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ABSTRACT 

In this contribution a finite difference scheme (FDS) over a temporally and spatially adaptive sparse mesh is presented.  The sparsity of 

the mesh is achieved using the Sparse Point Representation method, which is based on an interpolating subdivision scheme taking as 

indicator for the sparse representation the points with wavelet coefficients higher than a given threshold. Our approach is a method for 

solving time dependent partial differential equations in general, but in this paper, it is tested solving the shallow water equations, which 
also to the best of our knowledge constitute a new way to solve such equations. For the numerical simulation, a modified leapfrog finite 

difference scheme is used on the Sparse Point Representation based sparse mesh. The gain in compression and CPU time with respect to 

the FDS on a uniform mesh for large size meshes is reported. Regarding other adaptive mesh refinement, accuracy improvement is 
obtained. These facts demonstrate the efficiency of our proposal. 
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RESUMEN 

En este trabajo se presenta un esquema en diferencias finitas (EDF) adaptado a una malla que varía en el tiempo y en el espacio, 
reteniendo pocos puntos. El patrón de los puntos que se conservan, se obtiene mediante el llamado método de Representación Dispersa 

de Puntos (SPR por sus siglas en inglés), basado en un esquema de subdivisión interpoladora, que toma como indicador para la retención 

de los puntos, los coeficientes wavelets que exceden un umbral predefinido. Nuestra propuesta es un algoritmo que puede ser usado para 
resolver ecuaciones diferenciales parciales dependientes del tiempo en general, pero en este trabajo se aplica a la resolución del 

problema de aguas someras, lo cual según nuestro conocimiento constituye una nueva vía para resolver este modelo.  Para la simulación 

numérica se usa el esquema leapfrog sobre la malla adaptativa según el SPR. Se demuestra la ganancia en compresión y tiempo de 
ejecución con respecto a un EDF sobre una malla uniforme para grandes dimensiones. Se obtiene una mejoría en precisión con respecto 

a otros tipos de refinamiento de mallas adaptativo. Estos resultados demuestran la eficiencia de nuestra propuesta. 

 

PALABRAS CLAVES: solución adaptativa de ecuaciones diferenciales en derivadas parciales, esquema de subdivisión, transformada 

wavelet interpoladora, criterio de refinamiento. 
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1. INTRODUCTION 

Physical processes taking place in the atmosphere occur in different spatial and time scales, from long waves, fronts 

and hurricanes covering thousands of kilometers and lasting weeks, to severe local storms and turbulences covering 

some meters for few minutes. Properly handling of spatial scales and time evolution is crucial for the right numerical 

simulation of PDEs models representing physical processes in the atmosphere, ocean and magnetosphere. The PDEs 

systems modeling the atmosphere, also known as numerical weather models are classified in two categories: global 

or general circulation models (GCMs) and regional models (RCMs) [5, 30, 34]. RCMs allows us to make forecasts that 

are more precise in both time and space, for critical human activities. GCMs combined with nested RCMs, have the 

potential to provide geographically and physically consistent estimates of regional climate change. 
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Due to limited computational resources, we are not able to model and resolve all phenomena. In the Institute of 

Meteorology in Cuba, one uses RCMs for weather forecasts assuming uniform dense static meshes to resolve the 

model equations. This means that, in operational regime, the meshes are uniformly refined (resolution is increased) 

across the domain but the resolution do not change with time. Nevertheless, a good representation of small-scale 

processes, require very fine meshes, which increases the computational cost significantly. On the other hand, there 

are often large portions of the RCMs domains where high levels of refinement are not needed. The use of a fine 

mesh in such regions represents a waste of computational effort. It is evident that high resolution hast to be achieved 

where it is most required, which is the goal of adaptive mesh refinement.  

In this paper, we present a numerical algorithm to solve weather forecasting models with adaptive meshes. The goal 

is modelling meteorological events taking place in small fractions of the RCMs domains with reduced computational 

cost. In order to solve numerically the model equations in the RCMs, we propose a modified leapfrog finite 

difference scheme constructed over a temporally and spatially varying mesh.  

In order to simulate small-scale processes with less computational efforts, several approaches called in the literature 

adaptive strategies (AS) [28], have been developed. Among them we can mention the mesh refinement methods using 

nested [33, 35] and stretched grids [15], the adaptive mesh refinement (AMR) methods [2, 4, 7, 20, 25] and the 

multiresolution methods [11, 16-19, 26]. We will pay special attention to methods in the last two categories, which offer a 

dynamic refinement of the grids. 

The AMR scheme allows an improved mesh resolution in regions where and when it is required. Starting from a 

uniform mesh, one check the local numerical solution errors and modify (refine) the mesh in those regions where 

this error exceeds a certain threshold. This leads to meshes with high resolution making it possible to obtain a more 

accurate solution of the PDEs systems. A seminal work in this subject is the adaptive finite difference method 

proposed by Berger and Oliger in [4], for hyperbolic problems on rectangular subgrids with arbitrary direction. In the 

context of numerical weather modelling the AMR method was originally introduced by Skamarock et. al. in [29]. A 

complete review of this technique and its applications to atmospheric modeling can be found in [20, 25]. This approach 

has been also used in chemical transport modeling, for revealing the new features of plume concentration profiles 
[32], in the solution of a shallow water model [23] and in the OMEGA model with a further verification for multiscale 

simulation of hurricanes [1]. It has been tested for spherical geometries using 2D-AMR based on block-structured 

grids [20, 21]. 

