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ABSTRACT  
Production functions have been extensively used to examine Cuban’s long-term sources of economic growth. Recent availability 
of firm-level data have made possible to extend this practice to sectorial level of aggregation yielding some questionable results. 
Unexpectedly low (and sometimes) non-significant elasticities of the capital variable has been systematically documented in 
literature. We attribute this to the existence of “methodological problems” in the production function such as simultaneity, 
measurement errors, or attriction. Using dynamics panel data models in the Cuban manufacturing industry we obtained more 
robust capital elasticities; and evidence in favor of constant return to scale hypothesis. We also document the presence of 
measurement errors in data. 
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RESUMEN 
Las funciones de producción han sido usadas extendidamente para examinar las fuentes de crecimiento económico de largo 
plazo de Cuba. La disponibilidad reciente de datos a nivel de firmas ha hecho posible extender esta práctica a nivel de 
agregación sectorial produciéndose resultados cuestionables. Elasticidades inesperadamente bajas para la variable capital y 
(algunas veces) no significativas han sido documentadas sistemáticamente en la literatura. Atribuimos este hallazgo a la 
existencia de problemas metodológicos en la función de producción tales como simultameidad, errores de medida o desgaste 
muestral. Usando modelos dinámicos de datos de panel para la industria manufacturera cubana se obtuvieron elasticidades más 
robustas para el capital así como evidencia a favor de la hipótesis de rendimientos constantes a escala. También documentamos 
la presencia de errores de medida en los datos.  
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1. INTRODUCTION 

Production functions have been used extensively in exploring long-term sources of growth in Cuba. Despite 
initial researches based mostly on aggregated time series, the recent availability of firm-level data have 
allowed extending the estimates of production function to sectoral level, for instance, agriculture, tourism and 
manufacturing. Those researches have systematically documented a common result, that is: very low and 
(sometimes) non-significant estimates for capital coefficient contrasting with greater and highly significant 
labor coefficient estimates. Through comparing a number of recent Cuban working papers at micro level, 
González (2016) showed that the capital elasticity has never been greater than 0.06; whereas labor elasticity 
ranged from 0.3 to 0.8 across researches.        
Though these findings might be reflecting – at least partially – the fundamentals, and structural features of the 
Cuban economy; we argue that they can also be the result of “methodological problems” that arise in the 
process of estimating production functions. Factors elasticities can result biased due to simultaneity, 
measurement errors in data, attrition, etc.; as it is recognized since Marschak & Andrews (1944). The pattern 
described above (in the Cuban case) is consistent with evidence collected by literature. In this paper, we shed 
some lights on the influence of simultaneity on consistent estimates of parameters of production functions. 
The methodological framework developed by Blundell & Bond (2000) is adopted in order to tackle this issue. 
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It requires the estimation of a dynamic panel data production function using the Generalized Method of 
Moment (GMM) and a Minimum Distance estimator.  
Section II explains the way in which simultaneity affects production functions. Section III states the model 
and explains the identification strategy followed to estimate structural parameters of production function. The 
data analysis and econometric implementation of our model is described in this section as well. Section IV 
concludes.       
2. LITERATURE REVIEW: PRODUCTION FUNCTIONS AND SIMULATNEITY BIAS  

Consider the following Cobb-Douglas production function without imposing constant returns to scale2: 

𝒀𝒊𝒕 = 𝑭 𝑨𝒊𝒕, 𝑳𝒊𝒕,𝑲𝒊𝒕,𝑴𝒊𝒕 = 𝑨𝒊𝒕𝑳𝒊𝒕
𝜷𝒍𝑲𝒊𝒕

𝜷𝒌𝑴𝒊𝒕
𝜷𝒎     𝒊 = 𝟏,… ,𝑵; 𝒕 = 𝟏,… ,𝑻                         (1) 

where firms are indexed by i and the time by t. 𝑌 represents physical output while 𝐿, 𝐾 and 𝑀 are labor, 
capital and intermediate material, respectively. 𝛽! with  j ∈ (l, k, m) denotes output elasticities with respect to 
inputs. 𝐴!" is a measure of each firm´s efficiency in time period t (unobserved in the data) which is assumed as 
Hicks-neutral. It represents all unobserved determinants of output, typically measured as the residuum of the 
production function (Solow, 1956).  
Taking logarithm in equation (1) yields:  

