
REVISTA INVESTIGACIÓN OPERACIONAL VOL. 38, NO. 4, 335-342, 2017

TREE BASED DECISION STRATEGIES AND

AUCTIONS IN COMPUTATIONAL MULTI-AGENT

SYSTEMS
Martin Šlapák* and Roman Neruda**∗

*Department of Theoretical Computer Science,
Faculty of Information Technology CTU in Prague, Czech Republic.
**Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic.

ABSTRACT

This paper deals with an agent-based implementation of data mining system where a set of tasks is
being processed in a distributed manner. The key role within such a system is the decision strategy of
a computational agent which should consider accepting or rejecting a particular task based on various
decision strategies. We present several adaptive decision strategies and compare them to traditional
auction-based task distribution. Results show that optimal decision making strategy depends on the
task set characteristic properties – e.g. how distinct are the best and the worst average results of
each task type in dataset.

KEYWORDS: auction systems, decision making, genetic programming, multi-agent system, task

distribution

MSC: 91B26

RESUMEN
En este paper tratamos con una implementaci ón basada en un agente de un sistema de mineŕıa de
datos, donde un conjunto de tareas está siendo procesado en una forma distribuida. El rol clave dentro
de tal sistema es la estrategia decisional del agente computacional, el que debe considerar aceptar o
rechazar una tarea particular basada en varias estrategias decisionales. Nosotros presentamos varias
estrategias de decisión adaptativa y las comparamos con la basada en la distribución de la acci ’on
tradicional. Los resultados muestran que la estrategia de toma de decisi ón optimal depende del
conjunto de propiedades caracteŕısticas de la tarea – e.g. cuan distintas son las mejores y peores
averages de los resultados de cada tipo de tarea en el conjunto de los datos.

1. INTRODUCTION

In the recent years, the data mining has become an area of rapid development both in theory and in
applications. Modern computer systems in all fields of human interest are producing huge amounts of data.
This data must be processed in reasonable time, and nowadays this is possible with a massive parallelization
of processing. One suitable approach is known as divide and conquer. That means that one big task or task
set is divided to smaller parts, these are solved separately, and the global result is constructed back from
the smaller parts.
The data mining (DM) – sometimes called a knowledge discovery or machine learning – is the process of
data analysis with an effort to obtain useful or valuable information, relationship or patterns which are not
obviously evident from a raw data. Each intended result type needs another method. Let us focus on two
areas of data mining: the classification and regression. In addition, for each of this areas there are dozens of
algorithms and their variations and each of them is suitable for different data or in different circumstances.
The problem of data mining we are adressing is which method/algorithm is the most suitable one for a given
data. The metalearning approach tries to answer this question. It is the subfield of machine learning which
focuses on meta-data – the informations about data itself. The obtained knowledge of suitable algorithms
and its configuration for given data brings better results such as higher precision or faster computation.
Basically, there are two possible approaches to task set distribution, one of them is the central control where
one entity directs the splitting of a task set and rules the whole process. The central entity should know

∗roman@cs.cas.cz

335

and take into account all additional knowledge about the task set which is being solved. In the other case,
which can be called a bottom-up approach, the central entity divide the whole task set at random and the
decision which part is suitable for which method lies on solving units. In this work we focused on the second
approach.
The structure of this paper is as follows: The section 2. introduces the reader to the domain of multi-agent
systems, later the principles of control of computation agent are discussed. The following chapter 3. is
dedicated to the description of auction systems as the one of possible methods for task distribution. The
following section 4. brings detailed overview of genetic programming used as the second option to develop
control systems for task distribution. In sections 5. our experiment and results are described and the last
chapter 6. sums up the whole work.

