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ABSTRACT 

In recent years, the development of multi-classifier systems has become an active research field. A multi-classifier system is an 

ensemble of classification algorithms whose individual outputs are fused together for better accuracy and interpretability. An 

important aspect when designing such systems is related to the heterogeneity of the building blocks (classifiers) that make up the 

ensemble, since previous studies have uncovered that a more diverse ensemble often boosts up the overall classification power. 

Some statistical measures can be used to estimate how diverse the classifier ensembles are; they are called diversity measures. 

Another issue to be considered is the number of individual classifiers included in the model: the lower the number of classifiers, 
the simpler the resulting system. In general terms, the parsimony principle is highly desired in such ensembles, since a bulky 

ensemble will also be a very time-consuming model. Finding the minimal subset of individual classifiers that brings about the 

best system performance can be posed as a combinatorial optimization problem. In this paper, we address the problem of 
building multi-classifiers systems from the perspective of Ant Colony Optimization (ACO), a widely popular and effective 

metaheuristic optimization algorithm. The main reason behind the use of ACO lies on its strong ability to solve entangled 

combinatorial optimization problems. An empirical analysis is included to statistically validate the benefits of our proposal. 
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RESUMEN 

En los últimos años el desarrollo de sistemas de multi-clasificadores se ha convertido en un campo de investigación activo. Un 

sistema multi-clasificador es un conjunto de algoritmos de clasificación cuyas salidas individuales se funden para una mayor 

precisión e interpretabilidad. Un aspecto importante en el diseño de tales sistemas está relacionado con la heterogeneidad de los 
bloques de construcción (clasificadores) que componen el conjunto, desde que estudios anteriores han descubierto que un 

conjunto más diverso a menudo aumenta la potencia de la clasificación general. Algunas medidas estadísticas se pueden utilizar 

para estimar cuán diversos los conjuntos de clasificadores son, ellas se llaman medidas de diversidad. 
Otra cuestión a considerar es el número de clasificadores individuales incluidos en el modelo: cuanto menor sea el número de 

clasificadores, más simple es el sistema resultante. En términos generales, el principio de parsimonia es muy deseado en tales 

conjuntos, desde que un conjunto voluminoso también será un modelo que consume mucho tiempo. Encontrar el subconjunto 
mínimo de los clasificadores individuales que produce el mejor rendimiento del sistema se puede plantear como un problema de 

optimización combinatoria. En este trabajo se aborda el problema de la construcción de sistemas multi-clasificadores desde el 

punto de vista de la Optimización de Colonia de Hormigas (ACO), un algoritmo de optimización meta heurístico ampliamente 
popular y eficaz. La razón principal detrás del uso de ACO radica en su fuerte capacidad para resolver problemas de 

optimización combinatoria entrelazados. Un análisis empírico es incluido para validar estadísticamente las ventajas de nuestra 

propuesta. 

 

1. INTRODUCTION  

Classification problems are among the most widely studied subjects in data mining and machine learning. 

Despite the plethora of technical papers devoted to the topic, classification techniques continue winning the 

persistent support among the enthusiasts and researchers in the above disciplines. Choosing the best classifier 

largely depends on the characteristics of the problem at hand and the nature of the decision boundaries 

discovered by each technique to separate the different decision classes. In the quest for better classification 

schemes, the combination of several classifiers aimed at tackling the same problem is a popular trend. This is 

essential when a multi-classifier system (MCS) is built. An MCS relies on a number of individual classifiers 
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and fusion their outputs through some criteria with the intent of achieving a superior result  [35] . In principle, 

we must expect better results by using an ensemble of classifiers, even in complex pattern classification 

problems. 

Dietteric [11] suggests three reasons why a multi classifier system can be better than a single classifier.  The 

first reason is statistical: if each classifier has a hypothesis, then the idea of combining these hypotheses 

results in a hypothesis that cannot be the best, but at least could avoid selecting the worst one. The second 

justification is computational: standard algorithms execute queries that can lead to different local optima; 

however, in an MCS, each classifier starts the search from a different point. It means that the ensemble of 

classifiers often produces solutions that are closer to the global solution. The last point is figurative because it 

is possible that the hypothesis space contains the hypotheses considered as non-optimal, but the 

approximation of several decision boundaries can result in a new space outside the initial hypothesis that is 

closer to the optimum. 

As witnessed by the diverse number of models available in the literature, there are multiple ways to develop 

an MCS. Some of them deal with more generic pattern classification problems (i.e., bagging and boosting) 

whereas other target specific purposes. Despite the application field intended for the model, the creation of 

accurate MCSs involves two main challenges. The first one is related to the proper choice of individual 

classifiers (i.e., building blocks) whereas the second one is focused on the combination of their individual 

classification outputs [6], [5]. 

The selection of the underlying classifiers is the first step in building an MCS; there are several classic models 

that have been proposed to this end. Bagging [7]  is rooted on the principle of generating different training 

sets extracted from the initial  training set by means of random sampling with replacement, which ensures 

diversity. This model requires the selection of a weak/unstable classification model, i.e., a classifier that 

varies its outputs in presence of, e.g., minor parametric changes. Bagging also assumes that all its weak 

classifiers will be of the same type/family and the merging of their individual outputs is accomplished through 

the majority vote technique. This algorithm can be applied in learning methods with a numerical decision 

attribute (e.g., regression problems), in which the individual outputs are real numbers and are hence averaged. 

Another strategy that Bagging employs to produce the final outcome is to estimate a probability for each 

output. These probabilities estimated by the models are averaged and the most likely class will be spit out as 

solution by the Bagging-based MCS [41]. 

Boosting [37] is similar to Bagging because it also leans upon the same method to create training sets (i.e., 

random sampling with replacement), from the original training data and the same type/family for all the base 

classifiers. However, this technique is carried out in a sequential fashion, i.e., a classifier is trained after all its 

predecessors ones have finished so it can benefit from the classification performance of their previous peers. 

Another difference is that Boosting gives a weight to a classification model according to its performance 

rather than equally weighing all models. The replacement is done strategically: the incorrectly classified 

instances have a higher chance of making their way to the training set of the next base classifier than those 

that were correctly classified by a previous base model. There are many variants that use the idea of Boosting; 

AdaBoost is one that enjoys widespread popularity [17]. 