𝒚𝒊𝒕 = 𝜷𝟎 + 𝜷𝒍𝒍𝒊𝒕 + 𝜷𝒌𝒌𝒊𝒕 + 𝜷𝒎𝒎𝒊𝒕 + 𝜺𝒊𝒕                                                                           (2) 

where log values of each element coming from equation 1 have been denoted with lower case letters. 
Equation 2 is a log-linear transformation where ln 𝐴!" = 𝛽! + 𝜀!".  
The parameter 𝛽! is nothing but the mean efficiency level across firms and over time. In addition, 𝜀!" 
represents the time-and-producer-specific deviation from 𝛽! that captures: i) unobserved factors affecting firm 
output, ii) measurement error in output and inputs, and iii) random noise (Eberhardt & Helmers, 2010).  
Equation 2 can be re-written to separate unobserved factors from measurement errors and random noise:  

𝒚𝒊𝒕 = 𝜷𝟎 + 𝜷𝒍𝒍𝒊𝒕 + 𝜷𝒌𝒌𝒊𝒕 + 𝜷𝒎𝒎𝒊𝒕 + 𝝊𝒊𝒕∗ + 𝝐𝒊𝒕                                                                 (3) 

In this formulation 𝜐!"∗  denotes all unobserved time-variable factors; while 𝜖!" is usually assumed as an i.i.d. 
component representing unexpected deviations from the mean due to measurement errors, ‘unexpected 
delays’ or other external circumstances (Van Beveren , 2010). As Griliches & Mairesse (1995) pointed out 𝜐!"∗  
is “known by the producer but not by the econometrician while is exclusively an econometrician’s problem”.  
Finally, 𝜔!" = 𝛽! + 𝜐!"∗  denotes the TFP index, which is typically obtained as a residuum after consistently 
estimating the parameters of the production function:  

𝝎𝒊𝒕 = 𝜷𝟎 + 𝝊𝒊𝒕∗ = 𝒚𝒊𝒕 − 𝜷𝒍𝒍𝒊𝒕 − 𝜷𝒌𝒌𝒊𝒕 − 𝜷𝒎𝒎𝒊𝒕                                                 (4) 

The productivity levels Ω!" can be computed as the exponential of 𝜔!".  
The term 𝜐!"∗  can be thought as the sum of (at least) three components3:  

𝝊𝒊𝒕∗  = 𝜼𝒊 + 𝜸𝒕 + 𝝊𝒊𝒕                                                                                            (5) 

where 𝜂! is the firm-specific and time-invariant productivity that captures all time-invariant characteristic 
associated to firm i, such as its managerial ability, its industrial sector of operation or its historical geographic 
location (Eberhardt & Helmers, 2010). In other words, 𝜂! denotes the permanent deviation of firm i from the 
average firm productivity level.  
The technological progress (or macroeconomic shocks) evenly affecting the entire sample is represented by 
𝛾!. This term can be thought as the average technological progress (productivity increase) for the whole 
sample over time. Finally, 𝜐!" denotes “the combined effect of firm-specific deviation from its own TFP level 
in the base period and from the common or average technological progress in period t” (Eberhardt & Helmers, 
2010).  

																																																													
2 The formulation used here nearly follows Van Beveren (2010) although some changes were introduced to make exposition simpler. 
3 For instance, Blundell & Bond (2000) extended this structure introducing an autoregressive term to capture the impact of past 
productivity shocks on current input choice.  
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The term 𝜐!"∗  has attracted the attention of empirical researchers since Marschak & Andrews paper was 
published in 1944. It has been considered as a significant source of endogeneity when estimating production 
functions (see for instance: Mundlak, 1961; Griliches & Mairesse, 1995; Mairesse & Hall, 1996; Olley & 
Pakes, 1996; Levinsohn & Petrin, 2000; among others).  
The main econometric concern in estimating equation 3 arises from the fact that inputs in production function 
are not independently chosen but partially determined by unobserved time-variable characteristics of the firm 
contained in 𝜐!!∗ . Since inputs “are chosen in some optimal or behavioral fashion by the producers themselves, 
the usual exogeneity assumptions that is required for the consistency of Ordinary Least Square (OLS) are 
unlikely to hold” (Griliches & Mairesse, 1995). As the estimation of equation (3) by OLS is biased, the TFP 
estimate - which in turn depends on the elasticities of production function - becomes biased as well.  
In order to determine the direction of the bias in variable inputs – e.g. labor – consider the following profit 
function4:  
𝜋! = 𝑝(𝐴!𝐾!

