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ABSTRACT
The main question in this paper is to show that, for appropriated fixed values of the rate for the
low activity state in the system modeling a type of glycolysis, a single limit cycle emerges after a
supercritical Hopf Bifurcation as the bifurcation parameter increases, while continuously increasing
the bifurcation parameter, this limit cycle collapses after a subcritical Hopf bifurcation. The mo-
tivation is in the study of Hopf bifurcations about the spatially homogeneous equilibrium in the
reaction-diffusion system modeling glycolysis. To do so, we use Lyapunovs method.
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RESUMEN
La cuestión principal en este art́ıculo es mostrar que, para valores apropiados de la tasa para el estado
de baja actividad en el sistema que modela un tipo de glicólisis, emerge un ciclo ĺımite a partir de
una bifurcación de Hopf supercŕıtica cuando el parámetro de bifurcación se incrementa, mientras que
al continuar incrementando el parámetro de bifurcación, este ciclo ĺımite colapsa producto de una
bifurcación de Hopf subcŕıtica. La motivación está en el estudio de bifurcaciones de Hopf en torno
al equilibrio espacialmente homogéneo en el sistema de reacción-difusión que modela el proceso de
glicólisis. Para esto utilizamos el método de Lyapunov.

PALABRAS CLAVE: bifurcación de Hopf no degenerada, formación de patrones, desarrollo

asintótico, modelo de glicólisis, reacción-difusión.

1. INTRODUCTION

An important example of two-species biological model describing oscillatory behavior is the glycolysis
system. Glycolysis (or glucolysis) is the metabolic pathway entrusted to rust the glucose with the
purpose to obtain energy for the cell. Its significance lies in that it can supply the energy with a rapid
speed, but more importantly under oxygen-free conditions such as strenuous exercise and high-altitude
hypoxia (see [14, 3, 4, 11, 13, 6, 2, 10] and [1]).
We shall represent the situation assuming that the chemicals concentrations u and v correspond to
the glycolysis model for two species in reaction and diffusion in the plane (see [14])

∂tu = Du∆xu+ δ − κu− uv2, x ∈ Ω, t > 0, (1.1a)

∂tv = Dv∆xv + κu+ uv2 − v, x ∈ Ω, t > 0, (1.1b)

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0, (1.1c)

with initial conditions

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω. (1.2)
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Here, the reactions occur in a bounded domain Ω ⊂ R2 with smooth boundary ∂Ω, where the functions
u(x, t) and v(x, t) stand for the concentrations of two reactants in position x and time t. The positive
constants Du and Dv are the diffusion coefficients, meanwhile δ > 0 is the dimensionless input flux
and κ > 0 is the dimensionless constant rate for the low activity state. Moreover, ∆x is the Laplace
operator with respect to the spatial variable x = (x1, x2). A no-flux boundary condition is assumed
so that the chemical reactions occur in a closed reactor.
The chemical reaction represented in system (1.1) is autocatalytic of order 2 by the exponent of v in
term uv2 in the reaction part of both equations (1.1a) and (1.1b) (see [14], where the authors also
consider an increasing smooth positive function f(v) in a place of v2).

We can obtain a proof of the existence and uniqueness of a solution u(x, t), v(x, t) to the evolution
system (1.1) for t ∈ (0,∞), x ∈ Ω̄, if we apply a result in [7]. In this paper, we focus our attention
on the question of existence and stability of steady-state solutions and periodic orbits emergent from
a Hopf bifurcation in the steady-state.

For bounded spatial domains and natural boundary conditions it is known from [5] and [9] that
the non-constant spatially homogeneous periodic solution to Eqs.(1.1) is orbitally stable if (Du, Dv)
belongs to a certain open neighborhood of the bisectrix of the first quadrant in the Cartesian product of
diffusion coefficients while the non-zero Flocquet’s exponent of the linearized system is negative. But
the periodic solution would be unstable for any pair of diffusion coefficients if the non-zero Flocquet’s
exponent is negative.