To summarize: the two previous techniques confine themselves to the same type/family of their underlying 

classification model and are trained with subsets of their training data. The former approach (Bagging) selects 

random subsets whereas the second one selects the subsets iteratively based on the result of the previous 

iteration (classifier). Another scheme is termed Stacking [42], which is used in different classification models 

that are trained with the same initial set. Stacking differs from the two aforementioned strategies in that it 

guarantees the ensemble diversity by resorting to classification models of different families. It recruits 

multiple classifiers generated by different algorithms for the same training set in a first phase. Then, in the 

second phase, it blends their classification outputs not via majority vote but through a meta-classifier, that 

learns the relationship between the outputs of the base classifiers and the original class. This meta-classifier is 

trained on a new set of instances out of the initial training set of the base classifiers, where each instance in 

this new training set is described by a feature vector composed of the decision classes of each base classifier 

and as class, the original instance. Stacking can be applied to numerical prediction (i.e., regression) and 

classification problems [41]. 

It could be said that these three paradigms are the most general and used when building MCSs, although the 

best alternative is not easy to determine. Individual MCSs, like simple classifiers, are not intrinsically better 

than others, but they have to be selected on the basis of their performance against a particular type of problem 

[26]. 

Preserving a certain degree of diversity among the base classifiers in the ensemble is a pivotal issue since it 
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will likely impact the MCS’ effectiveness. It makes little sense to combine identical classifiers because the 

ensemble’s behavior may not exceed that of the individual classifiers. Each classifier is able to correctly label 

a certain percentage of the training set; if the results attained by these classifiers are more diverse, then the 

probability of having a greater percentage of correctly classified instances by amalgamating their outputs 

thereof is higher. For example, if a classifier misclassifies an instance and the other classifiers match between 

them, then the instance can never be correctly labeled. As explained above,  does not occur when there are 

differences between the classes assigned by the classifiers to the instance, i.e., when there are diversity 

between them [40], [24]. 

Some MCSs ensure diversity using different training sets, but this only works for classifiers that are sensitive 

to changes, such as decision trees. Others use different sets of features and thus also vary the training sets. 

Others use a collection of dissimilar base classifiers. In the latter case, it is difficult to know when a good 

diversity is ensured, thus making it necessary to resort to some statistical measures that help determine how 

diverse they are. The diversity measures are described by Kuncheva and other authors in [27]. These 

measures can be categorized as pairwise and group (non-pairwise) measures. 

On the other hand, another aspect to be considered is the number of base classifiers that are to be part of the 

MCS: the smaller the number of classifiers, the simpler the system. However, finding the minimal subset of 

classifiers that is also high performing on the problem at hand could be envisioned as a combinatorial 

optimization problem with an exponential search space; this is due to the fact that new classifiers are being 

invented at a fairly quick pace. Even with a small bunch of them, we could end up in a highly explosive 

number of possible combinations. We have therefore decided to pull the Ant Colony Optimization (ACO) 

metaheuristic algorithm, which has proved to be a very viable and robust alternative for coping with complex 

search and optimization problems thanks to its biologically inspired and highly parallelized nature. 

There are in the literature other approaches that uses metaheuristics to build MCS, for example, some of them 

apply metaheuristics to realize the best features selection in the database, others use metaheuristics to find the 

best configuration of parameters in classifiers [9], [30], [5], [31]. However, not exist the same methodology 

proposed by us in this paper with ACO, and diversity measures to ensure diversity between the classifiers 

combined. 

In light of the aforesaid facts, in this paper we introduce a new methodology for building an MCS by means 

of an ACO technique. In particular, ACO helps with selecting a suitable group of base classifiers out of a 

large pool of possible alternatives. This group possesses a good diversity among them and attains the highest 

classification accuracy for the problem under consideration. 

The rest of the text is organized as follows: Section 2 elaborates on the theoretical background and related 

works regarding the formulation of some diversity measures in MCSs and expose the essential concepts based 

in formulation of ACO. Section 3 describe how build MCS with ACO taking into account diversity measures. 

Section 4 is concerned with the experimental analysis and the discussion of the empirical results. Conclusions 

are given in Section 5. 

2. BACKGROUND AND RELATED WORKS 

As mentioned before, it does not make sense that MCSs combine identical classifiers between them because a 

good performance would not be attained, so it is important to know how diverse a classifier ensemble is. A 

number of ensemble diversity measures have been proposed in the literature. They are divided into two 

categories: pairwise and non-pairwise. 

Diversity Measures 

The first set of measures is calculated for pairs of classifiers. Its outputs are binary (0, 1)  indicating whether 

the instance was correctly classified or not. Table 1 shows the results of two classifiers (Ci, Cj) for a given 

instance, depending on whether or not it was correctly classified. If we consider all N instances between the 

pair of classifiers (Ci, Cj), the results summarized in the Table 2 are obtained. It should be observed that a set 

of L classifiers have associated L (L-1)/2 pairs of values, so to obtain a single result these values must be 

averaged. N is the total number of cases.

 

 

  Cj correct (1) Cj incorrect (0) 

Ci correct (1) a b 
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Ci incorrect (0) c d 

a + b + c + d = 1 

Table 1: Binary matrix for one instance 

 

  Cj correct (1) Cj incorrect (0) 

Ci correct (1) A B 

Ci incorrect (0) C D 

A +B + C + D = N 

Table 2: Binary matrix for N instances 

 

Correlation coefficient ρ 

The coefficient of correlation [26], is one of the measures for pairs of classifiers, it is calculated as: 

𝜌𝑐𝑖,𝑐𝑗 =
A×D−B×C

√(A+B)×(C+D)×(A+C)×(B+D)
                                                                                                        (1) 

A better diversity is obtained for smaller values of𝜌. The values of 𝜌 will be in the interval [-1, 1]. 

Q Statistics 

The Q statistic is one of the measures for pairs of classifiers 

Qci, cj =
A×D−B×C

A×D+B×C
                                                                                                                                           (2) 

It has been proved that ρ and Q have the same sign. Also, it can be demonstrated that |𝜌| ≤ |𝑄|[27]. 