Multiresolution methods (MR) appear with the unification of wavelet theory [6]. The wavelet framework became 

attractive for the adaptive solution of PDEs owing to the localization properties of wavelet functions and the ability 

of multiresolution representation. The MR appear combined in two types of approaches. In the first one, the wavelet 

functions are used to locate and refine areas of interest in the discretization process of the domain, while the PDEs 

system is solved by a standard discretization method (finite differences or finite element method among others). By 

means of a thresholding process, the wavelet coefficients are used as a local regularity measure in the 

multiresolution representation of the grid data. In other words, in the context of MR, the adaptive mesh refinement is 

achieved retaining only the significant wavelet coefficients in the representation of the grid data. In this direction, 

the sparse point representation method (SPR) developed by Holmström [17-19], is a method widely used in the 

adaptive solution of hyperbolic equations [12].  In a second approach, the MR are used taking the wavelet functions 

as basis (trial functions for the Galerkin method [11]) to represent the solution of the PDEs system. This approach has 

been recently applied to atmospheric and ocean modeling [14, 22].  

In this contribution, we make a proposal to improve the methods used to solve numerically the weather forecasting 

models in the Meteorological Institute in Cuba. Our idea is to consider finite difference schemes over dynamical 

adaptive sparse meshes, reducing in this way the computing time spent by modeling meteorological events taking 

place only in small regions of the domain. The sparsity of the meshes is achieved using the SPR method, which is 

based on an interpolating subdivision scheme [18-19] and a refinement criterion given by a process of thresholding 

wavelet coefficients. To prove the consistence of the proposal we consider a study case for the shallow water 

equations. This model is frequently used in the literature to evaluate the performance of new algorithms, see for 

instance [14, 23-24]. To the best of our knowledge our approach also constitutes a new way to solve such equations.  

The paper is organized as follows. Section 2 contains a brief review of the SPR method. We also describe the 

shallow water model and its finite difference discretization on a uniform and SPR refined mesh.   In Section 3 we 

present some experiments and discuss the performance of our proposal comparing with results of the literature. 

Some conclusion and remarks are finally given. 
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2. SPARSE POINT REPRESENTATION BASED FINITE DIFFERENCE FOR 2D SHALLOW WATER 

EQUATIONS 

In Section 2.1 we describe the SPR method, the underlying interpolating subdivision scheme and its connection with 

wavelet. In Section 2.2 we present the shallow water equations and its discretization by the leapfrog difference 

scheme. Some comments about the scheme stability are also given. Section 2.3 is devoted to explain how the 

leapfrog scheme is adapting on the SPR refined mesh. 

2.1. Sparse Point Representation mesh refinement and connection with wavelet 

The SPR method was introduced by Holmström in [17-19]. Using the SPR approach, nonuniform meshes are built in a 

little bit different way, regarding classical refinement methods. It essentially removes points from the fine grid, in 

regions where the solution is smooth, and keep points in regions with large variation of the solution. The points are 

removed taking as indicator of the smoothness the corresponding wavelet coefficients in the Discrete Wavelet 

Transform. In fact, we keep the data over the fine uniform grid, but the subsequent computation only includes the 

remaining points.  

Additionally, the SPR provide us with a method to reconstruct any point-value on the original fine grid.  The basic 

idea of the method is based on the interpolating subdivision scheme developed in [9, 13].  Given a data sequence 𝑠𝑛, 

defined in dyadic points, the interpolating subdivision scheme computes the points in the halfway in-between each 

of the points of 𝑠𝑛 leading the sequence 𝑠𝑛+1.  The algorithm is as follows: 

Interpolating Subdivision Algorithm 

Let be𝑓𝜖𝐿2(𝐼), 𝐼 ⊂ ℝ and let us take a dyadic subdivision of 𝐼 with points 𝑥𝑛
𝑙 =

𝑛

2𝑙 , 𝑛 ∈ ℤ. We can represent 𝑓 by 

the sequence {𝑠𝑛
𝑙 = 𝑓(𝑥𝑛

𝑙 )}, with fixed refinement level  𝑙 ∈ 𝐽 = {0,1,2, … }. If we want to transform 𝑠𝑛
𝑙  into a 

sequence 𝑠𝑛
𝑙−1 with coarser refinement level 𝑙 − 1; saving the corresponding difference between both sequences, we 

can use the Discrete Wavelet Transform [28]. One step of the DWT look as follows, 

∑ 𝑠𝑛
𝑙 𝜙𝑛

𝑙 (𝑥)2𝑙−1
𝑛=0 = ∑ 𝑠𝑛

𝑙−1𝜙𝑛
𝑙−12𝑙−1−1

𝑛=0 + ∑ 𝑑𝑛
𝑙−1𝜓𝑛

𝑙−1(𝑥)2𝑙−1−1
𝑛=0 , 

where 𝑑𝑛
𝑙−1 are called detail coefficients and they contain the difference between the sequences 𝑠𝑛

