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ABSTRACT
In this tutorial note we consider the class of non-convex semi-infinite optimization problems which are
defined by (one or) finitely many objective functions as well as infinitely many constraints in a finite-
dimensional space. We present an overview of recent results on the so-called p-power transformation
which changes the original problem equivalently locally around a solution point. This transformation
is a convexification procedure for the Lagrangian where the functions in the original problem are
substituted by their p-th powers. As a consequence, the convexity of the so-transformed Lagrangian
allows the application of local duality theory and corresponding solution methods locally around this
solution point of the original problem.
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RESUMEN
En este art̀ıculo de resumen consideramos la clase de problemas no convexos semi-infinitos los

que estàn definidos por (una o) un nùmero finito de funciones objetivo y un nùmero infinito de
restricciones en un espacio de dimensiòn finita. Presentamos una panoràmica de resultados recientes
sobre la llamada ”p-power transformation” la que cambia el problema original equivalente localmente
alrededor de un punto de soluciòn. Esta transformaciòn es un procedimiento de convexificaciòn para
el Lagrangiano donde las funciones en el problema original son sustituidos por su potencia de orden
p. Como consecuencia, la convexidad del Lagrangiano as̀ı transformado permite la aplicaciòn de
la teor̀ıa de dualidad local y los mètodos correspondientes de soluciòn localmente alrededor de este
punto de soluciòn del problema original.

1. INTRODUCTION

In this tutorial note we consider a convexification procedure for the Lagrangian of a, in general, non-convex
semi-infinite optimization problem locally around a local minimizer. This approach was originally presented
in [30, 31, 32, 40] for a standard optimization problem

min f(x) s.t. gj(x) ≥ 0, j ∈ J

with finitely many constraints (J is a finite index set) where all appearing functions are assumed to be
twice continuously differentiable. For the application of local duality theory (saddle point of the Lagrangian,
duality gap) and corresponding solution methods it is often assumed that locally around a certain local
minimizer x̄ the Lagrangian

L(x̄, λ) = f(x̄)−
∑
j∈J

λjgj(x̄)

is convex for all Lagrange multipliers λj ≥ 0, j ∈ J satisfying a corresponding Karush-Kuhn-Tucker condition.
However, this local convexity property of the Lagrangian is not fulfilled in general. It is shown in [30, 31,
32, 40] that the original problem can be transformed equivalently by substituting the functions f, gj , j ∈ J
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by their p-th powers fp, gpj , j ∈ J in such a way that for sufficiently large powers p > 0 the Lagrangian
of the transformed problem is locally convex and, therefore, corresponding local duality methods can be
applied. This appreoach is called p-power transformation and it was recently generalized to a broader class
of problems:
– to non-convex semi-infinite optimization problems (which have infinitely many constraints) in [12, 15] and
– to multiobjective semi-infinite optimization problems in [13].
In this paper we will give an overview in a tutorial form about these generalizations where we mainly present
results from [12, 13, 15]. Both semi-infinite and multiobjective semi-infinite optimization became recently
an active research topic in theory [3, 8, 11, 14, 17, 20, 34, 35, 37] and applications [2, 4, 5, 9, 10, 21, 24, 38].

The goal of this tutorial note is therefore twofold. In Section 2, we present a resumé of results from [12, 15]
by describing the p-power transformation of a non-convex semi-infinite optimization problem. Here, the
original approach is generalized to the case with
– infinitely many constraints;
– constraints with Lipschitz continuous gradients under certain conditions and;
– assuming a weaker constraint qualification of Mangasarian-Fromovitz type.
Then, in Section 3 these results are applied to the case of a non-convex multiobjective semi-infinite optimiza-
tion problem. Here, we have finitely many objective functions, infinitely many constraints and we consider
locally (properly) efficient points. Besides the convexity of the Lagrangian locally around a local minimizer
of the original problem we also present some duality results. This section recalls mainly results from [13].

In the remainder of this paper we will use the following notations. If x ∈ Rn, then xi, i = 1, . . . , n represent
its components. By Ck(U,R), k ≥ 1 we denote the space of k-times continuously differentiable real-valued
functions defined on an open set U ⊂ Rn. Analogously, C1.1(U,R) denotes the corresponding set of functions
with Lipschitz continuous gradients. If g ∈ C1(U,R), then the row vector Dg(x) (Dx1g(x)) represents the
gradient (partial derivative with respect to the subvector x1 of x) of g at x. Second derivatives are analogously
defined. Moreover, let M(n,m) denote the set of real matrices with n rows and m columns. If R is an m-
dimensional subspace of Rn (m < n), then a matrix Z ∈M(n,m) is called a basis matrix of R if its columns
form a basis of R. Let ‖·‖ denote the Euclidean norm, 0n the origin in Rn and for x ∈ Rn, ε > 0 let
B(x, ε) = {x ∈ Rn | ‖x− x‖ < ε}.