The Measure of Differences 

The measure of differences was introduced by Skalak [38], it is the most intuitive measure between a pair of 

classifiers, and it is equal to the probability that the two classifiers disagree in their predictions. The diversity 

increases when the value of D increases. 

𝐷𝑐𝑖,𝑐𝑗 =
B+C

N
                                                                                                                                                      (3) 

 
The Double-Fault Measure  

 

Another measure to be analyzed is known as double fault measure, which was introduced by Giacinto and 

Roli [20]and considers the failure of two classifiers simultaneously. This measure is based on the concept that 

it is more important to know when simultaneous errors are committed, that when both have a correct 

classification. The diversity increases when the value of DF decreases. 

𝐷𝑐𝑖,𝑐𝑗 =
D

N
                                                                                                                                                          (4) 

 

On the other hand, the non-pairwise measures take into account the outputs of all classifiers at the same time 

and calculate a unique value of diversity for the whole ensemble. 

Entropy 

This measure was introduced by Cunningham and Carney [10]: 

𝐸 =
1

𝑁
×

2

𝐿−1
× ∑ 𝑚𝑖𝑛{(∑ 𝑌𝑗, 𝑖𝐿

𝑖=1 ), (𝐿 − ∑ 𝑌𝑗, 𝑖𝐿
𝑖=1 )}𝑁

𝑗=1  , 𝑌𝑗, 𝑖 € {0,1}                                                             (5) 

Where Yj,i will be 1 if the classifier i was correct in the case j, and 0 otherwise. If E is equal to zero then there 

is not a difference between the classifiers and if E is equal to 1 then there is the most diversity. 

Kohavi-WolpertVariance 

The Kohavi-Wolpert Variance was introduced by Kohavi and Wolpert [23], and then Kuncheva and Whitaker 

presented a modification in [27]. In this measure, the diversity is lower if the value of KW is higher. 

𝐾𝑊 =
1

𝑁×𝐿2 × ∑ 𝑌(𝑍𝑗)𝑁
𝑗=1 × (𝐿 − 𝑌(𝑍𝑗))𝑑𝑜𝑛𝑑𝑒𝑌(𝑍𝑗) = ∑ 𝑌𝑖, 𝑗𝐿

𝑖=1                                                                 (6) 
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Measurement of Inter-rater Agreement  

The Measurement of Inter-rater Agreement was presented in [16].In this measure the diversity is lower when 

the k value is higher. The k is calculated by: 

𝐾 = 1 −
1

𝐿
×∑ 𝑌(𝑍𝑗)×(𝐿−𝑌(𝑍𝑗))𝑁

𝑗=1

𝑁×(𝐿−1)×𝑝×(1−𝑝)
                                                                                                                      (7) 

Where the last term is the measure of Kendall concordance and p is the mean of the accurate in the individual 

classification, which has the following formula: 

𝑝 =
1

𝑁×𝐿
× ∑ ∑ 𝑌𝑗, 𝑖𝐿

𝑖=1
𝑁
𝑗=1                                                                                                                                   (8) 

Coincident Failure Diversity  

The Coincident Failure Diversity is enunciated by Partridge y Krzanowski [33], this measure takes into 

account the instances where all the classifiers coincide. 

𝐶𝐹𝐷 = {
0                                         𝑠𝑖𝑝𝑜 = 1

1

1−𝑝𝑜
× ∑

𝐿−𝑖

𝐿−1
× 𝑝𝑖  , 𝑠𝑖𝑝𝑜 < 1𝐿

𝑖=1
                                                                                                       (9) 

This measure has a minimum value of zero when all the classifiers are corrector incorrect, at the same time. 

The maximum value is one when at least one classifier is incorrect in any random object. In the formula pi is 

the probability that Y=i/L and L is the number of classifiers. 

 

Distintic Failure Diversity  

The Distintic Failure Diversity was also enunciated by Partridge y Krzanowski [32], as an improvement of the 

previous measure. 

𝐷𝐹𝐷 = {
0                          𝑠𝑖𝑡𝑖 = 0

∑
𝐿−𝑖

𝐿−1
× 𝑡𝑖𝑠𝑖𝑡𝑖 < 0𝐿

𝑖=1
                                                                                                                    (10) 

Where ti is the number of i fails divided by total distinct fails, and L is the number of classifiers. 

As a general rule, we may notice that these measures are more computationally complex than pairwise 

measures; the latter are simpler and the results lend themselves to an easier interpretation given their 

mathematic formulation. In this paper, we have confined ourselves to the pairwise measures given the 

previously mentioned considerations; in particular, we will use the Double Fault Measure in our simulations 

because is one of the most simple and more easy to interpretation.  

It is in the presence of a combinatorial optimization problem because there are multiple variants of classifiers 

bases and variants of combination of diversity measures and precisely the metaheuristics are used for this, 

among metaheuristics are GA (Genetic Algorithms), ACO, PSO (Particle Swarm Optimization), etc. The 

main reason behind the use of ACO is its strong ability to solve combinatorial optimization problems 

intertwined and the existence of a previous paper where it already was modeled our problem using the 

metaheuristic GA.[8] 

Next are described the ACO metaheuristic and its most popular algorithmic variants.  

Ant Colony Optimization 

The ACO metaheuristic is a stochastic search method originally designed in the combinatorial optimization 

problems; this method was invented by Marco Dorigo and draws inspiration from a colony of agents (ants) 

[13]. Real ants in nature search for food in the random proximity of their nest. Once the ants have found a 

food source, they assess this source according to its quality and quantity. In the path back to the nest, they lay 

a chemical substance named pheromone on the ground in order to guide the rest of the colony to the food 

source [12]. Therefore, ACO is a fully constructive model where each ant incrementally builds a candidate 

solution to the problem by exploring a construction graph in a step-by-step fashion. 

More specifically, each artificial ant goes from one state (graph vertex/node) to another during the search 

process. The solution is then a sequence of moves. The preference of movement depends on two values 

associated to the link (graph edge) between these two nodes: 

 The artificial information 𝜏𝑖𝑗  is directly based on the pheromone trails and the ants iteratively update it 

during the algorithm execution. 
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 The heuristic information 𝜂𝑖𝑗  denotes the preference of traversing that edge. This problem-specific 

piece of knowledge often remains unchanged throughout the algorithm execution, so it must be 

carefully estimated beforehand. 