𝑙−1 and 𝑠𝑛
𝑙 ,  𝜙𝑛

𝑙 (𝑥) 

are integer translations and dyadic dilatations of a scale function 𝜙(𝑥) ∈ 𝐿2(ℝ), and 𝜓𝑛
𝑙−1 are integer translations 

and dyadic dilatations of a function 𝜓(𝑥) ∈ 𝐿2(ℝ) called mother wavelet. In this contribution, the DWT is built 

following a lifting approach [13], through three steps: split, predict and update. The split stage consists in the 

separation of the sample regarding the subindexes in even  𝑠2𝑛
𝑙  and odd 𝑠2𝑛+1

𝑙  subsamples. In the prediction stage, a 

new approximation of the subsample corresponding to odd subindexes �̂�2𝑛+1
𝑙   is predicted, applying the interpolating 

subdivision scheme to even samples, as follows. Given a sequence 𝑠𝑛
𝑙 , for each group of 𝑁 = 2𝐷 coefficients  

{𝑠𝑛−𝐷+1,   …  ,
𝑙  𝑠𝑛,   …  ,

𝑙  𝑠𝑛+𝐷 
𝑙 }: 

1. Build the polynomial p of degree 𝑁 − 1 such that 

𝑝(𝑥𝑛+𝑡
𝑙 ) = 𝑠𝑛+𝑡

𝑙   for  −𝐷 + 1 ≤ 𝑡 ≤ 𝐷 

2. Compute the coefficients of the next level as values of 𝑝(𝑥2𝑛+1
𝑙+1 ) where 

𝑠2𝑛+1
𝑙+1 =  𝑝(𝑥2𝑛+1

𝑙+1 ). 

The process to build interpolating subdivision scheme of order 𝑁 = 4, are illustrated in Figure 1. For the case of a 

linear interpolation (𝑁 = 2), the coefficients of the sequence 𝑠𝑛
𝑙+1 are computed according to the formulas: 

𝑠2𝑛
𝑙+1 =  𝑠𝑛

𝑙 , 

𝑠2𝑛+1
𝑙+1 =  

1

2
(𝑠𝑛

𝑙 + 𝑠𝑛+1
𝑙 ). 

Notice that the use of polynomials to interpolate the coefficients allows a straightforward adaptation of this scheme 

to the interval. If for the construction of the polynomial, a point is missing, for instance near the interval’s 

boundaries, then the closest 𝑝 points are selected.  In Figure 2, we presented three steps of the algorithm for the 

interpolation scheme of order 𝑁 = 4. The initial data sequence with the coarsest resolution is denoted by 𝑠𝑛
0, while 

the finest data sequence computed after applying the interpolating subdivision process, is denoted by  𝑠𝑛
3. A uniform 

dyadic mesh 𝑉𝑙 is associated to each refinement level 𝑙. Starting with the coarsest mesh 𝑉0 with resolution (spatial 

step), ∆𝑥
0 , the hierarchy  of meshes is generated by 𝑉0 = {𝑝 = (𝑛∆𝑥

0), 0 ≤ 𝑛 ≤ 𝐿𝑥
𝑙 }, where 𝐿𝑥

𝑙  is the length of the 

interval. The Figure 3 shows the associated grids for the one-dimensional case (a) and an example of a two-

dimensional case (b). 
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Figure 1. Interpolating subdivision scheme of order N=4. 

 

Finally, in the update stage, the values of the detail coefficients 𝑑𝑛
𝑙−1 are computed as 𝑑𝑛

𝑙−1 = 𝑠2𝑛+1
𝑙 − �̂�2𝑛+1

𝑙 .  

The successive application of the discrete wavelet transform over 𝑠𝑛
𝑙  offers a multiscale decomposition into a coarse 

approximation 𝑠0 and the wavelet coefficients 𝑑𝑛
𝑙  [6].  The wavelet coefficients contain the information related with 

fluctuations between two consecutive decomposition levels and allow to identify the significance of a point in the 

sequence, which is the key of the SPR method. The sparse representation considers only the points with wavelet 

coefficients higher than a given threshold, 𝑑𝑙 >  𝜎. Hence, an adaptive mesh is obtained having more points in the 

areas where the wavelets coefficients exceed 𝜎. 

 

 
 

 

Figure 2. Three steps of the interpolating subdivision scheme of order 𝑁 = 4. 
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(a) 

 

 

 
(b) 

Figure 3. Mesh by the interpolating subdivision scheme: (a) one dimensional and (b) two dimensional. 

 

2.2 2D Shallow Water Equations and Finite Difference Discretization 

We considered the shallow water model, defined as follows:  
𝜕𝑢

𝜕𝑡
=  (𝜉 + 𝑓)𝑣 −  

𝜕𝐵

𝜕𝑥
+

𝜏𝑥

𝜌0ℎ
 + 𝐴∆𝑢 − 𝑟𝑢,             (1) 

𝜕𝑣

𝜕𝑡
= −(𝜉 + 𝑓)𝑢 − 

𝜕𝐵

𝜕𝑦
 + 𝐴∆𝑣 − 𝑟𝑣,                      (2)  

𝜕ℎ

𝜕𝑡
= − 

𝜕

𝜕𝑥
(ℎ𝑢) −  

𝜕

𝜕𝑦
(ℎ𝑣),                                       (3) 

where the state and grid variables are the horizontal velocities 𝑢  and  𝑣  and ℎ 𝑖𝑠 the surface elevation. The 

parameter 𝐵 is the Bernoulli function, given by 𝐵 =
1

2
(𝑢2 + 𝑣2), 𝜉 =

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
 is the relative vorticity and 𝑓 is the 

Coriolis parameter.  The terms 𝐴, 𝑟 and 𝜏𝑥 are the Laplacian diffusivity coefficient, the bottom friction and the wind 

stress in 𝑥-direction, respectively. The initial conditions for the model are: surface elevation constant and null 

velocity, with 𝐴=300, 𝑟 = 0.9e-7 and  𝜏0 = 0.05.  