The scalar parameters δ and κ in the reaction part of the system (1.1) will govern the Hopf bifurcation.
If we consider the steady-state equation associated with (1.1),

Du∆xu+ δ − κu− uv2 = 0, x ∈ Ω, (1.3a)

Dv∆xv + κu+ uv2 − v = 0, x ∈ Ω, (1.3b)

∂νu = ∂νv = 0, x ∈ ∂Ω, (1.3c)

we can get the unique positive spatially homogeneous steady-state solution of system (1.1),

(u, v) =

(
δ

α
, δ

)
, (1.4)

where α := δ2 + κ. For convenience, in our bifurcation analysis we will occasionally use the unique
parameter α as a bifurcation parameter.

We do not impose any restriction either to the shape of the bidimensional domain Ω, but it is well
known that practical limitations would arise if one looks for eigenvalues and eigenvectors to the
Laplacian operator in general domains. However we can denote by 0 = µ0 < µ1 ≤ µ2 ≤ · · · ≤ µn ≤ · · · ,
the eigenvalues of the operator −∆x with homogeneous Neumann boundary conditions in Ω. In this
paper we will analyze the presence of Hopf bifurcations in the spatially homogeneous equilibrium for
reaction-diffusion system (1.1) with Neumann boundary conditions just considering the solutions u, v
to the eigenvalue problem asociated to µ0 = 0. This last condition signifies that ∆xu = µ0u = 0 and
∆xv = µ0v = 0 in system (1.1), then we obtain from (1.1a) and (1.1b),

∂tu = δ − κu− uv2, (1.5a)

∂tv = κu+ uv2 − v. (1.5b)

One of the main results in [14] about the glycolysis system (1.1) is that the constant steady-state
solution (δ/α, δ) is globally asymptotically stable when κ > 4δ2 and κ ≥ (maxx∈Ω̄ v0(x))2 (see [14,
Theorem 2.4]). In this case, we obtain more accurate condition that guarantee the global asymptotic
stability of the steady-state solution, so we expect a supercritical bifurcation when the condition fails.
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In this paper we use the bifurcation theory from the book [8] to analyse the Hopf bifurcation of
the planar system 1.5 and the appearance of a limit cycle after or before the critical value of the
bifurcation parameter. We also suggest as a next work in this direction with the same system using
the classification of the of the bifurcation on the basis of the number of emerging limit cycles at
bifurcation (see [12]).

The plan of the paper is as follows. In Section 2. we give the outline of the results. In Section 3.
elementary results about the stability analysis of the spatially homogeneous equilibrium and Hopf
bifurcation curves in the parameter space are found. Section 4. is devoted to the analysis of Hopf
bifurcations and the appearance of limit cycles.

2. OUTLINE OF RESULTS

Our main results for the glycolysis system (1.1) are:

1. We found two bifurcation curves that determine the regions for the stability of the unique
spatially homogeneous steady-state solution.

2. One bifurcation curve corresponds to a supercritical Hopf bifurcation for all admissible κ while
the other curve corresponds to a subcritical Hopf Bifurcation. In the region between the two
curves a unique limit cycle appears surrounding the equilibria.

We summarize the above results in the following theorem:

Theorem 2.1 Let δ > 0 and 0 < κ ≤ 1/8, then for the unique equilibrium (δ/α, δ) of the ODE
system (1.5), there exists two Hopf bifurcation curves in the parameter space (δ, κ). Moreover both
Hopf bifurcations are generics and the system (1.5) has a globally asymptotically stable periodic orbit
if ∣∣∣∣δ2 + κ− 1

2

∣∣∣∣ < √1− 8κ and 0 < κ < 1/8.

In the following we first verify the fulfillment of the transversality condition for the existence of a
generic Hopf bifurcation in the steady state using a standard procedure and we obtain regions of
stability and instability limited by bifurcation curves. Then we use the method described in [8, Ch.
3] to compute the first Lyapunov coefficient and we finally apply the topological normal form theorem
for the Hopf bifurcation in order to prove the theorem 2.1.