 

From the perspective of the Kemeny ranking problem, Equation (11) denotes the probability of accepting the 

j −th state (i.e., elements to be ordered) at the ith position of the candidate ranking.  𝒩i
k is the set of 

unvisited states for the kth ant, while α and β are two parameters used for controlling the influence exercised 

by the pheromone trails and the heuristic information, respectively, over the transition probability. 

 

 𝑃𝑖𝑗
𝑘(𝑡 + 1) =

[ 𝜏𝑖𝑗(𝑡)]
𝛼

[ 𝜂𝑖𝑗]
𝛽

∑   [ 𝜏𝑖𝑟(𝑡)]𝛼[ 𝜂𝑖𝑟]𝛽 
𝑟∈𝒩𝑖

𝑘
, 𝑗 ∈ 𝒩𝑖

𝑘   
     

(11) 

After the iterative solution construction process is completed, all pheromone trails are updated using the 

solutions built by the agents (ants). In the first stage, pheromone evaporation takes place, thus uniformly 

reducing the amount of pheromone laid on all trails by a certain quantity. Subsequently, one or more solutions 

are used to increase the pheromone value of the trails included in these solutions. The pheromone update 

scheme is a pivotal step in any ACO-based algorithm. Essentially, most ACO variants mainly differ in the 

strategy used for updating the pheromone trail at each iteration. 

Ant Systems 

The Ant System (AS) was the first proposed ACO algorithm  [14]. In AS, the pheromone trails are updated 

once all ants have completed their tours. As a first step, all pheromone trails are uniformly evaporated using a 

constant factor 0 < 𝜌 < 1. After that, each ant deposits a quantity of pheromone ∆τij on those graph edges 

that are part of its solution. It should be mentioned that the value ∆τij is calculated according to the quality of 

the solution found by the kth ant. The following equation summarizes both steps, where ρ denotes the 

evaporation rate, whereas P is the number of ants in the colony. 

  𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) 𝜏𝑖𝑗(𝑡) + ∑ ∆𝑃
𝑘=1 𝜏𝑖𝑗

𝑘  (12) 

On the edges that are not regularly chosen by the ants, the associated pheromone levels will gradually dwindle 

with the number of iterations, whereas edges often selected by the ants will see their pheromone level 

reinforced, hence making them more likely to be picked in future iterations. However, more comprehensive 

simulations reported in [29] is described that better results could be attained if only the global-best solution 

was used for updating the pheromone trails instead of using all ants in the colony. Notice that the unlimited 

accumulation of pheromone on the most promising edges can to produce stagnation in the search. 

Ant Colony Systems 

Ant Colony System (ACS) was devised to improve the AS method by exploiting the global-best solutions 

found by the ants during the search stage [39]. As result, the algorithm enhances the exploitation features of 

the ants when they build a solution instead of exploring new areas of the solution space. This goal is achieved 

through three mechanisms: (1) a strong elitist strategy for updating pheromone trails; (2) a rule for updating 

pheromone trails during the search phase, and (3) a pseudo-random transition probability rule. 

Equation (13) formalizes the strategy for updating the pheromone trails, where τij
∗  denotes the pheromone 

amount associated with the ant having better heuristic value. It means that the evaporation step takes place 

across all edges as in AS, but the updating process only occurs in the tour discovered by the best individual. 

In order to fully exploit the best knowledge elicited by the ants in their journey, ACS also introduces a 

pseudo-random proportional rule (see Equation (14)). More specifically, a random decision is made with 

probability q0 to move to the node maximizing the product of the pheromone trail and the heuristic 

information; otherwise ACS will adopt the standard decision rule featured by AS. The value q0 is a parameter 

that should be set by the expert a priori; when it is close to 1, exploitation is favored over exploration. 

 𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) 𝜏𝑖𝑗(𝑡) + 𝜌𝜏𝑖𝑗
∗ (𝑡) (13) 
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Finally, in the ACS model, the ants use an additional rule for updating the pheromone trails when they are 

building the candidate solution, as displayed in Equation (15). This approach has the same effect of 

decreasing the probability of selecting the same path for all ants; it thus fights the stagnation problem present 

in AS given that it introduces a balance between exploitation and exploration. 

 

    𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) 𝜏𝑖𝑗(𝑡) + 𝜌𝜏𝑖𝑗(0) (15) 

 

MAX MIN Ant System 

The MAX-MIN Ant System (MMAS) was specifically developed to promote a stronger exploitation of the 

solutions and therefore avoid falling into a stagnation state [39]. In a nutshell, we could define a stagnation 

state as the situation where ants construct the same solution over and over and the exploration eventually 

stops. This model has the following features. Equally, to ACS, a strong elitist strategy regulates the agent 

allowed to update the pheromone trails. It could be the ant having the best solution so far, or the one with the 

best solution in the current iteration. Second, all pheromone trails are limited to the range [τMIN, τMAX]. If 

τMIN > 0 for all solution components, then the probability of picking a specific state will never be zero, 

which avoids stagnation configurations [39]. As a final point, pheromone trails are initialized with τMAX to 

ensure further exploration of the search space at the beginning of the optimization phase. 

The three variants described above are implement. 

3. BUILDING A MULTI-CLASSIFIER SYSTEM WITH ACO 

Next, we address the problem of building an “optimal” MCS by using the ACO metaheuristic. Here the 

optimality criterion refers to the accuracy of the final system and to the number of selected base classifiers. 

We certainly cannot ensure that our proposal will always find the global optimum because the selected 

optimizer (ACO) may converge to a suboptimal solution. Nevertheless, we adopted the ACO metaheuristic 

since it is capable of finding near-optimal solutions in a reasonably short execution time while not imposing 

any constraints on the objective function (e.g. continuity, differentiability, convexity or gradient information) 

which are seldom known beforehand. 