2. THE CONVEXIFICATION PROCEDURE FOR SEMI-INFINITE PROBLEMS

2.1. Preliminary results

In this section we will describe the p-power transformation as a convexification procedure for the Lagrangian
of a semi-infinite problem SIP under certain conditions. The problem under consideration is defined as

SIP min f(x) s.t. x ∈M

with the feasible set
M = {x ∈ Rn | G(x, y) ≥ 0, y ∈ Y },

where f and G are twice continuously differentiable real-valued functions and Y ⊂ Rr is an infinite compact
index set. Note that semi-infinite means here that there exist finitely many decision variables x ∈ Rn
and infinitely many inequality constraints. Each ȳ ∈ Y represents a corresponding constraint G(·, ȳ) ≥ 0.
Suppose that the compact index set Y is given as

Y = {y ∈ Rr | ul(y) = 0, l ∈ A, vk(y) ≤ 0, k ∈ B}

with A = {1, . . . , a}, a < r, B = {1, . . . , b} and ul, vk ∈ C2(Rr,R), l ∈ A, k ∈ B. Furthermore, assume that
at each ȳ ∈ Y the active gradients Dul(ȳ), Dvk(ȳ), l ∈ A, k ∈ B0(ȳ) := {k ∈ B | vk(ȳ) = 0} are linearly
independent. This latter property is generically fulfilled and it implies that Y is a topological manifold with
boundary (see e.g. [22]).
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In the remainder of this paper let x̄ ∈ M our (fixed) point under consideration with the corresponding set
of active indices

Y0(x̄) = {y ∈ Y | G(x̄, y) = 0}.

Since x̄ ∈ M each index ȳ ∈ Y0(x̄) is a global minimizer of the associated parametric so-called lower level
problem

Lo(x) min G(x, y) s.t. y ∈ Y

at x = x̄ (where x is the parameter vector). Moreover, by the linear independence of the active gradients,
there exist uniquely determined multipliers ᾱl, l ∈ A, β̄k ≥ 0, k ∈ B0(ȳ) such that

DyG(x̄, ȳ) +
∑
l∈A

ᾱlDul(ȳ) +
∑

k∈B0(ȳ)

β̄kDvk(ȳ) = 0;

for x̄ ∈M and ȳ ∈ Y0(x̄) define B+(ȳ) = {k ∈ B0(ȳ) | β̄k > 0}.
In this section we present the main results from [15]. In the following we recall the constraint qualification
EMFCQ and the second order sufficient optimality condition SSOSC which will be used for the characteri-
zation of the p-power transformation.
The extended Mangasarian Fromovitz constraint qualification EMFCQ is said to hold at x̄ ∈ M if there
exists a vector ξ ∈ Rn such that DxG(x̄, y)ξ > 0 for all y ∈ Y0(x̄) ([19, 33]). If x̄ is a local minimizer of
(SIP) and EMFCQ holds at x̄, then there exist finitely many yj ∈ Y0(x̄), j = 1, . . . , s, and corresponding
multipliers λj ≥ 0, j = 1, . . . , s, such that a combination of Karush-Kuhn-Tucker type is fulfilled ([17]):

Df(x̄)−
s∑
j=1

λjDxG(x̄, yj) = 0.

The strong second order sufficient condition SSOSC holds at (the local minimizer of Lo(x̄)) ȳ ∈ Y0(x̄) if the
matrix V >HV is positive definite where

H = D2
yyG(x̄, ȳ) +

∑
l∈A

ᾱlD
2ul(ȳ) +

∑
k∈B0(ȳ)

β̄kD
2vk(ȳ)

and V is a basis matrix of the subspace

{y ∈ Rr | Dul(ȳ)y = 0, Dvk(ȳ)y = 0, l ∈ A, k ∈ B+(ȳ)}.