3. HOPF BIFURCATION IN GLYCOLYSIS SYSTEM

Here we consider the ODE system corresponding to (1.1),

∂tu = f(u, v), (3.1a)

∂tv = g(u, v). (3.1b)

with
f(u, v) = δ − κu− uv2 and g(u, v) = κu+ uv2 − v. (3.2)

By (1.4) the unique stationary state for the system (1.5) is given by

E0 = (u(0), v(0)) = (δ/α, δ), where α := δ2 + κ > 0,
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depending on the parameters δ and κ. In the following, we use α as the main bifurcation parameter.
Note that the parameter α is equivalent to κ in the sense of that κ > 0 correspond to α > δ2. The
Jacobian matrix of the reaction part (f(u, v), g(u, v)) evaluated at E0 is

∂(f, g)

∂(u, v)
(u(0), v(0)) =


−(δ2 + κ) − 2δ2

δ2 + κ

δ2 + κ
δ2 − κ
δ2 + κ

 ,

wish we can write as

L0(α, κ) =


−α 2(κ− α)

α

α
α− 2κ

α

 . (3.3)

The Hopf bifurcation condition implies that the trace of L0(α, κ) vanishes and the determinant is
positive for some pair (α, κ). So, we first compute

σ(α, κ) := trL0(α, κ) = −α+
α− 2κ

α
. (3.4)

Now, we determine the neutral curve σ(α, κ) = 0 in the corresponding parameter space by

α2 − α+ 2κ = 0, (3.5)

reducing to a one-parameter dependence. Taking α as the bifurcation parameter for each fixed value
of κ, the solutions to the equation (3.5) are

α±0 = α±0 (κ) =
1

2
(1±

√
1− 8κ) > 0, (3.6)

provided 0 < κ ≤ 1/8.
Now, computing the determinant of the matrix L0(α±0 ) in 3.3, we obtain

ω2(α±0 ) = detL0(α±0 , κ) = α±0 =
1

2
(1±

√
1− 8κ) > 0. (3.7)

Then, for α close enough to α±0 , the eigenvalues of L0(α) = L0(α, κ) are complex and have the

representation λ1(α) = λ(α) = λ2(α), where λ(α) := 1
2σ(α) + iω(α), σ(α±0 ) = 0 and ω(α±0 ) > 0.

Excluding the case κ = 1/8, we have two different critical values, α = α+
0 and α = α−0 (see figure 1).

So, in the strip (0, 1/8)×R+ we have three different regions determined by the parabola σ(α, κ) = 0.

Therefore, for each κ ∈ (0, 1/8) we have exactly two positive values α±0 > 0 of α at which the unique
steady state may shows a Hopf bifurcation. The corresponding Jacobian matrix at the equilibria

E±0 = E0(α±0 ;κ) (3.8)

has the eigenvalues λ1,2(α+
0 ) = ±iω(α+

0 ) and λ1,2(α−0 ) = ±iω(α−0 ) respectively.

Let us analyse the stability of the equilibrium E0(α;κ) for (α, κ) ∈ R+ × (0, 1/8]. For a fixed κ in
the open interval (0, 1/8) and from (3.4) we can check that σ(α) < 0 for α ∈ (0, α−0 )

⋃
(α+

0 ,+∞)
and σ(α) > 0 for α ∈ (α−0 , α

+
0 ). That is to say, the equilibrium E0 is locally asymptotically stable

if 0 < α < α−0 , it is done unstable when α−0 < α < α+
0 , and finally it goes back to be locally

asymptotically stable when α > α+
0 . In figure 1 the shaded regions are regions of stability and the
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Figure 1: Bifurcation curve in the parameter space: κ vs α+
0 (solid line); κ vs α−0 (dashed line).

white region is the region of instability of the stationary state. Therefore α = α−0 (κ) and α = α+
0 (κ)

from (3.6) are two Hopf bifurcation curves for the stationary state E0 of system (1.5) with κ ∈ (0, 1/8).
Notice that, at κ = 1/8 the bifurcation will not take place.

In figure 2(a) we can see the zero-isoclines of system (1.5) for κ = 1/10 and the corresponding values
of α0 according to the equality (3.6), i.e. α±0 = (5±

√
5)/10. In the same way, we consider the values

κ = 1/8, α0 = 1/2 for figure 2(b).

