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ABSTRACT
The existence of a solution to the equation governing the evolution of a displacement vector in an
elastic body with non-local time and spatial memory is considered. A global weak solution to an
associated initial-boundary value problem is established by constructing Galerkin approximations.
Lebesgue or Sobolev spaces can be generalized for all real numbers and can be defined also on Banach
spaces. They are equipped with several equivalent norms based on Fourier or Laplace transform and
function expansion. These spaces help to derive suitable energy estimates.
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RESUMEN

La existencia de una solución a la ecuación que gobierna la evolución de un vector de desplazamiento
en un cuerpo elástico con el tiempo no local y la memoria espacial se considera. Una solución
débil global para un problema de valores iniciales y de contorno asociado se establece mediante la
construcción de aproximaciones de Galerkin. espacios de Lebesgue y de Sobolev se pueden generalizar
para todos los números reales y se pueden definir también en espacios de Banach. Están equipadas
con varias normas equivalentes sobre la base de Fourier o la transformada de Laplace y expansión
de funciones. Estos espacios ayudan a obtener estimaciones de enerǵıa adecuados.

1. INTRODUCTION

The evolution of a displacement vector in an elastic body is governed by so called wave equation.
The body is assumed to occupy a reference configuration Ω ⊂ RN at an initial time and to have unit density.
The vector u = (u1, . . . , uN ) represents the displacement and from the Newton law we obtain the wave
equation

üi −
∂

∂xj
σij = fi on Ω i = 1, . . . , N,

where σij is the Cauchy stress tensor and f = (f1, . . . , fN ) is the external body force per unit mass.
The stress tensor (elastic case) is usually given by the constitutive law

σIij(x, t) =
∂W

∂eij
(eu(x, t)) ,

where W = W (eij) is the function of free energy and eiju = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the infinitesimal strain tensor.

It is known that a weak solution exists only in the case of one space dimension (see [2]) and we have some
partial results in some special cases for dimension N ≥ 2 (see [1], [3] or [4]).
There are certain materials with memory; it means that the stress depends not only on the strain at the
present time t at given x, but also on the entire history of the strain from zero to time t at all points located
around x. In this case, the stress σ = σI + σM is extended by the memory part

σMij = −λ
∫ t

0

∫
Ω

(eiju(ξ, τ)− eiju(ξ, t))
h(t− τ)

|x− ξ|α
dξ dτ .
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Let us consider boundary conditions u(x, ·) = 0 for x ∈ ∂Ω and initial conditions u(·, 0) = g0 and u̇(·, 0) = g1.
We suppose that the function W : R2N → R is continuous, has bounded second derivatives, W (0) = ∂W

∂eij
(0) =

0 and the condition of ellipticity holds (with some real number κ > 0). Moreover, let us suppose λ > 0,
N − 1 < α < N , h(t) = e−tt−ν , where 0 < ν < 1

2 and ν > N − α; we also assume some other properties of
f , g0, g1

f ∈W ν
2 ,2((0;∞);L2(Ω;RN )) ∩ L2((0;∞);W−1,2(Ω;RN )) ∩ L∞((0;∞);L2(Ω;RN )) ,

g0 ∈W 1,2
o (Ω;RN ), g1 ∈ L2(Ω;RN ) .

The aim of this text is not to present the whole proof of weak solution existence, only its main points and
features are mentioned here.

2. GALERKIN METHOD

We shall use Galerkin approximation which gives us partial solutions un.
Let us denote v1, v2, . . . the base in space W 1,2

o (Ω;RN ) orthonormal in L2(Ω;RN ) composed from eigenfunc-
tions of equations

∂

∂xj

(
∂2W

∂eij∂ekl
(0)

∂vk
∂xl

)
+ λvi = 0 on Ω

for i = 1, 2, . . . , N , with condition v = 0 on ∂Ω; eigenvalues of such problem are denoted by λ1, λ2,... .
Approximants un are partial solutions of the equation in finite-dimensional space generated by base v1, . . . , vn.
They have the form uni =

∑n
j=1 cijv

j
i for i = 1, . . . , N and it holds∫

Ω

üni · vki dx+

∫
Ω

∂W

∂eij
(e(un)) · eij(vk) dx−

−
∫

Ω

∫ t

0

∫
Ω

h(t− τ)

|x− ξ|α
(eiju

n(ξ, τ)− eijun(ξ, t)) · eij(vk) dξdτdx =

∫
Ω

fiv
k
i dx

for k = 1, 2, . . . , n.

3. GENERALIZED SOBOLEV SPACES

The following estimates for un can be got using the equivalent norms in generalized Sobolev spaces.
These spaces are introduced by norms

||f ||2W s,2(Ω) = ||f ||2L2(Ω) +

∫
Ω×Ω

|f(x)− f(y)|2

|x− y|N+2s
dx dy for 0 < s < 1,

||f ||2W s,2(Ω) = ||f ||2W 1,2(Ω) +

N∑
i=1

∫
Ω×Ω

| ∂f∂xi (x)− ∂f
∂xi

(y)|2

|x− y|N+2(s−1)
dx dy for 1 < s < 2

and so on for s ∈ (2, 3) ∪ (3, 4) ∪ . . . . We put W 0,2(Ω) = L2(Ω).
Spaces W s,2(Ω) are composed by functions f for which ||f ||W s,2(Ω) < ∞, s ≥ 0 and they are equipped by
the presented norms.
Subspaces W s,2

o (Ω) are defined as the closure of D(Ω) in W s,2(Ω) (where D(Ω) contains all functions with
compact support in interior of Ω which have all derivatives). Norms consisting only from the latter parts

||f ||2
W s,2
o (Ω)

=

∫
Ω×Ω

|f(x)− f(y)|2

|x− y|N+2s
dx dy ,

||f ||2
W s,2
o (Ω)

=

N∑
i=1

∫
Ω×Ω

| ∂f∂xi (x)− ∂f
∂xi

(y)|2

|x− y|N+2(s−1)
dx dy

respectively, induce the same topology on these spaces.
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Spaces W−s,2(Ω) for s ≥ 0 are defined as duals of spaces W s,2
o (Ω) equipped with strong topology, i.e. the

norm

||f ||W−s,2(Ω) = sup
||ϕ||

W
s,2
o (Ω)

≤1

∫
Ω

fϕ dx .