2. MULTI-AGENT SYSTEMS FOR COMPUTATION

An agent is a computer system situated in an environment that is capable of autonomous action in this
environment in order to meet its design objectives [10]. Its important features are adaptivity to changes in
the environment and collaboration with other agents. Interacting agents join in more complex societies, multi-
agent systems (MAS). These groups of agents gain several advantages such as the applications in distributed
systems, delegacy of subproblems on other agents, and flexibility of the software system engineering. The
computational multi-agent systems, i.e. application of agent technologies in the field of hybrid intelligence,
showed to be promising by its flexibility and capability of parallel computation.
A computational agent is a highly encapsulated object realizing a particular computational method [6], such
as a neural network, a genetic algorithm, or a fuzzy logic controller. Our system is designed to perform
distributed data mining task solving.
Worker agents encapsulate data mining models and their goal is to solve tasks which were randomly picked
instances of data sets and blindly distributed by manager. Each worker has to make a decision whether to
accept or to reject the offered task to optimize designed criteria. The architecture we present can be easily
modified or extended for application to different problems.

2.1. Control of Computational Agent

Two types of agents in our computational MAS are important when considering the agent adaptive control
task; the computational agent whose role, as a worker is to accept or reject the offered tasks from the manager.
Each accepted task should be solved with regard to optimization criteria. The manager distributes tasks
to worker agents in a non-informed manner, i.e. it does not target specific task to specific agent, rather a
random worker is selected from the pool of potentially available agents. A computational agent can accept
only one task. If a worker is not actually processing a task it simply starts to work on the accepted task. On
the other side, when it accepts a new task while solving another, it has to discard the task which is currently
being solved. Such task is returned to the manager to be redistributed and the newly accepted task goes to
processing.
The main goal of decision making is to accept tasks that are suitable for current working agent and to reject
tasks which would be solved by this agent with worse value of optimization criterion – e.g. bigger error or
greater elapsed time.
A worker agent should be able to make a decision which leads to acceptance of tasks which promise better
results beeing solved by encapsulated model. It is also important to recognize whether to discard a started
task which must be solved by another agent and take a new one instead of the discarded one with perspective
to be solved better. This brings new requirements for our agents: an ability to compute tasks suitability for
a model, case-based reasoning (see work of Aamodt [1]) to remember task cases which agent computed in
the past, handling task’s and evaluation’s parameters (progress of task, elapsed time, system load, etc.).
We use following attributes as indicators of agent’s state: solvedTasks – number of tasks solved by an agent,
expSolSteps – expected steps to finish an offered task, stepsSolved – number of solved steps of currently
processed task, and currentSuit – agent–task compatibility of currently solved task, offeredSuit – agent–task
compatibility of offered task, percentSSol – computed percentage of the current task, and ticksToEnd –
expected number of steps to finish actual task.

336

3. AUCTION SYSTEMS

The auctions are well known principle how to reach agreements. There are two types of agents in auctions
– the auctioneer and the bidders. In our case the manager is in the role of auctioneer and workers in roles
of bidders. The goal of the auction is for the auctioneer to allocate resource to one of the bidders [11]. The
resource is represented by an unsolved task from the task set.
Each worker agent has its own estimation ew of private value of offered task. The value of ew is based on
statistical data about current data-mining model in worker agent and its performance metrics on the offered
task. These attributes of a tuple agent-task are connected together by a polynomial expression. The proper
formula is the subject of evolution by Genetic Programming – see section 4..
There are many types of bidding systems. Basic overview can be found at [2] in section 9.1. Now we focus
only on two auction systems: sealed and english. Both of them are easily implementable in MAS.

3.1. Sealed Auction

In this kind of auction all bidders simultaneously send ”sealed bids” with the offered price for resource to
auctioneer. Then the auctioneer evaluate all of them simultaneously. The highest bid wins the resource and
pay the offered price. The main pros is the minimal computation time for running this auction. Only three
interactions are necessary: (1) a manager offers a task, (2) workers send their bids and (3) manager sends
the task to the winner for processing.

3.2. English Auction

The English auction is also known as ascending-bid auction. Here the auctioneer in the real time announces
the initial price for the resource. The bidders than can react with gradually rising offers. They drop out
until the only one stay in and wins the resource for actual price. This system is more time consuming in
comparison with the sealed auction as considerably higher number of rounds of interaction is required.