It is worth pointing out that the shallow water equations are used to describe many physical problems such as 

tsunami occurrence in oceanic models, studies of cyclonic vortices, atmospheric vortices interaction, among others. 

The shallow water equations we have used here, were obtained by integration of the Navier-Stokes equations over 

the depth of the fluid body, by assuming hydrostatic pressure distribution and using the vorticity equation. Several 

numerical techniques have been successfully used with these models; see for instance [3, 23]. 

In [7] the model given by Equations (1) - (3) was solved using Finite Difference Schemes on a mesh discretized by 

adaptive mesh refinement. We propose to solve those equations using Finite Difference Schemes, on a mesh 

dynamically discretized using the Sparse Point Representation method. Both results are compared to illustrate the 

consistence of our proposal.  

The Finite Difference Method is a well-known and traditional method for the solution of Differential Equations [31]. 

which has been successfully applied in a wide field of researches. The aim is to approximate continuous functions 

𝑢(𝑥, 𝑦, 𝑡) by so-called grid functions 𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘),  denoting  𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘) = 𝑢𝑖𝑗
𝑘 . Let be ∆𝑥 > 0, ∆𝑦 > 0,  the fixed 

grid spacing to discretize the spatial domain and ∆𝑡 > 0, a fixed step to discretize the time domain. Set 𝑥𝑖 = 𝑖∆𝑥,
𝑦𝑗 = 𝑗∆𝑦 and 𝑡𝑘 = 𝑘∆𝑡;  with 𝑖, 𝑗, 𝑘 integers. The points (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑘) define a regular tridimensional mesh. 

Considering the Taylor expansion, derivatives are approximated by difference quotients using the discrete values 𝑢𝑖𝑗
𝑘  

and so-called difference schemes of different orders are obtained. We use as finite difference scheme the well-

known leapfrog formulas [31]. The standard leapfrog scheme for a parabolic equation is conditionally stable. The 

discretized shallow water equations look as, 

𝑢𝑖,𝑗
𝑘+1−𝑢𝑖,𝑗

𝑘−1

2∆𝑡
=  (𝜉𝑖,𝑗

𝑘 + 𝑓𝑖,𝑗
𝑘)𝑣𝑖,𝑗

𝑘 − 
𝐵𝑖+1,𝑗

𝑘 −𝐵𝑖−1,𝑗
𝑘

2∆𝑥
+

𝜏𝑥

𝜌0ℎ𝑖,𝑗
𝑘  + 𝐴

𝑢𝑖+1,𝑗
𝑘 −2𝑢𝑖,𝑗

𝑘 +𝑢𝑖−1,𝑗
𝑘

∆𝑥2 + 𝐴
𝑢𝑖,𝑗+1

𝑘 −2𝑢𝑖,𝑗
𝑘 +𝑢𝑖,𝑗−1

𝑘

∆𝑥2 − 𝑟𝑢𝑖,𝑗
𝑘 , 

𝑣𝑖,𝑗
𝑘+1−𝑣𝑖,𝑗

𝑘−1

2∆𝑡
= −(𝜉𝑖,𝑗

𝑘 + 𝑓𝑖,𝑗
𝑘)𝑢𝑖,𝑗

𝑘 −  
𝐵𝑖,𝑗+1

𝑘 −𝐵𝑖,𝑗−1
𝑘

2∆𝑦
 + 𝐴

𝑣𝑖+1,𝑗
𝑘 −2𝑣𝑖,𝑗

𝑘 +𝑣𝑖−1,𝑗
𝑘

∆𝑥2 + 𝐴
𝑣𝑖,𝑗+1

𝑘 −2𝑣𝑖,𝑗
𝑘 +𝑣𝑖,𝑗−1

𝑘

∆𝑥2 − 𝑟𝑣𝑖,𝑗
𝑘 , 

ℎ𝑖,𝑗
𝑘+1−ℎ𝑖,𝑗

𝑘−1

2∆𝑡
= − 

ℎ𝑖+1,𝑗
𝑘 𝑢𝑖+1,𝑗

𝑘 −ℎ𝑖−1,𝑗
𝑘 𝑢𝑖−1,𝑗

𝑘

2∆𝑥
−  

ℎ𝑖,𝑗+1
𝑘 𝑣𝑖,𝑗+1

𝑘 −ℎ𝑖,𝑗−1
𝑘 𝑣𝑖,𝑗−1

𝑘

2∆𝑦
.  

