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ABSTRACT
With the goal of knowing what variables might influence in the occurrence time of amputation in
medical practice we used multivariate parametric frailty models. Specifically we used two models
where the baseline hazard function follows a Weibull distribution and the frailty term has a Gamma
and inverse Gaussian distribution respectively. The data set contains observations of 69 patients with
diabetic foot ulcers from a retrospective study. We used parfm package from statistical software R
3.1.3. As result, we obtained in both models that Etiopatogenia variable has statistically significance
in the occurrence of amputation.

KEYWORDS: Survival analysis, Parametric Frailty Models, Weibull distribution, Gamma distri-

bution, inverse Gaussian distribution.

MSC: 62P10

RESUMEN
Con el objetivo de conocer que variables influencian en el tiempo la ocurrencia de amputación en la
práctica médica habitual, se utilizaron modelos frailty paramétricos multivariados. Espećıficamente
se emplearon dos modelos donde la función de riesgo inicial tiene distribución Weibull y el término
frailty tiene distribución Gamma e inversa Gaussiana respectivamente. La muestra esta constituida
por 69 pacientes con úlcera de pie diabético pertenecientes a un estudio retrospectivo. Se utilizó
el paquete parfm del software estad́ıstico R 3.1.3. Como resultado se obtuvo que la variable
Etiopatogenia tiene significación estad́ıstica en la ocurrencia de amputación.

PALABRAS CLAVE: Análisis de sobrevida, modelos Parametric Frailty, distribución de Weibull,

distribución Gamma, distribución inversa Gaussiana.

1. INTRODUCTION

Frailty models have been used frequently to model the multivariate dependence in time of an interest event
for more details we refer to [1], [5] and [6]. Usually dependency is generated because subjects from the same
group are either related or because multiple recurrent events occur in the same subject. In this case the
traditional proportional hazard model could not be applied. One possible solution to this problem is to use
the conditional proportional hazard model taking into account frailty terms. In this model the variability has
two different sources: the natural variability, included in the baseline hazard function and the other which is
given by a frailty term that represents the unobserved variability from the covariates, see [5]. In this model is
assumed that a given frailty term, the risk of each survival time follows a proportional hazard model, where
the frailty term has a multiplicative effect on the baseline hazard function and also the covariates. For that
reason we have to specify the assumed distribution for baseline hazard function and frailty term.
Recently frailty models have been more used, because they allow to consider the individual heterogeneity
from each subject or group either from a disease or interest event. Frailty is an unobserved quantity modeled
as a random variable over the population of individuals, with a high (low) value of the frailty term associated
with a large (small) risk of acquiring the disease or the occurrence of an interest event.
The aim of this work is to analyze the influence of variables in the occurrence of amputation in a sample
constituted by 69 patients with diabetic foot ulcers. In this study we analyzed the time until the occurrence of
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amputation or treatment ending after two cycles with Heberprot-P. We used parfm package from statistical
software R 3.1.3.
This paper is structured as follows: In Section 2, the frailty model is explained, including how to estimate
its parameters and the predict frailties. Finally, in Section 3, the results are presented and discussed.

2. MATERIALS AND METHODS

In this section we give some details about parametric frailty models, further information can be found in [3]
and [5].

2.1. FRAILTY MODELS

The basic model is the proportional hazards model of the form:

h0(t) exp(xTβ),

where h0 denotes the baseline hazard rate, assumed to be unique for all individuals in the population, x is the
value of the p-dimensional vector of the covariate values and β ∈ Rp is the unknown regression parameter.
This model can be applied for independent observations; if we have to model lifetimes of individuals which
are related to each other or they are result of repeated measurements the following approach is useful. The
dependence is taken into account by introducing a frailty variable U . The variable U is a random variable
with a density f which will be specified later.
Suppose there are G groups or clusters. We define the conditional hazard rate of individual j in group i,
given the covariate takes the value xij and the frailty variable the value ui by

hi(t|ui, xij) = uih0(t) exp(xTijβ) (1)

with i ∈ I = {1, . . . , G} and j ∈ Ji = {1, . . . , ni}. Notice, a shared frailty model is assumed that all
individuals in the same cluster share the same frailty value.
In survival analysis is important to know the probability of an individual to survive time t, which is given
by:

S(t) = P (T > t), T non-negative.

Also it is important to mention the relation between survival function and the cumulative hazard function,
H(t) which is given by:

S(t) = exp {−H(t)} where H0(t) =

∫ t

0

h0(z)dz.

Now, considered the conditional survival function given the covariates and the frailty term the expresion is:

S(t|U, x) = exp
{
−UH0(t) exp(xTβ)

}
,

where H0(t) =
∫ t

0
h0(z)dz is the cumulative baseline hazard. The conditional survival function S(t|x) given

the covariates may be obtained by taking the expectation respect U :

S(t|x) = EU [S(t|U, x)] = EU [exp
{
−UH0(t) exp(xTβ)

}
].