Thereby we have spaces W s,2(Ω) for all real s.
Topology on this spaces (of functions defined on RN ) can be equipped with an equivalent norm expressed
by means of the Fourier transform or expansions

||f ||2W s,2(Ω) ≈
∫
RN

(1 + |ξ|s)2|f̂(ξ)|2 ≈
∞∑
i=1

(1 + λi)
sc2i dξ

||f ||2
W s,2
o (Ω)

≈
∫
RN
|ξ|2s|f̂(ξ)|2 dξ ≈

∞∑
i=1

λsi c
2
i ,

respectively, where

ci =

∫
Ω

fvi dx

are coefficients of expansion of a function f ∈W s,2(Ω) into a series

f =

∞∑
i=1

civi .

Generalized Sobolev spaces can be defined for functions with values in some Banach space, too; the corre-
sponding integrals must be considered in Bochner sense. Let 1 < µ < 3

2 and − 3
2 < β < 3

2 . For instance we
can consider spaces Wµ,2((0, T );W β,2

o (Ω)). Any function f ∈ Wµ,2((0, T );W β,2
o (Ω)) may be expanded into

the double series

f =

∞∑
i=0

∞∑
j=1

cij · hi(t) · vj(x) ,

where

ho(t) =
1√
T
, hi(t) =

√
2

T
· cos

iπ

T
· t, i = 1, 2, . . . .

The equivalent norm

‖v‖2
Wµ,2((0,T );Wβ,2

o (Ω))
≈
∞∑
i=0

∞∑
j=1

c2ij · (1 + i2)µ · λβj

can be used.
For 0 < µ and 0 < β < 1, the space Wµ,2((0, T );W−β,2(Ω)) is compactly imbeded into space
W 1,2((0, T );W−1,2(Ω)).

4. BASIC ESTIMATES

Our starting point is well-known trick, when time derivative u̇n of the partial solution is put into the
equation for it. We shall use ü · u̇ = 1

2 (u2)·, (W (eu))· =
∑

∂W
∂eij
· eij u̇ and by using the equivalent norm of

W
ν
2 ,2((0, T );W 1−N−α2 ,2(Ω)) based on Fourier transformation we obtain estimates

‖un‖2
L∞((0;∞);W 1,2

o (Ω;RN ))
+ ‖u̇n‖L∞((0;∞);L2(Ω;RN )) + C1‖un‖

W
ν
2
,2((0;T );W 1−N−α

2
,2(Ω;RN ))

≤

≤ C2

(
‖f‖L2((0;∞);L2(Ω;RN )) + ‖ġ0‖L2(Ω;RN ) + ‖g1‖W 1,2

o (Ω;RN )

)
for some positive constants C1 and C2. We have used rules for transforms of convolution, Parseval equality,
the fact that Fourier transform of power 1

|·|α gives the power |ξ|N−α, derivative ∂
∂xi

adds another ξi, and

Laplace transform of power 1
|·|ν gives the power τ

ν
2 .
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Hence

un is bounded in L∞((0;∞);W 1,2
o (Ω;RN ))

u̇n is bounded in L∞((0;∞);L2(Ω;RN ))

un is bounded in W
ν
2 ,2((0;T );W 1−N−α2 ,2(Ω;RN )) .

These estimates and the definition of dual norm imply

ün is bounded in W
ν
2 ,2((0;T );W−1−N−α2 ,2(Ω;RN )).

5. CONCLUSION

By simple calculation with norms using expansions of functions it is possible to get the interpolation in-
equality for 0 < δ < 1

2 , 0 < ε < 1
2 and 0 ≤ γ ≤ 1

‖v‖W (1+δ)·γ,2((0,T );W−(1+ε)·γ,2(Ω;RN )) ≤ C3 ‖v‖1−γL2((0,T );L2(Ω;RN ))
‖v‖γ

W 1+δ,2((0,T );W−1−ε,2(Ω;RN ))
.

As u̇n is bounded both in L2((0, T );L2(Ω;RN )) and

W 1+ ν
2 ,2((0, T );W−1−N−α2 ,2(Ω;RN )) and as there exists γ such that

0 ≤ 1

1 + ν
2

< γ <
1

1 + N−α
2

≤ 1,

u̇n is bounded in W (1+ ν
2 )·γ,2((0, T );W−(1+N−α

2 )·γ,2(Ω;RN )) and hence totally bounded in
W 1,2((0, T );W−1,2(Ω;RN )).
Existence of a subsequence u̇nk strongly convergent in W 1,2((0, T );W−1,2(Ω;RN )) leads to the statement
about existence of the required solution.
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[1] BELLOUT, H., BLOOM, F. and J. NEČAS, J. (1993): Existence of global weak solutions to the
dynamical problem for a three-dimensional elastic body with singular memory. SIAM J. Math. Anal.,
24, 36–45.

[2] DI PERNA, R. (1983): Convergence of approximate solutions to conservation laws. Arch. Rational
Mech. Anal., 82, 27–70.
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