𝛾 as random effects, respectively. Although the AIC and BIC of these two models are very similar, they 

have different interpretations. In the first model, the growth rate parameter 𝛾 is regarded as fixed parameter 

indicating that the transmission is the same in all areas. This might make no sense from an epidemiological 

point of view because the transmission depends on mosquito’s population, which should not be the same for all 

areas. The second model considers that the three key epidemiological parameters vary among areas, which 

makes sense from epidemiological point of view. For that reason, it is better for inference to use the second 

model. 

These modeling approaches could be a valuable tool to public health policymakers for responding to future 

dengue outbreaks, because they give estimates of key epidemiological parameters like turning point, which 

could provide vital information pertaining to the changing trends of the epidemic and possibly indicating 

changes in intervention and control. 
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