Now, introducing the Laplace transform of the frailty variable L(s) = E [exp(−sU)] we see immediately that
S(t|x) is the Laplace transform at the value H0(t) exp(xTβ), being the expression:

S(t|x) = L(H0(t) exp(xTβ)).

It is assumed that the frailty causes dependence between individuals from the same group, but given the
frailty, all individuals within the group are independent. Thus, for one group of n individuals, the conditional
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join survival distribution of failures times T1, T2, . . . , Tn given the frailty U and let X = (X1, . . . , Xn) the
covariates:

S(t1, . . . , tn|u,x) = P(T1 > t1, . . . , Tn > tn|X = x, U = u)

= P(T1 > t1|X = x, U = u) . . .P(Tn > tn|X = x, U = u)

= S(t1|u,x) . . . S(tn|u,x)

= exp

−u
n∑
j=1

H0(tj) exp(xTj β)

 .

The above joint conditional survival distribution holds for any group. Integrating the frailty out, we get the
join survival function given the covariates for this group as:

S(t1, . . . , tn|x) = P(T1 > t1, . . . , Tn > tn|X = x)

=

∫ ∞
0

P(T1 > t1, . . . , Tn > tn|x, u)f(u)du

=

∫ ∞
0

exp

−u
n∑
j=1

H0(tj) exp(xTj β)f(u)du


= L

 n∑
j=1

H0(tj) exp(xTj β)

 ,
Since the dependence in a cluster is expressed by the frailty, we have, given the frailty, independence. And
from definition (1) we obtain the conditional multivariate survival function of the subjects of group i. Let
Xi = (Xi1, . . . , Xini) be the p× ni matrix of the covariates and xi the corresponding value.

Si(t1, . . . , tni |ui,xi) = P(Ti1 > t1, . . . , Tini > tni |Xi = xi, Ui = ui)

=

ni∏
j=1

Sij(tj |ui,xi)

= exp

−ui ni∑
j=1

H0(tj) exp(xTijβ)

 .

We obtain the ”usual” survival distribution, that is the conditional survival distribution given the covariate,
by

Si(t1, . . . , tni |xi) =

∫
Si(t1, . . . , tni |u,xi)f(u) du,

in other words, by taking the expectation of the conditional survival function with respect to U . We can
write

Si(t1, . . . , tni |xi) = EUi [Si(t1, . . . , tni |Ui,xi)]

= EUi

exp

−Ui ni∑
j=1

H0(tj) exp(xTijβ)


= L

 ni∑
j=1

H0(tj) exp(xTijβ)

 .
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The joint survival function for all event-time data is the product of survival function of all the groups because
of the assumption about independence between groups.

S(t11, . . . , tGnG |x1, . . . ,xG)

= P(T11 > t11, . . . , TGnG > tGnG |Xi = xi, i = 1, . . . , G)

=

G∏
i=1

L

 ni∑
j=1

H0(tij) exp(xTijβ)

 .

For the model estimation, a parametric approach is considered and the parameters of the models are esti-
mated using parfm package which do that through the maximisation of the marginal log-likelihood. Also
using this package is estimated the predicted frailty value for each patient into the study, for more details
see [4].

2.2. BASELINE HAZARD FUNCTION

For the approach that we consider, the baseline hazard function is defined as a parametric function and the
vector of its parameters are estimated with the regression coefficients and frailty term. Different distributions
have been proposed for baseline hazard function for instance, see [5]. In this work we consider Weibull
distribution, which is denoted by:

T ∼Weibull(λ, ρ), λ > 0, ρ > 0,

the probability density function of T is:

f(t) =

{
λρtρ−1 exp(−λtρ) t ≥ 0
0 t < 0

the hazard function is:

h(t) = λρtρ−1,

and the cumulative hazard function:

H(t) = λtρ.

2.3. FRAILTY DISTRIBUTION

The frailty parameter ui is an unobservable realization of a random variable U with probability density
function f(·) the frailty distribution. Since ui multiplies the hazard function, U has to be non-negative.
Several distributions have been proposed for frailty distributions, see [1] and [5]. In this work, we use
Gamma distribution considering its properties and also the inverse Gaussian distribution as an alternative
for Gamma distribution. Sometimes inverse Gaussian distribution has convergence issues, in our case that
do not happen. We compare the results between them.
Next, is presented the frailty distributions used in this model. First, Gamma distribution appears, which is
denoted by:

U ∼ Ga

(
1

θ
,

1

θ

)
, θ > 0,

and has probability density function:

f(u) =

 θ−
1
θ u

1
θ
−1 exp(−uθ )
Γ( 1

θ )
θ > 0

0 θ ≤ 0
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where Γ(·) is the gamma function, therefore E(U) = 1 and V ar(U) = θ. Besides the corresponding Laplace
transform is given by:

L(s) = (1 + θs)−
1
θ , s ≥ 0,

The multivariate survival function for the i group correspond to:

Si(t1, . . . , tni |xi) =

1 + θ

ni∑
j=1

H0(tj) exp
(
xTijβ

)− 1
θ

(2)

There are different ways of expressing dependence in a frailty model. One of them is to use Kendall’s tau
to quantify dependence because it is independent of transformation on the time scale and the frailty model
used. Kendall’s tau measures the association between any two events times from the same cluster in the
multivariate case, this can be consulted in [2]. For the Gamma distribution is:

τ =
θ

θ + 2
∈ (0, 1) .

The other frailty distribution used in this work is inverse Gaussian distribution which is given by:

U ∼ IG (θ) ,

and the probability density function is:

f(u) =
1√
2πθ

u−
3
2 exp

(
− (u− 1)2

2θu

)
, s ≥ 0,

with mean and variance 1 and θ respectively.
For this distribution the associated Laplace transform is given by:

L(s) = exp

(
1

θ

(
1−
√

1 + 2θs
))

, s ≥ 0.

Then, the multivariate survival function for the i group is given by:

Si(t1, . . . , tni |xi) = exp

1

θ

1−

√√√√1 + 2θ

ni∑
j=1

H0(tj) exp
(
xTijβ

) (3)

for this distribution Kendall’s tau is:

τ =
1

2
− 1

θ
+ 2

exp
(

2
θ

)
θ2

∫ ∞
2
θ

exp(−u)

u
du ∈

(
0,

1

2

)
.

2.4. ESTIMATION OF THE PARAMETERS

The data in our case study are right-censored, the observation for individual j, j = 1, . . . , ni in group i ∈ I
is the triple (yij , δij , xij), where xij denotes the vector of covariates, and

yij = min(tij , cij) δij = I(tij ≤ cij).

Here cij are censoring times and I denotes the event indicator. We assume that we have non informative cen-
soring, that is given the covariates, the survival times and the censoring times are independent. Furthermore,
the frailty variable is independent from censoring.

37



Since we assume a parametric model we can derive the conditional likelihood function: The contribution of
the individuals of the group i (given the frailty ui) to the likelihood function is given by:

ni∏
j=1

(uih0(yij exp(βTxij))
δij exp(−uiH0(yij) exp(βTxij)).

Since the frailty is not observable we take the expectation with respect to Ui and obtain the marginal
likelihood

ni∏
j=1

(h0(yij exp(βTxij))
δij )EUi(U

∑
j δij

i exp(−Ui
ni∑
j=1

H0(yij) exp(βTxij)))

=

ni∏
j=1

(h0(yij exp(βTxij))
δij ) (−1)diL(di)(

ni∑
j=1

(H0(yij) exp(βTxij))).

Here di =
∑ni
j=1 δij is the number of uncensored observations in group i, and L(r) is the r-th derivative of

the Laplace transform. Summarizing, we obtain the marginal log-likelihood function as:

`(β, θ, ψ) =

G∑
i=1

[ ni∑
j=1

δij(log(h0(yij)) + βTxij)

+ log
(

(−1)diL(di)
( ni∑
j=1

H0(yij) exp(βTxij)
))]

(4)

The parameter ψ characterizes the baseline distribution.
The estimators of the parameters β, θ and ψ are the maximizers of `(β, θ, ψ). The maximization is carried
out by a numerical procedure.
Also the predict frailties for the individuals were estimated. The prediction of the unobservable frailty term
ui is defined as the conditional expectation of the random variable Ui given the data (yij , δij , xij) and the

estimates β̂, θ̂ and ψ̂, i.e.
ûi = E(Ui|β̂, θ̂, ψ̂, yij , δij , xij , j = 1, . . . , ni).

In [4] it is shown that:

E(Ui|β, θ, ψ, yij , δij , xij , j = 1, . . . , ni) =
L(di+1)

(∑ni
j=1H0(yij) exp(βTxij)

)
L(di)

(∑ni
j=1H0(yij) exp(βTxij)

) .

3. RESULTS AND DISCUSSIONS

We want to know what variables might influence the amputation risk occurrence in time. With this goal, we
used a data set which contains observation of 69 patients holding diabetic foot ulcer from one of the studies
of Clinical Trial department from the Center for Genetic Engineering and Biotechnology (CIGB). In this
study we analyzed the time until either the occurrence of amputation or end of treatment in patients who
do not have amputation. Here each patient received two cycles of treatments, it may happen that the same
patient is amputated at different times, this is a case of recurrent events. We used parfm package from the
statistical software R 3.1.3.
The data of the first three patients from the study appear in Table 1. The first column indicates the cycle
of treatment received for the patients. Second column provides the unique patient identification number
(cluster). Variable time measures time (in days) until the occurrence of amputation or end of treatment and
variable amputation indicates the ocurrence of amputation. Also there are three covariates available in the
data set: sex (1 Female, 2 Male), localization (1 Simple, 2 Complex, 3 Calcaneous) and etiopatogenia (1
Ischemic, 2 Neuropathic).
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We have the special case: ni = 2 for i = 1, . . . , G = 69. The first data in the table are all censored. In the
data there are 122 censored case and 16 amputation events.