Let us assume a family of classifiers Φ = {ϕ1, … , ϕi, … , ϕN} where each classifier has an associated 

classification error E℘(ϕi), where ℘ denotes the classification problem to be solved. The issue of building 

an MCS ℳ consists of finding a subset of these classifiers Φ′ ⊂ Φ with maximal diversity such that 

𝐸℘(ℳ) tends to the minimal error. Notice that |Φ′| must necessarily be strictly lower than |Φ|, otherwise 

the solution will be the trivial one (e.g., all individual classifiers are included in the ensemble). Furthermore, 

the model needs to fulfill another constraint: 𝐸℘(ℳ) < 𝐸℘(𝜙∗) where ϕ∗ = argminiϵ1..N{ϕi} is the best 

classifier included in the ensemble. This constraint ensures that the ensemble improves the classification 

performance over any of its constituent classification schemes. 

From the optimization point of view, candidate solutions for our problem can be encoded as a binary vector 

where the state “1” at the i-th dimension means that the classifier ϕi will be included in the ensemble whereas 

the state “0” indicates that ϕi will not be included in ℳ. Therefore, the proposed model Pij
k represents the 

probability of assigning the state Sj ∈ {0,1} to the i-th dimension (i.e., the probability of including the i-th 

classifier). Equation (16) unveils the objective function to be minimized during the search process undertaken 

by ACO, where X is the candidate solution, ℳ𝑋 denotes the ensemble computed from 𝑋 and 𝐸℘(ℳ𝑋) 

denotes its classification error. In this formulation, a factor 0 < ω < 1 is introduced in order to control the 

relevance that the expert bestows to the system accuracy with respect to the ensemble cardinality, that is, the 

number of selected classifiers. 

 

minimize 𝐹(𝑋) = 𝜔𝐸℘(ℳ𝑋) + (1 − 𝜔)‖𝑋‖𝐿1
(|Φ|)−1 (16) 

 

𝑗 = argmax
𝑟∈𝒩𝑖

𝑘
{[ 𝜏𝑖𝑗(𝑡)]

𝛼
[ 𝜂𝑖𝑗]

𝛽
}  𝑖𝑓 𝑞 ≤ 𝑞0 (14) 
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During the search process, those solutions that have an error rate greater than the error rate associated to the 

best classifier included in the ensemble (i.e. 𝐸℘(ℳ𝑋) > 𝐸℘(𝜙∗)) must be penalized by a positive factor. 

Besides, two infeasible solutions may induce different errors, and therefore the penalization strategy should 

consider this fact when modifying the objective function F(X). For example, let us consider two different 

solutions X1 = (x1
1, x2

1, … , xN
1 ) and X2 = (x1

2, x2
2, … , xN

2 ) which encode the ℳ𝑋1
  and ℳ𝑋2

 ensembles, 

respectively. If the induced errors  𝐸1 = (𝐸℘(ℳ𝑋1
) − 𝐸℘(𝜙∗)) and 𝐸2 = (𝐸℘(ℳ𝑋2

) − 𝐸℘(𝜙∗)) are 

greater than zero, then X1 and X2 are both considered infeasible. However, it is unlikely that E1 − E2 = 0. 

This suggests that we should not penalize both solutions with the same positive value; instead, we should 

penalize each solution according to their error Ei − E℘(ϕ∗). In this paper, we make use of a dynamic 

penalization function P(X) that takes into account the induced error as follows: 

 

Another relevant aspect to be considered when solving a combinatorial optimization problem via any ACO 

algorithm is the estimation of the heuristic information. This component allows improving the search, even in 

large search spaces, as it corresponds to problem-specific knowledge that is incorporated into the state 

transition probability rule. In this study, we put forth three different heuristics that will be detailed next. The 

first one assumes that classifiers inducing large diversity are likely to improve the overall ensemble 

performance, even when they are not the most accurate ones. Equation (18) formalizes this reasoning when 

estimating the heuristic matrix ηN×2, where 𝒟 represents the ensemble diversity measure under 

consideration, {ϕi}i=1
L  denotes the family of base classifiers and the index j indicates the status of the i-th 

classifier (0 = excluded, 1 = included) in the ensemble. 

 

𝜂𝑖𝑗
𝒟 = {

𝒟({𝜙𝑖}𝑖=1
𝐿 − {𝜙𝑖}), 𝑗 = 0

𝒟({𝜙𝑖}𝑖=1
𝐿 ), 𝑗 = 1

   (18) 

 

 

 

The second heuristic assumes that classifiers that report lower classification errors are more likely to improve 

the ensemble performance even when the diversity among them is not maximal (see Equation (19)). In other 

words, the probability of picking a specific classifier is subject to its individual quality. Based on this strategy, 

we could conclude that the i-th classifier will be excluded from the ensemble ℳ with conditional 

probability Pj(ϕi|E℘(ϕi)) while the probability of having it as part of the ensemble is given by the 

conditional probability Pj(ϕi|1 − E℘(ϕi)). Here we assume that E℘(ϕi) denotes the classification error 

achieved by the i-th individual classifier. 

 

𝜂𝑖𝑗
𝐸 = {

𝐸℘(𝜙𝑖) , 𝑗 = 0

1 − 𝐸℘(𝜙𝑖) , 𝑗 = 1
 (19) 

 

The last heuristic strategy is actually a combination of the previous diversity-based heuristic and the accuracy-

based heuristic. Being more explicit, we assume that classifiers having lower classification errors and 

inducing higher diversity are more likely to improve the system performance, and thus they should be 

included in the ensemble. Equation (20) formalizes this heuristic for some diversity measure 𝒟, where 

{ϕi}i=1
N − {ϕi} denotes the family of base classifiers excluding the classifier ϕi, which means that the state 

j = 0 will be observed at the i-th dimension. It should be highlighted that in ACO, states are actually selected 

based on the combination of both the heuristic information and the pheromones trails, so we must select the 

relevance of each component. 