3.1. PDE model

Now we consider the spatially homogeneous equilibrium E0 = (δ/α, δ) with respect to the reaction-
diffusion PDE model (1.1). Next, we linearize the steady state system (1.3) around the equilibrium
E0, defining the new variables φ := u− δ/α, ψ := v− δ and we consider the corresponding eigenvalue
problem

Du∆xφ− αφ+A(α)ψ = µφ, x ∈ Ω, (3.9a)

Dv∆xψ + αφ+B(α)ψ = µψ, x ∈ Ω, (3.9b)

∂νφ = ∂νψ = 0, x ∈ ∂Ω, (3.9c)

where

A(α) :=
2(κ− α)

α
, B(α) :=

α− 2κ

α
. (3.10)

We can write the system (3.9) in the form

L(α)Φ = µΦ, ∂νΦ = 0,

where

L(α) :=

Du∆x − α A(α)

α Dv∆x +B(α)

 and Φ :=

φ
ψ

 ,
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(a) κ = 0.1 (b) κ = 0.125, α−0 = α+
0 = α0

Figure 2: Zero-isoclines at the Hopf bifurcation (α = α0)

Denoting by 0 = µ0 < µ1 ≤ µ2 ≤ · · · ≤ µn ≤ · · · , the eigenvalues of the operator −∆x with
homogeneous Neumann boundary condition in Ω, we can define for each n ∈ N \ {0} the matrix

Ln(α) :=

−Duµn − α A(α)

α −Dvµn +B(α)

 .

In this moment we only consider the eigenvalue µ0 = 0 in the above matrix and we have the Jacobian
matrix (3.3). The next section is dedicated to the existence proof of the limit cycle as a product of
Hopf bifurcations for system (1.5).

4. NON DEGENERACY: PROOF OF THE THEOREM 2..1

To apply the normal form theorem (see [8]) to the Hopf bifurcation analysis in each of the critical
values α+

0 and α−0 , we must verify when the genericity conditions of the theorem (th. 3.3, [8]) are
satisfied. We start with the transversality condition (B.2), that is,

∂σ

∂α
(α±0 ) 6= 0.

In this section we always consider δ > 0 and 0 < κ < 1/8.
The derivative of (3.4) with respect to α is

∂σ

∂α
= −1 +

2κ

α2
.

from where we can verify the transversality condition for α = α−0 = 1
2 (1−

√
1− 8κ), i.e.

∂σ

∂α
(α−0 ) =

1

4
(1− 8κ+

√
1− 8κ) > 0.

To analyse the case of α = α+
0 = 1

2 (1 +
√

1− 8κ), we first consider a new parameter β by the change
α = 1−β. We substitute this change of parameter in (3.3) and (3.4) to obtain the new jacobian matrix
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L0,β(β, κ) and the new trace σβ(β, κ), wish becomes zero for β+
0 = 1− α+

0 . For the new determinant
we have

ω2
β(β+

0 ) = detL0,β(β+
0 , κ) = 1− β+

0 =
1

2
(1−

√
1 + 8κ) > 0. (4.1)

In this case the derivative of σβ := σ(1− β, κ) with respect to β is also positive for β = β+
0 , in fact

∂σβ
∂β

(β+
0 ) = −∂σ

∂α
(α+

0 ) = −1

4
(1− 8κ−

√
1− 8κ) > 0.

Then the transversality condition holds too. Hereinafter, occasionally to abbreviate we will write α0

instead of α−0 and β0 instead of β+
0 .

Now, we will verify if the non degeneracy condition (B.1) is satisfied. That is, we have to compute the
Lyapunov’s first coefficient and to check if this number is different to zero on the bifurcation curves.
To do this, we will fix the parameter α in its critical value α0. The following computations are valid
if we change α0 by 1− β0.
For α = α0 the equilibria E0 has the coordinates

u(0) =
δ0
α0
, v(0) = δ0,

where δ2
0 = δ2

0(κ) = 1
2 (1− 2κ±

√
1− 8κ) and α0 = α0(κ) = δ2

0(κ) + κ.

Translate the origin of the coordinates by the change of variables

u = u(0) + ξ1,

v = v(0) + ξ2.

This transform the ODE system

u̇ = f(u, v),

v̇ = g(u, v),

where f(u, v) and g(u, v) are the functions in (3.2), in

ξ̇1 = −α0ξ1 −
2(κ− α0)

α0
ξ2 − 2δ0ξ1ξ2 −

δ0
α0
ξ2
2 − ξ1ξ2

2 =: F1(ξ1, ξ2),

ξ̇2 = α0ξ1 +
α0 − 2κ

α0
ξ2 + 2δ0ξ1ξ2 +

δ0
α0
ξ2
2 + ξ1ξ

2
2 =: F2(ξ1, ξ2).