Table 1: Data of first three patients of the study

cycle id pac time amputation sex localization etiopatogenia
1 1 71 0 1 2 1
2 1 15 0 1 2 1
1 2 180 0 1 2 1
2 2 180 0 1 2 1
1 3 29 0 1 2 2
2 3 12 0 1 1 2

Firstly, we analyze the model with Weibull hazard function and Gamma frailty.
In other words, the (unconditional) survival function given in (2) has the form

Si(t1, t2|xi)
= [1 + θλ exp(sexiβ1)(tρ1 exp(eti1β2 + loci1β3) + tρ2 exp(eti2β2 + loci2β3))]−

1
θ

with xi = (sexi, eti1, eti2, loci1, loci2).

Table 2: Model with Weibull baseline hazard distribution and Gamma frailty distribution

Estimate SE p− val
theta 0.303 0.911
rho 1.258 0.279
lambda 0.008 0.015
sex −0.175 0.583 0.764
etiopatogenia −1.334 0.710 0.060
localization −0.071 0.357 0.843

Kendall’s Tau: 0.132
Loglikelihood: −108.231

The variable with statistic signification on the hazard of amputation is etiopatogenia. The hazard of am-
putation for a neuropathic patient at any time t compared to an ischemic patients is exp(−1.334) = 0.263
provided all other things-the covariates sex and localization and the value of the frailty-are equal. As for
the frailty term θ, it is estimated to be 0.303, that reveal the presence of unobserved heterogeneity. Also
Kendall’s tau equal to 0.132 is estimated, which indicate the presence of a low association between the
amputation time in patients. Also the baseline hazard function is estimated λ = 0.008 and ρ = 1.258, which
indicate the hazard increase with time, see Table 2.
The covariates sex and localization have not statistical significant influence, but the corresponding likelihood
ratio test for the comparison of the models with one and three covariates leads to the acceptance of the
null hypothesis that the data do not contradict the smaller model. However, because from the viewpoint if
application it seems to useful to include these covariates in the model.
On the other hand, we consider a model with Weibull hazard function and inverse Gaussian frailty, which
the (unconditional) survival function given in (3) is:

Si(t1, t2|xi)

= exp

(
1

θ

[
1−

√
1 + 2θλ exp(sexiβ1) [tρ1 exp(eti1β2 + loci1β3) + tρ2 exp(eti2β2 + loci2β3)]

])
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with xi = (sexi, eti1, eti2, loci1, loci2).

Table 3: Model with Weibull baseline hazard distribution and inverse Gaussian frailty distribution

Estimate SE p− val
theta 0.359 1.307
rho 1.260 0.287
lambda 0.008 0.015
sex −0.171 0.582 0.770
etiopatogenia −1.336 0.718 0.063
localization −0.075 0.368 0.839

Kendall’s Tau: 0.121
Loglikelihood: −108.232

Here we obtained similar results as in the previous model. The variable with statistical signification on the
hazard of amputation is etiopatogenia too, see Table 3.
Prediction of frailty terms for each group (in this case are 69 patients) assumming a Gamma and inverse
Gaussian distributions respectively are presented in Figures 1 and 2.
Figure 1 shows a group of patients (42%) who have predict frailty close to 1, however in 58% of the patients
is posible to infer if the risk of amputation is either high or low. This result is useful because it allow to take
preventive actions in patients who have higher risk.

Figura 1: Gamma frailty model with Weibull baseline

Figure 2 shows similar results as Figure 1.
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Figura 2: Inverse Gaussian frailty model with Weibull baseline

We checked the convergence of the used methods for estimating the model parameter. Also we used a model
selection criterion: AIC and BIC, see Table 4. We obtained that model with Gamma frailty had less value
with both criterion, we should highlight the difference was small, beside the results obtained with both model
were similar.

Table 4: Model Selection Criterion

Models AIC BIC
Weibull +Gamma frailty 228.462 246.025

Weibull + inverse Gaussian frailty 228.465 246.028

4. CONCLUSIONS

Frailty models can be used when survival data are clustered in groups. Also allow to incoporate a term to
a model that considers unobserved heterogeneity which affects the risk estimation. We obtained in both
models that etiopatogenia variable has statistically significance in the occurrence of amputation.
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