4. GENETIC PROGRAMMING

A genetic programming is an approach from family of evolutional algorithms where an individual is repre-
sented by a graph, more specifically by a tree. The common genetic algorithm is described in [5]. These
trees are used for decision making whether to accept or to reject an offered task.
Similarly as proposed in [7] the tree represents a polynomial. The leaf elements of that tree contain attributes
of the computational agent and also information about agent’s environment such as the task currently being
solved or a newly offered task. The domain of attribute values are integer or real numbers. Inner nodes of
the tree represent operators with defined arity (e.g. ADD2, SUB2, MUL2, NEG1). Such tree is evaluated
from leaf nodes to root (bottom-up).
The initial population is generated by modified ramped-half-and-half method [5]. The modification is as
follows: part of all trees with fixed depth was not generated fully at random. There are constrains given by
number of attributes. Each attribute should be at first weighted by a real number. It implies that nodes in
level exactly one step above leaf nodes have always multiply operator (MUL). These nodes are also indifferent
to mutation and crossover operator cannot split them. The leaf nodes with weights took their initial value
at random with uniform distribution from 〈0, 1〉.
The behaviour of the mutation operator depends on the nature of the node – it is different for inner and leaf
node. For the later one we have to consider also its value – whether it is a numerical value or a variable.
Numerical leaf nodes have their value slightly changed by application of mutation operator. This change
preserves tendency of previous changes by use a momentum δ. This momentum is initialized as follows:

δ = (−1)r · 1

3
v,

where r is chosen at random from set {0, 1} and v is the initial node value. After each application of mutation
operator to a leaf node a node value is updated by addition of current value of δ. Immediately after that δ
is updated by 20 % of its own value in a random way.

337

For faster convergence we tried to utilize hill climbing approach in the advanced mutation operator. This
operator is applied only at leaf nodes with numerical values. It generates 10 new possible values of selected
node in ε neighbourhood of the actual value in accordance with:

vT+1 = vT · (0.9 + r),

where vT is actual node value, vT+1 is new node value and r is a random real number from range 〈0, 0.2〉.
Then fitness function for the given individual is computed with each of new node values. The best fitness
determines the final value of mutated node which will be used.
A mutation of leaf nodes with variable means that the present variable is replaced by another one from
all available of agent’s or environment’s attributes. Genetic Programming behaves similarly in the case of
mutation of inner nodes – another operator which has the same arity as the previous one is selected and set
to the node.
The crossover operator takes trees from two individuals selected by tournament selection and in each of
this trees it selects one node at random. These selected nodes with their subtrees are switched. We tried
to prevent bloating of the tree by selecting the most compatible subtrees considering their depth and used
attributes in leaves.
The application of each operator has probability 0.2 < po < 0.9. These probabilities are initialized uniformly
and therefore each operator has the same chance to be applied at the beginning of the evolution. However,
during the evolution the probabilities are modified as follows: When an individual has a better fitness after
application of the selected operator, this operator increases its po by 0.0001. The latter case – when the
application of operator brings degradation of the fitness – means decrease of po by 0.00001. The difference
in order of magnitude of the changes of po is designed by experimental results. The idea behind dynamic
changes of po is that well working operator will be applied with higher probability.
The fitness function expresses quality of each individual. Commonly, it maps encoded form of an individual
to a real number. In all experiments in this work we maximize the fitness value. Specific description of
fitness computation will be described in section 5..

4.1. Multipurpose General Expressions

The elementary trees representing a polynomial expression by connecting all weighted attributes were re-
placed by a generalized model. This advanced form has added a conditional ternary operator if and brings
more expressive power to our trees – see [3]. The if construct brings possibility to make several ”smaller”
decisions based only on some subset of attributes and combine them to the main result whether to accept
or to reject the task.
With the if operator it is important to take care of the order of the child nodes during application of
evolutionary operators. The first two child nodes are used as inputs for comparison, the third and the forth
ones are true or false branch, respectively. We also tried to evolve trees with only if operator in inner nodes.
This pure if trees model is commonly known as decision trees with top-down evaluation.