!!𝐿!
!!) − 𝑤𝐿! − 𝑟𝐾!                                                                 (6) 

where 𝜋! denotes firm’s profit; 𝑝,𝑤, 𝑟 represent output price, wage and the cost of capital, respectively. It is 
assumed that: i) firms operate in perfectly competitive input and output markets, ii) are equilibrium prices, iii) 
capital is a fixed input, iv) current firm’s choices of labor only affect current (but not future) profits.  
The first order condition of equation 6 with respect to yields:  
!!!
!!!

=  𝑝𝛽!𝐴!𝐾!
!!𝐿!

!!!! = 𝑤                                                                           (7) 

And solving for 𝐿!:  

𝐿! =
 !!!!!
!

!
!!!! 𝐾!

!!
!!!!                                                                                (8) 

Taking natural-logs and replacing ln𝐴! = 𝛽! + 𝜀! yields:  

𝒍𝑛 𝐿! =
!

!!!!
(𝑙𝑛 𝑝 + 𝑙𝑛 𝛽! + 𝛽! + 𝜀! − 𝑙 𝑛𝑤 + 𝛽!𝐾!)                                                (9) 

The equation 9 shows explicitly that labor demand is positively related to productivity shocks 𝜀!. Therefore, in 
general, when estimating production functions any variable input will be assumed upward biased.  
The sign of the bias in the capital coefficient due to simultaneity is difficult to determine when there are 
several inputs in the production function (Van Beveren, 2010). However, Levinsohn & Petrin (2000) stated 
that in two-input production functions 𝛽! will be downward biased. The proof requires assuming two 
conditions: i) a positive correlation between capital and labor and, ii) a positive correlation of both inputs with 
the productivity term 𝜐!"∗ . Still, this bias can be offset or widen depending on whether there are other 
methodological issues affecting the production function, as attrition or measurement errors, or not.  
In conclusion, literature review shows unequivocally that production functions are subject to empirical 
problems that need to be corrected. Absence of correction, it is expected that variable inputs such as labor or 
intermediate materials are upward biased contrary to physical capital which is expected to be downward 
biased. These biases are consistent with result observed in Cuba when production functions have been 
estimated. In the next section we introduce a dynamic panel data model in order to obtain more robust 
estimates of coefficients.     

3. EMPIRICAL IMPLEMENTATION: THE MODEL AND THE IDENTIFICATION STRATEGY  

Following Blundell & Bond (2000), the structural model for a log-linearized Cobb-Douglas production 
function takes the form:  

  𝑦!" = 𝛽!𝑙!" + 𝛽!𝑘!" + 𝛽!𝑚!" + (𝛾! + 𝜂! + 𝜐!" + 𝜁!")                                              (10) 

𝜐!" = 𝜌𝑣!"!! + 𝑒!"                            𝜌 < 1                                                   (11) 

                                                               𝑒!" , 𝜁!" ~ 𝑀𝐴(0)             

																																																													
4 The notation used here nearly follows Soderbom (2009). Intermediate materials were omitted from the benefit function for simplicity 
since conclusions remain the same.  
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where the subscript i indexes firms and t the time. The variables 𝑦, 𝑙, 𝑘 and 𝑚 represent the log-values of the 
output, labor, capital and intermediate material, respectively. 𝛽! with j ∈ (l, k, m) denotes output elasticities 
with respect to inputs. The error term is composed by: i)  𝛾!, which captures the Hick-neutral technological 
progress, ii) 𝜂!, that represents unobserved fixed-effect, iii) 𝜐!", is an autoregressive process of order 1, iv) 𝜁!", 
are serially uncorrelated measurement errors, and v) 𝑒!", represents the unexpected productivity shock.  
The model allows inputs (l, k and m) to be potentially correlated with 𝜂!, 𝜐!" and 𝜁!" which is the core of 
‘methodological issues’. Notice that in comparison to the productivity structure viewed in section II (equation 
5), this one accounts for the effect of past productivity shocks on current inputs decision. This is a more 
credible structure since it internalizes that producers might react with delay to changes in productivity. After 
all, input decisions are subject to a hiring process that can generate rigidities in the response.  
The introduction of one-lagged productivity term (𝜐!"!! ) allows writing equation 10 as a dynamic 
autoregressive distributed lag regression model. To illustrate, equation 11 is rewritten as5:  