As one can observe the equations above can be solved in an explicit way step by step, and from each equation we 

obtain the unknown variables 𝑢, 𝑣  and ℎ respectively. Using the Taylor expansion conveniently it can be shown that 

this leapfrog difference scheme is a consistent scheme of order 𝑂(∆𝑡2) + 𝑂(∆𝑥2), for more details see [31]. 
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Taking into account that the resulting scheme is quite different to what is normally appear in the literature; we 

explain some details for the stability analysis. We deal with some complexities: we have a system, not a simple one 

equation, we have partial differential equations, and we have two dimensions. Considering that the third equation 

can be solve independently we focus our attention in the two first equations. Rewriting equations (1) and (2) in 

matrix form, without taking into account the term 
𝜏𝑥

𝜌0ℎ𝑖,𝑗
𝑘  , because it does not contain the unknown functions, 𝑢, 𝑣, we 

have 

𝒖𝒕 = 𝐵0𝒖𝒙𝒙 + 𝐵1𝒖𝒚𝒚 + 𝐴1𝒖𝒙 + 𝐴2𝒖𝒚 + 𝐶0𝒖 

                   𝐵0 = 𝐵1 = [
𝐴 0
0 𝐴

],     𝐴1 = [
−1 −1
0 0

],    𝐴2 = [
0 0

−1 −1
] ,     𝐶0 = [

−𝑟 (𝜉 + 𝑓)
−(𝜉 + 𝑓) −𝑟

]. 

The bold font 𝒖 denotes a vector of components(𝑢, 𝑣).  The subindexes denote derivatives regarding the 

corresponding variable. Using the notation 𝒖𝑖𝑗
𝑘+1=[

𝑢𝑖𝑗
𝑘+1

𝑣𝑖𝑗
𝑘+1

], the finite difference discretization with leapfrog scheme 

can be written as 

𝒖𝑖𝑗
𝑘+1 = 𝒖𝑖𝑗

𝑘−1 + 𝑀𝑥𝐵0𝛿𝑥
2𝒖𝑖𝑗

𝑘 + 𝑀𝑦𝐵1𝛿𝑦
2𝒖𝑖𝑗

𝑘 + 𝑅𝑥𝐴1𝛿𝑥𝒖𝑖𝑗
𝑘 + 𝑅𝑦𝐴2𝛿𝑦𝒖𝑖𝑗

𝑘 + 2∆𝑡𝐶0𝒖𝑖𝑗
𝑘   (4) 

where 𝑀𝑥 =
2∆𝑡

∆𝑥2, 𝑀𝑦 =
2∆𝑡

∆𝑦2, 𝑅𝑥 =
∆𝑡

∆𝑥
, 𝑅𝑦 =

∆𝑡

∆𝑦
. To investigate the stability the last term in (4) can be neglected (see 

Theorem 6.2.6 in [31]). As you can see in equation (4), we have a three level scheme; this must be reduced to a two 

level one. With a change of variables  

𝒖𝟏𝑖𝑗
𝑘+1 = 𝒖𝑖𝑗

𝑘+1,       𝒖𝟐𝑖𝑗
𝑘+1 = 𝒖𝑖𝑗

𝑘 , 

  𝒖𝟏𝑖𝑗
𝑘 = 𝒖𝑖𝑗

𝑘 ,     𝒖𝟐𝑖𝑗
𝑘 = 𝒖𝑖𝑗

𝑘−1, 

a two level scheme is obtained,  

𝒖𝟏𝑖𝑗
𝑘+1 = 𝒖𝟐𝑖𝑗

𝑘 + 𝑀𝑥𝐵0𝛿𝑥
2𝒖𝟏𝑖𝑗

𝑘 + 𝑀𝑦𝐵1𝛿𝑦
2𝒖𝟏𝑖𝑗

𝑘 + 𝑅𝑥𝐴1𝛿𝑥𝒖𝟏𝑖𝑗
𝑘 + 𝑅𝑦𝐴2𝛿𝑦𝒖𝟏𝑖𝑗

𝑘

𝒖𝟐𝑖𝑗
𝑘+1 = 𝒖𝟏𝑖𝑗

𝑘 .
 

In matrix form   𝑼𝑖𝑗
𝑘+1 = 𝑄𝑼𝑖𝑗

𝑘 ,  

with 𝑄 = [
𝑀𝑥𝐵0𝛿𝑥

2 + 𝑀𝑦𝐵1𝛿𝑦
2 + 𝑅𝑥𝐴1𝛿𝑥 + 𝑅𝑦𝐴2𝛿𝑦 𝐼2×2

𝐼2×2 𝜃2×2

]  and    𝑼𝑖𝑗
𝑘+1 = [

𝒖𝟏𝑖𝑗
𝑘+1

𝒖𝟐𝑖𝑗
𝑘+1]. 

𝐼2×2 and 𝜃2×2  refers to the identity and zero matrix of order two respectively.  

Applying the Discrete Fourier Transform we get  �̂�𝑘+1(𝜉, 𝜂) = 𝐺(𝜉, 𝜂)�̂�𝑘  where 𝐺(𝜉, 𝜂) is the so called 

amplification matrix given by 

𝐺(𝜉, 𝜂) = [
𝑀𝑥 (−4𝑠𝑖𝑛2 𝜉

2
) 𝐵0 + 𝑀𝑦 (−4𝑠𝑖𝑛2 𝜂

2
) 𝐵1 + 𝑅𝑥(2𝑖𝑠𝑖𝑛𝜉)𝐴1+𝑅𝑦(2𝑖𝑠𝑖𝑛𝜂)𝐴2 𝐼2×2

𝐼2×2 𝜃2×2

] . 