5. EXPERIMENTS

The main goal of our experiment is to optimize the computation of a whole set of datamining (DM) tasks with
respect to the selected criterion – task time, task error or both of them combined. For better performance
of evolution of decision making systems the results for each pair model-task are precomputed. We used two
datasets: At first we prepared artificial dataset where are utilized three DM models and five types of tasks.
The artificial dataset has the following property: each of the three models is very good (reaches small error
and shorter time) on the only one distinct type of task. Therefore we have two types of task which are
difficult for all of DM models. This precondition showed as too strong.
The second dataset comes from OpenML repository [9]. We preselected runs (tuple: method-task-configuration
in OpenML terminology) which has at least 100 results in repository. The need of filtering out the outliers
from precomputed results was showed as very important. Compared with the artificial dataset mentioned
before, the real data shows the fact that when some model is strong on a specific task it is also relatively
strong on the majority of other task types.

338

Table 1: Cumulative results of decision making methods on artificial data. The fitness and Mean Absolute
Error (MAE) are unitless values and task time is given in ticks.

method fitness MAE task time

Random 1.0815 100.00 % 0.6600 100.00 % 2.6182 100.00 %
Tree 1.2743 117.83 % 0.5117 77.52 % 2.3778 90.82 %
Auction 1.1880 109.85 % 0.5808 88.00 % 2.4667 94.21 %

Table 2: Cumulative results of decision making methods on OpenML data. The fitness and Mean Absolute
Error (MAE) are unitless values and task time is given in ticks.

method fitness MAE task time

Random 1.6734 100.00 % 0.1905 100.00 % 1.9788 100.00 %
Tree 1.6739 100.03 % 0.1868 98.11 % 2.0000 101.07 %
Auction 1.7119 102.30 % 0.1677 88.04 % 1.8833 95.18 %

5.1. Fitness functions

The fitness function was defined as follows:

f = 2− Et − Tt

where Et is average error on the task t, Tt is average time needed for computation of one task from the task
set. Both Et and Tt are normalized to interval 〈0, 1〉. The normalization is necessary because each dataset
has a different range of task’s parameters. The numerical values of f are from 〈0, 2〉 and the fitness function
was maximized during the evolution.
The evaluation of fitness function for each individual is very expensive in the terms of time. Calculation
of each fitness needs to run the simulation and solving of a whole set of tasks. Thus we decided to use
precomputed results of each considered pair of agent’s inner model and task type. We took this precomputed
results from our project Pikater [4] which is multi-agent data mining system.

5.2. Results

Performance of all methods was measured on two datasets consisting of 300 task in both cases.
The figure 1 shows the results for artificial dataset. The best result on task error criterion is achieved by a
sealed auction with handmade equation for computing the offered price with averaged mean absolute error
0.3461. The same algorithm also gained the best results on time criterion with 2.1333 ticks per task on
average.
All 17 methods are divided into three groups – Random, Tree and Auction and results are averaged within
each group. The random methods are used as a baseline. Either the decision making methods based on
trees or auction systems overcame a random accepting of tasks in both criteria. The Cumulated results are
shown in the table 2. The trees are around 17.83 % better than baseline and auction systems around 9.85 %
better in comparison by fitness.
Figures 1 and 2 are divided into two parts. Both of them have a common horizontal axis with tested methods
of decision making. The upper part shows fitness and its components – task time (measured in ticks) and
task error (unitless value) and also maximal reachable fitness (unitless). The lower graph is aligned with
the upper one and shows experiment time in seconds normalized to interval 〈0, 1〉. There are also plotted
values of task acceptance ratio which is a ratio between count of all offered tasks to worker agents and tasks
accepted by these agents, task abortion ratio which reflects how many task were aborted from all accepted
tasks, and the task rejection ratio is complementary to task acceptance ratio and stands for the ratio between
rejected tasks and all offered tasks.
On the OpenML dataset the same 17 methods were measured. Tree based methods performed approximately
alike as random acceptance of the offered task. Auction systems outperformed random acceptance method

339

Figure 1: Detailed results of all decision making methods on Artificial data sets.