 

𝜂𝑖𝑗
𝒟+𝐸 = {

𝒟({𝜙𝑖}𝑖=1
𝐿 − {𝜙𝑖}) + 𝐸℘(𝜙𝑖), 𝑗 = 0

𝒟({𝜙𝑖}𝑖=1
𝐿 ) + [1 − 𝐸℘(𝜙𝑖) ], 𝑗 = 1

 (20) 

𝑃(𝑋) =
1 + Δ𝐹(𝑋)[𝐸℘(ℳ𝑋) − 𝐸℘(𝜙∗)]

1 + 𝐸℘(ℳ𝑋)
 

  

(17) 



415 
 

 

Based on the above configuration, the ACO-based optimizer should be capable of finding a subset of 

classifiers Φ′ ⊂ Φ with a desired behavior (i.e., high classification rate for difficult pattern recognition 

problems). In order to evaluate our model, we conducted an empirical analysis in the following section across 

a set of benchmark data sets, which are often employed when assessing the performance of new classifiers.  

4. RESULTS AND DISCUSSION 

To empirically validate the methodology proposed in this study, we designed several experiments to compare 

the performance of our ACO-based MCS building, with some of the most well-known state-of-the-art 

classification models. These models were taken from the WEKA tool (Waikato Environment for Knowledge 

Analysis) [19] and are listed below: 

 Alternative Decision Tree: This model, also known as ADTrees, generates an Alternative Decision 

Tree. The WEKA version only supports binary class problems. The number of boosting iterations 

needs to be manually tuned to suit the dataset and the desired complexity/accuracy tradeoff. The tree 

induction process has been optimized and heuristic search methods have been introduced to speed up 

the learning [18]. 

 J48: This algorithm, described in [36], aims at generating a pruned or unpruned C4.5 decision tree. 

C4.5 is an extension of Quinlan's earlier ID3 algorithm. The decision trees generated by J48 can be 

used for classification purposes. J48 builds decision trees from a set of labeled training data using the 

concept of information entropy to decide which attribute should be chosen for splitting the dataset at 

that level of the tree. 

 Logistic: This classifier, also known as Logistic function, is a classifier that uses a multinomial logistic 

regression model with a high estimate [28]. 

 K-Nearest Neighbor with k = 1. Also known as IB1, this simple classifier uses the normalized 

Euclidean distance to find the training instance closest to the given test instance, and predicts the same 

class that this training instance bears. If more than one training instance lies at the same distance from 

the test instance, the first one found is used [1]. 

 Naïve Bayes: This classifier is rooted on applying Bayes' theorem with strong (naïve) independence 

assumptions among the features. It is a highly scalable classifier; require a number of parameters that 

is linear in the number of variables (features/predictors) in a learning problem. Maximum-likelihood 

training can do by evaluating a closed-form expression, which takes linear time, rather than through 

an expensive iterative approximation as used for many other types of classifiers. Naïve Bayes employs 

a class estimator; the numerical estimator and precision values are chosen based on an analysis of the 

training data [22]. 

 Multi-Layer Perceptron (MLP): This classifier relies on a feedforward neural network using the 

backpropagation training algorithm to classify instances [3]. The MLP network can built by hand, 

learned from data or both. The neurons in this network all make use of sigmoidal activation functions, 

except for when the class is numeric [21]. 

 

The multi-classifier systems are generated by using the voting mechanism, also stems from WEKA, were 

combined multiple base classifiers of different types. Two strategies are considered when combining the 

outputs (classifications) of the base algorithms in the MCS: average and majority vote. All experiments 

involving the ACO metaheuristic are implemented the following parametric configuration: 50 iterations, 

evaporation constant ρ = 0.9, ACS’ phi = 0.9 and q0 = 0.7. The original training data is divided in two 

subsets: 66% of the instances used for training and the rest for evaluation. All classification techniques were 

run against 10 data sets coming from the Machine Learning Repository at the University of California Irvine 

[4]; these data sets are outlined in Table 3. 

 

 

 

 

 

Databases 
Nominal 

Features 

Numeric 

Features 
Classes Cases Distribution by classes 

Australian 5 9 2 690 383-307 
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Breast Cancer  9 0 2 683 444-239 

Diabetes 0 8 2 768 500-268 

Echocardiogram 1 11 2 132 79-53 

Heart Stlatlog 0 13 2 270 150-120 

Hepatitis 13 6 2 155 32-123 

house-votes 16 0 2 435 201-99 

German Credit 13 7 2 1000 300-700 

Pro Ortology 0 11 2 4314 1438-2876 

Tic Tac Toe 9 0 2 958 626-332 

 

The experiments are geared to identifying what ACO version (AS, ACS or MMAS) yields better results as 

well as determining the worth of the three heuristic functions proposed in Section 4.  

 

Experiment 1: Ensemble Size per Heuristic Function 

 

Pearson’s Chi-square statistical test [34] is applied to sets of categorical data to evaluate how likely it is that 

any observed difference between the sets arose by chance; this test is suitable for unpaired data from large 

samples. It tests a null hypothesis stating that the frequency distribution of certain events observed in a sample 

is consistent with a particular theoretical distribution. The events considered must be mutually exclusive and 

have the total probability add up to 1. A common case for this rule is where the events each cover an outcome 

of a categorical variable.  

To apply the above test, we leaned on the SPSS software. Two groups were created to represent the number of 

classifiers included in the solutions: in the first group, all solutions containing two or three classifiers were 

isolated whereas the second group denotes the solutions with more than three classifiers. The maximum 

ensemble size is six since that is the number of classifiers included in the experiment. 

The results reveal the existence of statistical differences at the 95% significance level among the three 

heuristics used: diversity, accuracy and hybrid (the obtained significance value was below 0.05). Table 4 

shows that the diversity heuristic exhibits the largest number of cases in the first group (58) and the smaller 

number of cases in the second group (2), i.e., solutions having a smaller number of base classifiers (therefore 

with reduced ensemble complexity). 

 

 Heuristic Total 

Diversity Accuracy Hybrid 

  Number of Classifiers 
 1st group 58 39 53 150 

 2nd group 2 21 7 30 

Total 60 60 60 180 

Table 4.  Results of Chi-square test with heuristics 

To confirm the above claim, we report in Figures 1-6 the ensemble size produced by the three ACO variants 

(AS, ACS and MMAS algorithms) under both voting criteria (average and majority) on a subset of the data 

sets under consideration according to the three distinct heuristic strategies: diversity, accuracy and hybrid.  

generally larger. The accuracy heuristic produces the largest (and hence most complex) ensembles, so it does 

not fare well along this indicator. 