This matrix, as its name suggest, tell us how much the solution errors increase passing from level 𝑘 to 𝑘 + 1. In 

order to assure the stability, the spectral radio of 𝐺(𝜉, 𝜂) must be bounded. For normal matrixes, the spectral radio 

can easily be computed. Then, considering that 𝐵0 = 𝐵1 = 𝐴𝐼2×2 we can write the first element of 𝐺(𝜉, 𝜂), 𝐺11(𝜉, 𝜂) 

as: 

𝐺11(𝜉, 𝜂) = 𝐴𝑀𝑥 (−4𝑠𝑖𝑛2 𝜉

2
) 𝐼2×2 + 𝐴𝑀𝑦 (−4𝑠𝑖𝑛2 𝜂

2
) 𝐼2×2 + 𝑅𝑥(2𝑖𝑠𝑖𝑛𝜉)𝐴1+𝑅𝑦(2𝑖𝑠𝑖𝑛𝜂)𝐴2. 

Due to matrixes 𝐴1, 𝐴2 are simultaneously diagonalizable, can be proved (see [31]) that exists a matrix 𝑆 such that  

𝑆𝐺11𝑆−1 = (
−4𝐴𝑀𝑥𝑠𝑖𝑛2

𝜉

2
− 4𝐴𝑀𝑦𝑠𝑖𝑛2

𝜂

2
0

0 −4𝐴𝑀𝑥𝑠𝑖𝑛2
𝜉

2
− 4𝐴𝑀𝑦𝑠𝑖𝑛2

𝜂

2

) + 

+ (
0 0
0 −2𝑖𝑅𝑥(𝑠𝑖𝑛𝜉)

) + (
0 0
0 −2𝑖𝑅𝑦(𝑠𝑖𝑛𝜂)). 

Hence we can write 

𝐻 = 𝑆𝐺(𝜉, 𝜂)𝑆−1 = [
𝑆𝐺11𝑆−1 𝐼2×2

𝐼2×2 𝜃2×2
] 

and we have that 

‖𝐺𝑘‖ ≤ ‖𝑆‖‖𝑆−1‖‖𝐻𝑘‖. 
By restricting 𝑀𝑥, 𝑀𝑦 , 𝑅𝑥, 𝑅𝑦 from growing, so that the diagonal elements of 𝐻 will be less than or equal one, we 

will have stability. Note that the expressions for 𝑀𝑥, 𝑀𝑦 , 𝑅𝑥, 𝑅𝑦 are given by relations between the temporal and 

spatial steps. Hence (4) is conditionally stable. 
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2.2. Modified leapfrog scheme for the Sparse Point Representation 

The discretization of the partial derivatives over the sparse grid is based on the idea defined by Holmström in [17], 

where adaptive spatial steps are used. In this section we present the modified leapfrog scheme on a sparse grid. In 

Figure 4 a two dimensional sparse grid 𝑀𝑙 , with two refinement levels, = 0,1 , related with different spatial steps, is 

presented.  

Let be 𝑝𝑥
𝑙 ∈  𝑀𝑙 , a point corresponding to the refinement level 𝑙. We denote by 𝑛𝑝 the minimum number of times 

that the spatial step of the level of higher refinement ∆𝑥𝑙𝑚𝑎𝑥  and ∆𝑦𝑙𝑚𝑎𝑥  is included in the distance to the nearest 

point, in each direction, that is  

𝑛𝑝𝑥(𝑝𝑥
𝑙 ) =

min{|𝑥 − �̅�|, 𝛾 = (�̅�, 𝑦) ∈ 𝑀𝑙 , 𝑥 ≠ �̅�}

∆𝑥𝑙𝑚𝑎𝑥
, 

𝑛𝑝𝑦(𝑝𝑦
𝑙 ) =

min{|𝑦 − �̅�|, 𝛾 = (𝑥, �̅�) ∈ 𝑀𝑙 , 𝑦 ≠ �̅�}

∆𝑦𝑙𝑚𝑎𝑥
. 

Partial derivatives are computed using Δ𝑥 = 𝑛𝑝𝑥∆𝑥,   Δy = 𝑛𝑝𝑦Δy. 

 

 
 

Figure 4. Sparse mesh 𝑀 with two refinement levels. Square points belong to the coarsest level 𝑀0, black circles 

belong to the finest level 𝑀1 and the white circles must be obtained by interpolation. 

 

The modified leapfrog scheme of  (3), corresponding to the discretization of surface elevation ℎ, looks as: 

ℎ𝑖,𝑗
𝑘+1 = ℎ𝑖,𝑗

𝑘−1 + 2∆𝑡 (− 
ℎ𝑖+1,𝑗

𝑘 𝑢𝑖+1,𝑗
𝑘 − ℎ𝑖−1,𝑗

𝑘 𝑢𝑖−1,𝑗
𝑘

𝑛𝑝𝑖
𝑘(2∆𝑥)

−  
ℎ𝑖,𝑗+1

𝑘 𝑣𝑖,𝑗+1
𝑘 − ℎ𝑖,𝑗−1

𝑘 𝑣𝑖,𝑗−1
𝑘

𝑛𝑝𝑗
𝑘(2∆𝑦)

) .     (5) 

If the value  ℎ𝑖,𝑗
𝑘+1

 coincides with the position of  𝑝𝑖,𝑗
0  in Figure 4, then in equation (5),  𝑛𝑝𝑖

𝑘 = 𝑛𝑝𝑥(𝑝𝑥
0)= 1. 