If SSOSC holds at ȳ, then for any index set B̄ with B+(ȳ) ⊆ B̄ ⊆ B0(ȳ), the matrix V (B̄)>HV (B̄) is also
positive definite, where V (B̄) is a basis matrix of the subspace

{y ∈ Rr | Dul(ȳ)y = 0, Dvk(ȳ)y = 0, l ∈ A, k ∈ B̄}.

Moreover, if SSOSC holds at ȳ, then ȳ is a strongly stable local minimizer of Lo(x̄) in the sense of Kojima
([28]). We recall the corresponding lemma stating the existence of an associated implicit function defined
locally around x̄.

Lemma 2.1. ([28]) Assume that SSOSC holds at ȳ ∈ Y0(x̄). Then, there exists an open neighborhood U of
x̄ and a uniquely determined function

ȳ : x ∈ U 7→ ȳ(x) ∈ Rr

with the following properties:

(a) ȳ(x̄) = ȳ.

(b) ȳ(x) is a local minimizer of Lo(x) and SSOSC holds at ȳ(x) for each x ∈ U .

(c) ȳ(·) is Lipschitz continuous on U and G(·, ȳ(·)) ∈ C1.1(U,R).

(e) If B+(ȳ) = B0(ȳ), then G(·, ȳ(·)) ∈ C2(U,R).
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We conclude this subsection by recalling the reduction approach which implies that the feasible set M can
be described by finitely many C1.1-constraints locally around x̄.
The reduction approach RA holds at x̄ ∈M if SSOSC holds at all y ∈ Y0(x̄).

Lemma 2.2. (For more details on the reduction approach see e.g. [16, 18, 23, 25, 26, 39]).
Assume that RA holds at x̄ ∈M . Then, we have:

(a) Y0(x̄) is a finite set, say Y0(x̄) = {y1, . . . , ys}.
(b) There exist an open neighborhood U of x̄ and uniquely determined Lipschitz continuous functions

ȳj : x ∈ U 7→ ȳj(x) ∈ Rr, j = 1, . . . , s

such that ȳj(x̄) = yj, G(·, ȳj(·)) ∈ C1.1(U,R), j = 1, . . . , s and Y0(x) ⊆ {ȳj(x) | j = 1, . . . , s} for all x ∈ U .

(c) The feasible set M can be described by finitely many C1.1-constraints locally around x̄:

M ∩ U = {x ∈ U | G(x, ȳj(x)) ≥ 0, j = 1, . . . , s}.

2.2. The p-power transformation of SIP

In this subsection we summarize the main results from [15] on the p-power transformation of (SIP) locally
around our point x̄ ∈M . Suppose the following four properties in the remainder of this section:

• RA holds at x̄ and Y0(x̄) = {y1, . . . , ys} (further notations will be used as introduced in Lemma 2.2).

• EMFCQ holds at x̄.

• There exist multipliers λj ≥ 0, j = 1, . . . , s, satisfying

Df(x̄)−
s∑
j=1

λjDxG(x̄, yj) = 0. (2-1)

Then, by EMFCQ, the set
Λ = {λ ∈ Rs | λ is a solution of (2-1)}

is nonempty and compact ([6, 27]).

• An extended strong second order sufficient condition ESSOSC (see Condition (C2) in [36]) holds at
x̄. Since this is a tutorial note trying to avoid any unnecessary technicalities we do not present the
very technical definition of ESSOSC; all details can be found in [15, 36]. However, note that ESSOSC
coincides with SSOSC in case of a finite problem which is defined by C2-functions.

By Lemma 2.2, the latter properties imply that the problem (SIP) can be described locally on an appropriate
neighborhood U of x̄ as

min
x∈U

f(x) s.t. G(x, ȳj(x)) ≥ 0, j = 1, . . . , s.

Moreover, throughout this subsection we assume that f(x) > 0 for all x ∈ U and that G(x, y) can be written
as the difference of a positive constant r̄ and a C2-function g(x, y) as

G(x, y) = r̄ − g(x, y)

with r̄ > 0, g(x, y) ≥ 0 for all (x, y) ∈ U × Y.