This system can be represented as

ξ̇ = Aξ +
1

2
B(ξ, ξ) +

1

6
C(ξ, ξ, ξ),

where A = L0(α0, κ) (see (3.3)) and the multilineal functions B and C take on the planar vectors
ξ = (ξ1, ξ2), η = (η1, η2) and ζ = (ζ1, ζ2) the values

B(ξ, η) =

[
2δ0(ξ1η2 + ξ2η1) +

2δ0
α0

ξ2η2

](
−1

1

)
and

C(ξ, η, ζ) = 6(ξ1η2ζ2 + ξ2η1ζ2 + ξ2η2ζ1)

(
−1

1

)
.
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Write the matrix A in the form

A =

 −ω2 −(ω2 + 1)

ω2 ω2

 ,

where ω2 is given by formulas (3.7) or (4.1)1. Now it is easy to check that complex vectors

q ∼
(

ω2 + 1
−ω(ω + i)

)
, p ∼

(
ω

ω − i

)
,

are proper eigenvectors, that is to say

Aq = iωq, ATp = −iωp.

To achieve the necessary normalization 〈p, q〉 = 1, where 〈·, ·〉 means the standard scalar product in
C, 〈p, q〉 = p̄1q1 + p̄2q2, we can take, for example,

q =
1

2ω

(
1 + iω
−iω

)
, p =

(
ω

ω − i

)
.

The hardest part of the job is done, and now we can simply calculate2

g20 = 〈p,B(q, q)〉 =
δ0

2ω2
(2ω + i(2ω2 − 1)), g11 = 〈p,B(q, q̄)〉 =

δ0(1− 2ω2)

2ω2
i,

g21 = 〈p,C(q, q, q̄)〉 =
3

4ω
(−3ω + i),

and compute the first Lyapunov coefficent by formula

l1(α0) =
1

2ω2
Re(ig20g11 + ωg21) =

2ω4 − 2ω2 − 1

8ω3
,

where (see (3.7))

ω = ω± =
1√
2

(
1±
√

1− 8κ
)1/2

. (4.3)

We must analyze if l1(α0) 6= 0. From (4.3) we can see that 0 < ω± < 1, then we easily verify that

l1(α−0 ) < 0, and l1,β(β+
0 ) = l1(1− β+

0 ) < 0. (4.4)

Now we consider that the parameters α, in the first case, and β = 1 − α, in the second one, vary in
increasing sense. Therefore, on the one hand, the equilibrium E0 shows a supercritical Hopf bifurcation
when the parameter α passes across α−0 for all κ ∈ (0, 1/8). In this case, a unique and stable limit
cycle appears for α > α−0 (see figure 3)).

On the other hand, when β overpass β+
0 , the equilibrium E0 shows a Hopf bifurcation for all κ ∈

(0, 1/8) and the limit cycle appears for β > β+
0 . The parameters β and α = 1 − β grow in opposed

directions, then we conclude that the limit cycle that emerges for α > α−0 , remains for α ∈ (α−0 , α
+
0 )

and disappears for α > α+
0 = 1 − β+

0 . Thus, the second Hopf bifurcation of E0 for the original
bifurcation parameter α is subcritical (see figure 3). �

RECEIVED: MAY, 2017.
REVISED: SEPTEMBER, 2017.

1It is always useful to express the Jacobian matrix using ω, since this simplifies the expressions for the eigenvectors.
2There exists another way to compute g20, g11 and g21 (which may be simpler if we use a symbolic manipulation

software). We can see it in [8, Ch. 3].
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(a) Parameter space
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(b) α = 0.26
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(c) α = 0.35
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Figure 3: Hopf bifurcation in glycolysis model with κ = 0.1. The bifurcations points are the α-axes
of the intersection of the bifurcation curves and line κ = 0.1 in graphic (a), i.e. α−0 ≈ 0.276 and
α+

0 ≈ 0.724. The graphics (b) and (d) represents stable focuses in the meantime than we can observe
an unstable focus in graphic (c), where the orbits approximate to a limit cycle.
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