 

Experiment 2: Ensemble Accuracy per Heuristic Function 

 

The Kruskal-Wallis test is applied to determine the heuristic strategy that provides the best results in terms of 

ensemble classification accuracy. The Kruskal–Wallis one-way analysis of variance by ranks [25] is a 

nonparametric method for testing whether samples originate from the same distribution. This test is used to 

compare two or more independent samples that may have different sizes; it extends the Mann–Whitney U test 

to more than two groups. The parametric equivalent of the Kruskal-Wallis test is the one-way analysis of 

variance (ANOVA). When rejecting the null hypothesis of the Kruskal-Wallis test, then at least one sample 

https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Frequency_distribution
https://en.wikipedia.org/wiki/Event_%28probability_theory%29
https://en.wikipedia.org/wiki/Sample_%28statistics%29
https://en.wikipedia.org/wiki/Level_of_measurement
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stochastically dominates at least one other sample. The test does not identify where this stochastic dominance 

occurs or for how many pairs of groups the stochastic dominance is obtained. 

 
 

Fig. 1: Ensemble size per heuristic function under 

the AS algorithm and average voting. 

Fig. 2: Ensemble size per heuristic function under the 

AS algorithm and majority voting. 

 

 

Fig. 3: Ensemble size per heuristic function under 

the ACS algorithm and average voting. 

Fig. 4: Ensemble size per heuristic function under the 

ACS algorithm and majority voting. 

 

 
 

Fig. 5: Ensemble size per heuristic function under 

the MMAS algorithm and average voting. 

Fig. 6: Ensemble size per heuristic function under the 

MMAS algorithm and majority voting 

 



418 
 

 Heuristics N Average Range  

Accuracy 

Diversity 60 97.00 

Accuracy 60 79.04 

Sum 60 94.00 

Total 180  

Table 5.  Results of Kruskal-Wallis test with the three ACO heuristics 

 

The previous test shows that there are no significant differences among the three heuristics at the 95% 

significance level, although Table 5 portrays that the higher value of the average range belongs to the 

diversity heuristic. 

One may notice from Figures 1-6 that the heuristic strategy that leads to ensembles that are more compact is 

the diversity heuristic. In some of the data sets, the hybrid heuristic is able to produce an ensemble of the 

same (smallest) size as the one induced by diversity; however, in the rest of the data sets the ensemble size is  

  

Fig. 7: Ensemble accuracy per 

heuristic function under the AS 

algorithm and average voting. 

Fig. 8: Ensemble accuracy per 

heuristic function under the AS 

algorithm and majority voting. 

 

 

 

Fig. 9: Ensemble accuracy per 

heuristic function under the ACS 

algorithm and average voting. 

Fig. 10: Ensemble accuracy per 

heuristic function under the ACS 

algorithm and majority voting. 
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Fig. 11: Ensemble accuracy per 

heuristic function under the 

MMAS algorithm and average 

voting. 

Fig. 12: Ensemble accuracy per 

heuristic function under the MMAS 

algorithm and majority voting. 

Figures 7-12 report the ensemble classification accuracy achieved in a subset of the data sets under study by 

the three ACO algorithms with the three heuristic functions and the two voting schemes. 

The conclusion drawn from the results in Figures 7-12 is that the diversity heuristic seems slightly more 

effective in securing higher ensemble classification rates, although the two other heuristics closely follow. 

This visual inspection confirms the results of the Kruskal-Wallis test. 

Based on the outcomes of Experiments 1 and 2 (showing that the diversity heuristic function is to be preferred 

over the other two given its superior ensemble size and accuracy rates), we will stick to this heuristic function 

as we move forward to assess the three ACO variants in the remainder of this section.  

 

Experiment 3: Comparing the three ACO Algorithms 

 

To investigate the performance of the three ACO techniques in terms of the complexity of the produced 

MCSs, we resorted again to the Chi-square test as done in Experiment 1. That is, for each ACO algorithm, we 

created two groups based on the size of the ensembles therein (group 1: 2 or 3 classifiers; group 2: > 3 

classifiers). Then we applied the Chi-square test to the frequency distribution in both groups to determine 

whether it is reasonable to believe that they originate from the same distribution or not. The test revealed the 

existence of significant differences at the 95% significance level between the two groups respect of three 

ACO variants. In Table 6, it can be seen that the MMAS variant shows more cases in the first group, i.e., the 

solutions have fewer classifiers using this variant. 
 Variants Total 

AS ACS MMAS 

 Number of Classifiers 
1st group 44 49 57 150 

2nd group 16 11 3 30 

Total 60 60 60 180 

Table 6.  Results of Chi-square test with variants 

Additionally, the Kruskal-Wallis test is applied to determine the ACO version that offers the best results 

according to the ensemble accuracy; this test reveals that there are not significant differences detected at the 

95% significance level, although Table 7 indicates that MMAS yields a slightly higher average range over the 

two other ACO variants. 

 Variants N Average Range 

Accuracy 

AS 60 97.00 

ACS 60 96.04 

MMAS 60 98.00 

Total 180 
 

Table 7.  Results of Kruskal-Wallis test with the three ACO variants 

 

4.1   CASE STUDY: PREDICTING HIGH BLOOD PRESUARE IN CHILDREN 

 

High blood pressure (HBP) is a common condition that affects the health of individuals worldwide, adults and 

children alike, with the potential to cause extensive damage. Due to its asymptomatic nature it has been 
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termed a "silent epidemic" because usually there are no clear signs demonstrating its presence [2]. 

Nowadays, the concept “Systemic Arterial Hypertension” is very common in our society and it has been 

identified as cardiovascular risk factor. However, not everybody thinks in this risk for the children’s welfare. 

At the same time, this disease is a major risk factor for other brain, heart or kidney-related ailments. 

Prevention of cardiovascular disease is not limited to adults but must start with childhood. It has been shown 

that hypertension in children is an independent risk factor for hypertension in adulthood and that it is 

associated with early markers of cardiovascular disease such as left ventricular hypertrophy, thickness of the 

intima-media, atherosclerosis and diastolic dysfunction. 