Note that this latter condition can be fulfilled without loss of generality by an appropriate equivalent trans-
formation; e.g. by an exponential transformation

(
f(x)→ ef(x)

)
or by adding a sufficiently large constant

(f(x)→ f(x) + r1, r1 > 0). Hence, we obtain the following equivalent problem for x ∈ U :

min
x∈U

f(x) s.t. g(x, ȳj(x)) ≤ r̄, j = 1, . . . , s. (2-2)
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As introduced in [30, 31, 32], for a power p ≥ 1, the p-power transformation of (2-2) is the equivalent problem

min
x∈U

(f(x))p s.t.
(
g(x, ȳj(x))

)p ≤ r̄p, j = 1, . . . , s

with its Lagrangian

Lp(x, µ) = (f(x))p +

s∑
j=1

µj

[(
g(x, ȳj(x))

)p − r̄p] . (2-3)

Note that the feasible set remains the same when substituting the constraints by their p-th powers. A short
calculation shows that the solution set of

DxLp(x̄, µ) = 0, µj ≥ 0, j = 1, . . . , s

is the following:

Mp = {µ ∈ Rs | µj = λj
(f(x̄))p−1

r̄

p−1

, j = 1, . . . , s, λ ∈ Λ}.

According to our goal we state now that there exists a sufficiently large power p such that (x̄, µ) is for all
µ ∈Mp a saddle point for the corresponding Lagrangian in (2-3).

Theorem 2.1. ([15], Theorem 3.4) There exist a power p∗ and a neighborhood U∗ ⊂ U of x̄ such that for
all µ ∈Mp∗ and all x ∈ U∗ we have

Lp∗(x̄, µ) ≤ Lp∗(x, µ).

The latter theorem yields
Lp∗(x̄, µ) ≤ Lp∗(x̄, µ̄) ≤ Lp∗(x, µ̄)

for all µ ≥ 0, µ̄ ∈Mp∗ and x ∈ Ū . For the corresponding dual function

φp∗(µ) = min
x∈Ū

Lp∗(x, µ).

we obtain the following duality result (see also [1, Theorem 6.2.5]).

Corollary 2.1. (Saddle point optimality and absence of a duality gap). Let p∗ be chosen as in the previous
theorem. Then:

(a) (x̄, µ̄) is a saddle point of the Lagrangian Lp∗(x, µ) for each µ̄ ∈Mp∗ .

(b) Each µ̄ ∈Mp∗ is a solution of the dual problem

max
µ≥0

φp∗(µ) with Lp∗(x̄, µ̄) = (f(x̄))p
∗

= φp∗(µ̄).

We conclude this subsection with the so-called partial p-power transformation (see [40]) of (2-2) which is
defined as the equivalent problem

min
x∈U

f(x) s.t.
(
g(x, ȳj(x))

)p ≤ r̄p, j = 1, . . . , s.

The difference to the p-power transformation of (2-2) described above is that now only the constraints are
substituted by their p-th powers. An analogous calculation as for the p-power transformation provides a
saddle point result for its Lagrangian

Lp(x, γ) = f(x) +

s∑
j=1

γj

[(
g(x, ȳj(x))

)p − r̄p]
where the solution set of

DxLp(x̄, γ) = 0, γj ≥ 0, j = 1, . . . , s
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is the following:

Γp = {γ ∈ Rs | γj =
λj

pr̄p−1
, j = 1, . . . , s, λ ∈ Λ}.

The corresponding dual function is
ψp(γ) = min

x∈Ū
Lp(x, γ)

and we obtain the following result.

Theorem 2.2. ([15], Theorem 3.6) There exist a power p̂ and a neighborhood Û ⊂ U of x̄ such that

(a) (x̄, γ̄) is a saddle point of the Lagrangian Lp̂(x, γ) for each γ̄ ∈ Γp̂. In particular, we have

Lp̂(x̄, γ) ≤ Lp̂(x̄, γ̄) ≤ Lp̂(x, γ̄)

for all γ ≥ 0, γ̄ ∈ Γp̂ and x ∈ Û .

(b) Each γ̄ ∈ Γp̂ is a solution of the dual problem

max
γ≥0

ψp̂(γ) with Lp̂(x̄, γ̄) = f(x̄) = ψp̂(γ̄).