Figure 2: Detailed results of all decision making methods on OpenML data sets.

340

only by 2.3 % on average. See figure 2 for detailed results on OpenML datasets.

6. CONCLUSION

We proposed several types of decision making systems for task accepting problem in computational multi-
agent systems. As a baseline we use random decision making with different probability of accepting offered
task. The second approach is based on two auction systems – an english auction and a sealed auction. The
last group of methods builds up on tree structures.
Experimental data sets are of two types – the first one is artificially made dataset with specific properties
(see sec. 5.2.) and the second one is taken from OpenML repository. All results of datamining task are
precomputed for evolution and experiment speed up.
On the artificial dataset there is the best result achieved by sealed auction with hand made estimation
formulae; however, on average the tree based methods are better – approximately 17.8 % above baseline.
The results on OpenML dataset are more tight – auction systems overcame baseline only by 2.3 %. The
reason of tight results on OpenML dataset is caused by the fact that when some datamining model is good
on some data then it is also comparatively good on other data.
The future work may focus on further investigation of matching of pair: computation model–task. A
promising approach is shown in [8] where authors are using meta-data information derived automatically
from a data set to introduce the notion of similarity on data sets, and then training a recommending model
to optimize a data set–model assignment. Also, another real-world data will by used in experiments.

RECEIVED: SEPTEMBER, 2016
REVISED: DECEMBER, 2016

REFERENCES

[1] AAMODT, A. (1994): Explanation-driven case-based reasoning In Topics in case-based reasoning,
pages 274–288. Springer-Verlag.

[2] EASLEY, D. and KLEINBERG, J. (2010): Networks, crowds, and markets: Reasoning about a
highly connected world Cambridge University Press.

[3] FELLEISEN, M. (1990): On the expressive power of programming languages In Science of Computer
Programming, pages 134–151. Springer-Verlag.

[4] KAZÍK, O., PEŠKOVÁ, K., PILÁT, M., and NERUDA, R. (2011): Meta learning in multi-agent
systems for data mining Web Intelligence and Intelligent Agent Technology, IEEE/WIC/ACM
International Conference on, 2:433–434.

[5] KOZA, J. R. (1992): Genetic Programming: On the Programming of Computers by Means
of Natural Selection (Complex Adaptive Systems) The MIT Press.

[6] Neruda, R., Krušina, P., and Petrová, Z. (2000): Towards soft computing agents Neural Network
World, 10(5):859–868.

[7] ŠLAPÁK, M. and NERUDA, R. (2014): Multiobjective genetic programming of agent decision strategies
In Kmer, P., Abraham, A., and Snel, V., editors, Proceedings of the Fifth International Confer-
ence on Innovations in Bio-Inspired Computing and Applications IBICA 2014, volume 303 of
Advances in Intelligent Systems and Computing, pages 173–182. Springer International Publishing.

[8] ŠMÍD, J. and NERUDA, R. (2013): Using genetic programming to estimate performance of computa-
tional intelligence models In Tomassini, M., Antonioni, A., Daolio, F., and Buesser, P., editors, Adaptive
and Natural Computing Algorithms, volume 7824 of Lecture Notes in Computer Science, pages
169–178. Springer Berlin Heidelberg.

[9] VANSCHOREN, J., VAN RIJN, J. N., BISCHL, B., and TORGO, L. (2013): Openml: Networked
science in machine learning SIGKDD Explorations, 15(2):49–60.

341

[10] WEISS, G., editor (1999): Multiagent Systems MIT Press.

[11] WOOLDRIDGE, M. (2009): An introduction to multiagent systems John Wiley & Sons.

342