However for  ℎ𝑖,𝑗
𝑘+1 =  𝑝𝑖+1,𝑗

0 , then 𝑛𝑝𝑖
𝑘 = 𝑛𝑝𝑥(𝑝𝑥

0)= 2.  For  𝑝
𝑖,𝑗−

1

2

1 , we have  𝑛𝑝𝑖
𝑘 = 𝑛𝑝𝑥(𝑝𝑥

0)= 1, which means that 

we need the value in  𝑝
𝑖+1,𝑗−

1

2

1   to compute the derivative. Nevertheless, this point was removed according the sparse 

representation. In this situation 𝑝
𝑖+1,𝑗−

1

2

1  is recovered by mean of the interpolating subdivision scheme.  

The pseudo-code of the proposed algorithm for one of the unknown functions and one time step is as follows:     

Pseudo-code 

1. Let 𝑢𝑛,𝑚
𝑘,𝑙

 be the sequence of values of 𝑢 over a 2D mesh with the highest refinement level 𝑙. 
2. Apply one step of a DWT, first by rows and then by columns 

3. Apply thresholding process to wavelet coefficients 𝑑𝑛,𝑚
(1)𝑙−1

, 𝑑𝑛,𝑚
(2)𝑙−1

, 𝑑𝑛,𝑚
(3)𝑙−1

 

a. if  𝑑𝑛,𝑚
(1:3)𝑙−1

>  𝜎  

retain the corresponding  mesh point  

else  

remove it 
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  end if 

4. Repeat 2 and 3 until 𝑙 = 𝑙 ̅(coarsest refinement level fixed by the user) 

5. Compute 𝑢𝑛,𝑚
𝑘+1,𝑙

 using finite differences over the sparse mesh 

 

 

3. EXPERIMENTS AND RESULTS DISCUSSION 

 

To illustrate the consistence of our approach the shallow water equations were solved by the modified leapfrog 

scheme on a SPR refined mesh. A total amount of 12 experiments was carried out as follows: the approximate 

solution of the shallow water equations was computed for three different initial mesh sizes (in term of points): 

129x129, 257x257 and 513x513. For each one, we computed the finite difference solution on a uniform and SPR 

refine mesh. Three different refinement thresholds for the wavelet coefficients were considered by applying SPR 

method. The interpolating subdivision scheme was of order 4. The physical domain size was 2580 𝐾𝑚 × 2580 𝐾𝑚 

and the simulations were conducted in a mesh with initial cells of  20𝐾𝑚 size. In other words the initial spatial step 

is  ∆𝑥 =  ∆𝑦 = 20 Km (the coarsest spatial resolution).  The initial time step is ∆𝑡 = 1800s. 

Results were compared with the numerical simulation on a uniform mesh and with a solution where the classic 

adaptive mesh refinement of Berger and Oliger [4] is used. The implementation used is the so called Adaptive Grid 

Refinement in FORTRAN (AGRIF), a deep description can be founded in [8]. Two configurations of AGRIF were 

used. The first one, with a coarse grid of 129x129 points and the second with a coarse grid of 257x257 points. The 

refinement process was setting for two and one levels of refinement respectively. The spatial and temporal ratio was 

setting as 2 and no fixed meshes were used.  

 

 

Figure 5. Results for the surface elevation ℎ, at t=50000, initial mesh size 513x513, wavelet threshold 𝜎 = 10−1 

and subdivision scheme order 4; (a) the solution in the uniform grid, (b) the solution using the SPR method, c) error.  

 

In Figure 5 approximations of the surface elevation  ℎ, for t=100000 in a uniform grid (a) and in the SPR based 

adaptive grid (b) are shown. Initial mesh size was 513x513 and wavelet threshold 𝜎 = 10−1. The comparison 

between the results is possible by recovering the missing values in the sparse representation using the interpolating 

subdivision scheme.  Notice that solutions are similar, in both cases  the surface elevation undergo a high variation 

around the area enclosed  by 0 < 𝑦 < 100; 200 < 𝑥 < 300.  In Figure 5 (c) the error of the adaptive solution 

regarding the traditional finite difference solution is shown. Remarkable is that the error order in the solution and the 

 
(a) 

 
(b) 

 
(c) 
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order of the refinement threshold coincide. This has sense since that it is expecting that the loss in accuracy must be 

in the same magnitude order that the used threshold, as was indicated in [16-17].  

In Figure 6 the SPR adaptive mesh is presented. As you can see more points are located in the regions with strong 

variations. The structure of the mesh is according the behavior of the solution and highlights the ability of the 

wavelets coefficients as regularity indicator. 

 

 
Figure 6. Adaptive mesh structure. Inside the square box, a zoom of the region limited by 0 < 𝑦 <

75; 175 < 𝑥 < 370. 
 

Fixing the refinement threshold 𝜎 = 10−1, we get the behavior of CPU time according grid size variation, as 

presented in Figure 7. For a mesh size of 129 x 129 points, the standard method is slightly faster than the SPR 

alternative. This is a consequence of the computational overhead added by calculating the adaptive solution, related 

with the comparison and interpolating operations. To get a reduction of computational effort applying the SPR 

method, is crucial to obtain an adaptive mesh with an amount of points very small regarding the original one.  For 

smaller grid size, the points removed from the mesh are not enough to balance the extra calculus to be done. On the 

other hand, CPU time is significantly decreasing using the SPR mesh refinement, when the mesh size is larger. Here 

an appropriate balance is reached, between the additional operations of the SPR and the points retained by the 

refinement criteria. This result indicates that for small grid size, our approach is not recommendable. Analogous 

results were achieved in [17].  