In this study, the sample consisted of 680 children apparently healthy between 8-12 years of age, of both 

genders, from 4 primary schools in the city of Santa Clara. The data were supplied by the PROCDEC2 

project; it consists of 680 children whose medical history was access with the consent of their parents. 

From the analysis of the predictive attributes, patients are categorized into two groups according to the risk of 

the disease: risky patients and non-risky patients. A brief statistical summary is presented in Table 8. 
 N Minimum Maximum Media Typical Des. 

Current weight (kg) 680 20.50 74.00 35.2545 8.92034 

Size (cm) 680 113.00 161.00 137.6217 8.19466 

Waist circumference (cm) 680 47.00 104.00 64.2578 8.72743 

Hip circumference (cm) 680 52.00 106.00 71.8132 8.48275 

Waist hip index 680 0.65 1.25 0.8949 0.05754 

TA Higher systolic Member 680 81 150 114.46 12.811 

TA Diastolic Superior Member 680 49 99 67.00 7.711 

TA Systolic 5min 680 73 152 111.72 12.254 

TA Diastolic 5min 680 46 95 66.31 8.133 

TA Systolic 10min (before 15min) 680 70 149 109.30 12.486 

TA Diastolic 10min (before 15min) 680 45 94 64.67 8.061 

TA first day Mean Systolic 679 77.33 146.00 111.7712 11.45872 

TA first day Mean Diastolic 679 43.33 88.67 65.9686 6.77948 

TA second day basal Systolic 674 82 150 112.12 10.928 

TA second day basal Diastolic 674 44 94 65.69 7.469 

TA second day Systolic P sustained weight 674 78 166 120.33 12.954 

TA second day Diastolic P sustained weight 674 48 116 75.12 9.924 

PAM2d 674 58.00 129.67 90.2028 9.79314 

TA third day  basal Systolic 655 81 144 112.28 10.503 

TA third day  basal Diastolic 655 40 110 66.00 7.638 

TA third day  Systolic P sustained weight 654 83 160 120.31 12.190 

TA third day  Diastolic P sustained weight 654 49 112 75.34 10.186 

PAM3d 654 62.33 120.00 90.2798 9.76576 

Table 8.  Descriptive statistics of HTA data set 

 

The experiments are executed with the diversity heuristic and the MMAS algorithm given their promising 

results in the previous experiments. Three different sets of classifiers are used with 6, 12 and 18 classifiers 

respectively. The best individual accuracy was achieved by MLP with 91% in the three sets. In the solutions, 

the positions with one means that the classifier in this position is include. 

Classifiers 
AVG 

Solution Goal Function  Accuracy Diversity 

6 000011 0.10 0.92 0.96 

12 010010000000 0.09 0.92 0.94 

18 010100011000000100 0.09 0.95 0.95 

Table 9.  Results obtained in experiments 

We can see in Table 9 that the best individual accuracy was exceeded in all cases, reaching a maximum of 

95% with five classifiers. More solutions were obtained; however, we have displayed only the ones with a 

small ensemble size in each of the three classifier sets. The classifier with the highest individual accuracy is 

included in the ensemble for most of the solutions; its corresponding position is highlighted in red. Note that 

the diversity in the found combinations of classifiers was relatively high. 

In addition, below is shown a comparison with the results obtained by the built multi-classifier with ACO and 

                                                           
2 Project PRODEC: Projection Electronic Development Center to the Community, Universidad Central “Marta Abreu” de Las Villas, Santa 

Clara, Cuba. 
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multi-classifier models mentioned in the introduction of the document, taking into account the six classifiers 

mentioned before, at the beginning in this section. In this comparison, was chose each individual classifier 

combined in the built multi-classifier as individual model in Bagging and Boosting (AdaBoost variant was 

used), because they working in different ways, as was explained in the introduction (the analysis with MLP as 

individual classifier in these models not is recommendable but was done any way). Stacking allows combine 

different individual classifiers at the same time. 
Multi-classifier Accuracy 

  Bagging (ADTree) 87.40 

Bagging (J48) 87.44 

Bagging (Logistic) 89.61 

Bagging (IB1) 79.22 

Bagging (Naives Bayes) 83.54 

Bagging (MLP) 89.04 

                      

             Table 10.  Results obtained with Bagging and Boosting using each individual classifier  

 In case of Stacking was combined the classifiers at the same time, the accuracy obtained was 88.02. Below is 

presented Table 11 with the best result of Bagging and boosting, Stacking and also Random Forest as other 

multi-classifier model that tends to offer good results [15], for last, our MCS with ACO.  

Multi-classifiers Accuracy Execution time 

Bagging 89.61%    (0.89) 3.6 seconds 

Boosting (AdaBoost) 89.60%     (0.89) 3.5 seconds 

Stacking 88.02%      (0.88) 5 seconds 

Random Forest 89.91%      (0.89) 3.3 seconds 

MCS with ACO   92%          (0.92) 8 seconds  

Table 11.  Comparison obtained between multi-classifier models and MCS with ACO. 

We can see that the best result is obtained with MCS with ACO, where also is guaranteed diversity between 

classifiers in the system, and the different in the execution times is not considerable, it remembers that they 

working in different ways. 

5. CONCLUSIONS 

In this paper, we shown how to build multi-classifier systems using ACO. In particular, three popular variants 

of the ACO metaheuristic algorithm have been tailored to this end. We describe the representation of the 

search space using a binary vector, the objective function and the three heuristic functions: diversity, accuracy 

and a hybrid one. The experimental evidence over 10 UCI MLR data sets, supported by a proper statistical 

validation, confirming that the principal discovered is that the best results are obtained using the z and the 

diversity heuristic, which guarantees the existence of diverse classifiers sets in the solutions what achieve 

high classification rates.  

A real-world application was also reported that investigates the performance of ACO-based MCSs to predict 

high blood pressure in children. In this scenario, the best individual classifier’s accuracy is exceeded in 4%. In 

addition, is shown a comparison between the built multi-classifier with ACO and others multi-classifier 

models mentioned in the introduction of the document, where the built multi-classifier with ACO obtains the 

best result. 
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