3. THE CONVEXIFICATION PROCEDURE FOR MULTIOBJECTIVE SEMI-INFINITE
PROBLEMS

3.1. Preliminary results

The results in this section are mainly taken from [12, 13]. We will apply and extend the results for the
problem class SIP (which has one objective function) from the previous section to the problem class MOSIP
of multiobjective semi-infinite problems (which has finitely many objective functions). Such a problem is
defined as

MOSIP “ min ” f(x) s.t. x ∈M

with the vector f = (f1, . . . , fq)
> of objective functions fi ∈ C2(Rn,R), i = 1, . . . , q and where the feasible

set M is defined as for SIP. Analogously to the SIP case suppose the following properties in the remainder
of this section at x ∈M :

• RA holds at x̄ with Y0(x̄) = {y1, . . . , ys} and (for sake of simplicity) B+(yj) = B0(yj), j = 1, . . . , s.
The latter property and Lemma 2.2.(c) imply that the feasible set can be described on an appropriate
neighbourhood U of x as

M ∩ U = {x ∈ U | G(x, ȳj(x)) ≥ 0, j = 1, . . . , s}

where G(·, ȳj(·)) ∈ C2(U,R), j = 1, . . . , s.

• EMFCQ holds at x̄.

• There exist (fixed) ρ > 0q as well as multipliers λj ≥ 0, j = 1, . . . , s such that

q∑
i=1

ρiDfi(x)−
s∑
j=1

λjDxG(x, yj) = 0n. (3-1)

Then, by EMFCQ, the set
Λ1 = {λ ∈ Rs | λ is a solution of (3-1)}

is compact (cf. [6, 27]).
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• Condition ESSOSC (cf. [36]) holds at x. Since B+(yj) = B0(yj), j = 1, . . . , s this condition is
equivalent to SSOSC which means that for each λ ∈ Λ1 the matrix

q∑
i=1

ρiD
2fi(x)−

s∑
j=1

λjD
2G(x, yj(x))

is positive definite on the subspace

T (λ) = {w ∈ Rn | DxG(x, yj)w = 0, j ∈ {ν ∈ {1, . . . s} | λν > 0}}.

By [36], these latter four assumptions imply that x is a local minimizer of the so-called weighted sum
optimization problem

min
x∈U

q∑
i=1

ρifi(x) s.t. G(x, yj(x)) ≥ 0, j = 1, . . . , s.

Next we will recall some terminology for local solutions of MOSIP (since we consider the general non-convex
case we will only consider local solutions). For c, e ∈ Rn let
• c 5 e, if ci ≤ ei, i = 1, . . . , n,
• c < e, if ci < ei, i = 1, . . . , n,
• c ≤ e, if ci ≤ ei, i = 1, . . . , n and c 6= e.
The following definition for a locally efficient point as well as for a locally properly efficient point (in the
sense of Geoffrion respectively in the sense of Kuhn and Tucker) are straightforward generalizations of the
original definitions in [3, 7, 29].

Definition 3.1. (i) A point x ∈M is called locally efficient on B(x, ε) if there exists a real number ε > 0
and if there does not exist any x ∈ B(x, ε) ∩M with f(x) ≤ f(x).
(ii) A point x ∈ M is called locally properly efficient in the sense of Geoffrion (shortly: G-locally properly
efficient) if there exists a real number ε > 0 such that
• x is locally efficient on B(x, ε) and
• there exists a real number K > 0 such that for each index i ∈ {1, . . . , q} and any x ∈ B(x, ε) ∩M with
fi(x) < fi(x) there exists an index j ∈ {1, . . . , q} such that fj(x) > fj(x) and

fi(x)− fi(x)

fj(x)− fj(x)
≤ K.

(iii) A point x ∈M is called locally properly efficient in the sense of Kuhn and Tucker (shortly: KT-locally
properly efficient) if there exists a real number ε > 0 such that
• x is locally efficient on B(x, ε) and
• the following system has no solution d ∈ Rn :

Dfi(x)d ≤ 0, i = 1, . . . , q,

Dfk(x)d < 0, for some k ∈ {1, . . . , q},
DxG(x, yj)d ≥ 0, j = 1, . . . , s

The following lemma presents a motivation for considering the p-power transformation of MOSIP.

Lemma 3.3. ([3]) If the Lagrangian

q∑
i=1

ρifi(x)−
s∑
j=1

λjG(x, yj(x))

is convex on B(x, ε) for some ε > 0 with B(x, ε) ⊂ U and some λ ∈ Λ1, then x is G-locally properly efficient
for the problem

“ min
x∈U

” f(x) s.t. G(x, yj(x)) ≥ 0, j = 1, . . . , s. (3-2)

However, the assumption of convexity in the previous lemma is in general not fulfilled under the condition
ESSOSC. In the next subsection we will see how the p-power transformation of MOSIP can overcome this
disadvantage.
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3.2. The p-power transformation of MOSIP