The threshold selection is an important aspect that needs special attention when the SPR method is used. It has a 

strong relation with the computational cost and the error behavior of the adaptive approach.  In Table 1 we present 

the error variation as well as the compression, regarding thresholds. Here compression means amount of points 

discarded by SPR algorithm and is computed by 

 

 
Figure 7. CPU time behavior (in seconds), according grid size variation 
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𝐶 =
100 ∗ 𝑁𝑝𝑑

𝑁𝑝

, 

where 𝑁𝑝 is the number of points of the uniform grid with the smallest spatial step and 𝑁𝑝𝑑 is the number of 

discarded points. It can be noted that for large threshold 𝜎 = 10−1, less number of points accomplished the 

refinement condition, which means that few points are retained. This implies less computational effort, but also less 

accuracy of the results. Indeed, the approximation error is the highest. On the contrary for lesser threshold, the 

computational cost is high but the accuracy in the results is also high. The compression decrease considerably. The 

previous analysis lead to another important conclusion, the performance of the SPR is very sensible to threshold 

selection.  

In [27] was concluded that for a successful adaptive strategy, compression must be greater than  80 % . There the 

shallow water equations are solved by an adaptive collocation wavelet method and in all cases, the least 

compression attained was always greater than 94.6 %. Otherwise, the wavelet method overweight the computational 

cost. In our case, the highest compression was achieved with 𝜎 = 10−1, and it was greater than 92.7 %, for grid 

sizes 257x257 and 513x513. On the other hand, for grid size 129x129, a very low compression was obtained, 

consequently, the standard finite difference method is better in this case. 

 

Table 1. Compression and accuracy achieved according to mesh size variation and to threshold selection.  

Grid size 

 

𝝈 Points Error Compression 

% Discarded Retained 

129x129 

 

 

10−1 11668 4973 0.1039 70.1 

10−2 8695 7946 0.0621 52.5 

10−3 8174 8467 0.0240 49.1 

257x257 

 

 

10−1 61178 4871 0.2115 92.6 

10−2 58786 7263 0.0613 89.0 

10−3 51874 14175 0.0053 78.5 

513x513 

 

 

10−1 255712 7457 0.1063 97.1 

10−2 243499 19670 0.0780 92.5 

10−3 237910 25259 0.0061 90.4 

 

 

The evaluation of the SPR method against the AMR-AGRIF variants is presented in Table 2. The maximum solution 

error and CPU time for different time steps were computed. Note that the SPR method slightly improve the accuracy 

in comparison with the two AMR configurations. In terms of execution time the AMR is better. These results are 

related with the overhead of SPR in the sense of computational complexity and large memory requirements. What 

happen to us is also referenced recently in [10], in a comparison between MR and AMR. It is important to remark that 

our final goal is to incorporate the SPR refinement to an existing numerical weather prediction system, because of 

that some restrictions must be observed. At the same time, we need by incorporating the SPR method, to do as less 

as possible code modifications. Even knowing that a block approach for SPR could improve its performance, we 

cannot use it because of the extra needed effort including in some cases, the complete implementation of the model.  

 

Table 2. Comparison between the SPR and two AMR configurations, with one and two levels of 

refinement.  

 

Adaptive method 
Time 

(𝟏𝟎𝟒) 
Maximum error 

CPU time 

(seconds) 

SPR 

2.5 0.1175 1098 

5.0 0.1056 2286 

7.5 0.1045 4532 

10 0.1063 8421 

AMR (one level) 
2.5 0.0462 1043 

5.0 0.1079 2038 
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7.5 0.1909 4136 

10 0.2731 8013 

AMR (two levels) 

2.5 0.1389 967 

5.0 0.3144 1972 

7.5 0.5473 3855 

10 0.8112 7809 

 

 

 

4. CONCLUSIONS 

In this work an adaptive method based on sparse representation by means of wavelet coefficients thresholding is 

presented. A modified leapfrog scheme using Sparse Point Representation mesh refinement was tested by solving a 

Shallow Water model. Results were compare with the standard leapfrog scheme and with the adaptive mesh 

refinement technique implemented in the AGRIF code. 

The results of our proposal are consistent with those obtained for a uniform grid. The loss of accuracy was of the 

same order as the used threshold. The better performance of our approach was achieved for larger initial grid size, 

namely 257x257 and 513x513 and wavelet threshold 𝜎 = 10−1, leading a compression > 92.7 %. We confirmed 

the importance of the threshold selection and its influence on the computational cost.  For grid size 129x129; even if 

a large threshold is selected, the achieved compression through SPR is not sufficient for outcomes the extra calculus 

needed. 

FDS combined with SPR mesh refinement allows more accurate results compared with the AMR-AGRIF approach, 

but is slightly slower.  To our knowledge there are not previous works comparing this two approaches. The 

improvement obtained by the SPR open a possibility to enhance operative weather forecasting systems. The 

computational cost reduction is remarkable without many code changes. 
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