Analogously to Section 2, in the remainder of this subsection we assume without loss of generality for all
x ∈ U that

fi(x) > 0, i = 1, . . . , q

and that G(x, y) can be written as the difference of a positive constant and a C2-function:

G(x, y) = r̄ − g(x, y)

with r̄ > 0 and g(x, y) > 0, for all (x, y) ∈ U × Y. Thus, our problem (3-2) can be written as

“ min
x∈U

” (f1(x), . . . , fq(x)) s.t g(x, yj(x)) ≤ r̄, j = 1, . . . , s. (3-3)

For a real number p > 0, we define the p-power transformation of (3-3) by substituting the original functions
by their p-th powers (we write fp1 (x) for (f1(x))p):

“ min
x∈U

” (fp1 (x), . . . , fpq (x)) s.t gp(x, yj(x)) ≤ r̄p, j = 1, . . . , s. (3-4)

The next theorem shows the relationship between solutions of the problems (3-3) and (3-4); in particular,
the property of being a locally (properly) efficient point remains invariant.

Theorem 3.3. ([12], Theorem 1) (i) A point x̃ ∈ U is locally efficient for (3-3) if and only if x̃ ∈ U is locally
efficient for (3-4).
(ii) A point x̃ ∈ U is G-locally properly efficient for (3-3) if and only if x̃ ∈ U is G-locally properly efficient
for (3-4).
(iii) A point x̃ ∈ U is KT-locally properly efficient for (3-3) if and only if x̃ ∈ U is KT-locally properly
efficient for (3-4).

According to our objective, the next theorem states that for a sufficiently large power p > 0 the Lagrangian
(which corresponds to the fixed ρ)

L1
p(x, δ, γ) =

q∑
i=1

δif
p
i (x) +

s∑
j=1

γj(g
p(x, yj(x))− r̄p)

of the problem (3-4) is convex on a neighbourhood of x; here, γ ∈ Rs and δ ∈ Rq is fixed with

δi =
ρi

fp−1
i (x)

, i = 1, . . . , q. (3-5)

Moreover, it is δ > 0q and δ depends on p. Analogously to Section 2, the compact set of solutions γ ∈ Rs
satisfying

DxL
1
p(x, δ, γ) = 0, γ ≥ 0s

is

Γp1 =

{
γ ∈ Rs | γj =

λj

gp−1(x, yj(x))
, j = 1, . . . , s, λ ∈ Λ1

}
.

Theorem 3.4. ([12], Theorem 2)
Let δ > 0q be chosen as in (3-5). Then, there exists a power p > 0 such that the Hessian D2

xL
1
p(x, δ, γ) is

positive definite for all γ ∈ Γp1 whenever p > p.
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We conclude this section by presenting two duality results. Let p > 0 be chosen so sufficiently large that the
Lagrangian L1

p(·, δ, γ) is convex with respect to x on a neighbourhood Û ⊂ U of x for all γ ∈ Γp1. Consider
the following corresponding dual vector optimization problem:

D-MOSIPploc max z s.t. (δ, γ, z) ∈ DMp

with the feasible set

DMp =

{
(δ, γ, z) ∈ int Rq+ × Γp1 × Rq | δ>z ≤ inf

x∈Û
L1
p(x, δ, γ)

}
.

Theorem 3.5. ([13], Theorem 3.6)
(a) For all x ∈M ∩ Û and all (δ, γ, z) ∈ DMp we have δ>z ≤ δ>fp(x) (weak duality).
(b) There exists a locally efficient point (δ, γ, z) ∈ DMp for D-MOSIPploc with fp(x) = z (strong duality).

4. CONCLUSIONS

In this tutorial note we presented an overview on results from the recent papers [12, 13, 15] on the p-
power transformation of a non-convex semi-infinite optimization problem which may have one (standard)
or several (multiobjective) objective functions. This approach represents a convexification procedure for the
Lagrangian of the original problem locally in a neighbourhood of a local minimizer. The main idea of the
p-power transformation is to substitute the functions describing the original problem by their p-th powers.
Then, the so-transformed problem is locally equivalent to the original one (e.g. leaving the property of being
a locally (properly) efficient point invariant) and if the power p > 0 is chosen sufficiently large, then its
Lagrangian is convex locally in the neighbourhood of the local minimizer under consideration. Therefore,
it fulfills the fundamental assumption for the application of local duality theory and corresponding solution
methods (e.g. local dual research methods) which, in general, is not fulfilled for the non-convex original
problem.
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