𝜐!" = 𝜌( 𝑦!"!! − 𝛽!𝑙!"!! − 𝛽!𝑘!!!! − 𝛽!𝑚!"!! − 𝛾!!! − 𝜂! − 𝜁!"!!) + 𝑒!"             (12) 

Rearranging and plugging into equation 10, the following reduce-form equation is obtained:  

𝑦!" = 𝛽!𝑙!" − 𝜌𝛽!𝑙!"!! + 𝛽!𝑘!" − 𝜌𝛽!𝑘!"!! + 𝛽!𝑚!" − 𝜌𝛽!𝑚!"!! + 𝜌𝑦!"!! + 𝛾! − 𝜌𝛾!!!  
                             + 1 − 𝜌 𝜂! + 𝜁!" − 𝜌𝜁!"!! + 𝑒!" 
or  

𝑦!" = 𝜋!𝑙!" + 𝜋!𝑙!"!! + 𝜋!𝑘!" + 𝜋!𝑘!"!! + 𝜋!𝑚!" + 𝜋!𝑚!"!! + 𝜋!𝑦!"!! + 𝛾!∗ + 𝜂!∗ + 𝜖!"           (13) 

where 𝛾!∗ = 𝛾! − 𝜌𝛾!!! , 𝜂!∗ = 𝜂! 1 − 𝜌  and 𝜖!" = 𝑒!" + 𝜁!" − 𝜌𝜁!"!!. The coefficients (𝜋!) on lagged 
regressors are nonlinear combinations of 𝜌 and the contemporaneous coefficients (𝛽! ,𝛽! ,𝛽!). Notice in 
addition, that the component 𝜐!" is not present anymore though 𝑒!" still is. The term 𝜖!" captures both 
measurement errors (𝜁!") and the idiosyncratic (unexpected) productivity shock (𝑒!"). If there are measurement 
errors then 𝜖!"~𝑀𝐴(0), otherwise 𝜖!"~𝑀𝐴(1).  
The identification strategy of the structural parameters 𝜃 = 𝛽! ,𝛽! ,𝛽!, 𝜌  requires: (first) to estimate 
consistently unrestricted parameters 𝜋!  in equation 13 subject to the next three testable common-factor 
restrictions 𝜋! = −𝜋!𝜋!; 𝜋! = −𝜋!𝜋!; 𝜋! = −𝜋!𝜋!; and (second) to build a minimum distance function 
from those unrestricted parameters.  
Estimation of equation 13 is done through dynamic panel data methods; see for instance Arellano (2003). To 
illustrate, differentiating equation 13 to remove unobserved fixed-effects (𝜂!∗):  
∆𝑦!" = 𝜋!∆𝑙!" + 𝜋!∆𝑙!"!! + 𝜋!∆𝑘!" + 𝜋!∆𝑘!"!! + 𝜋!∆𝑚!" + 𝜋!∆𝑚!"!! + 𝜋!∆𝑦!"!! + ∆𝛾!∗ + ∆𝜖!"       (14) 

Depending on the different assumptions made on the structure of correlation between ∆𝜖!" and 𝑥!" (with 
𝑥!" = 𝑦!"!!, 𝑙!", 𝑘!"), different moment restrictions can be defined to estimate parameters of equation 14, 
consistently. For example, assuming the following (standard) initial conditions6:  
𝐸 𝑙!!𝑒!" = 𝐸 𝑘!!𝑒!" = 𝐸 𝑚!!𝑒!" = 𝐸 𝑦!!𝑒!" = 0;        𝑡 = 2… 𝑇                            (15) 

𝐸 𝑙!!𝜉!" = 𝐸 𝑘!!𝜉!" = 𝐸 𝑚!!𝜉!" = 𝐸 𝑦!!𝜉!" = 0;        𝑡 = 2… 𝑇                  (16) 

The resulting set of moment restrictions can be defined:  

𝐸 𝑙!"!!∆𝜖!" = 0                                                                                     (17) 
𝐸 𝑘!"!!∆𝜖!" = 0                                                                                     (18) 
 𝐸 𝑚!"!!∆𝜖!" = 0                                                                                     (19) 
𝐸 𝑦!"!!∆𝜖!" = 0                                                                                     (20)   
 
If there are not measurement errors, then 𝑠 ≥ 2 which in turn implies that 𝜖!"~ 𝑀𝐴(0); otherwise 𝑠 ≥ 3. This 
means that measurement errors produce the loss of one lagged instrument per regressor.  

																																																													
5 We followed (nearly) the notation used in Blundell and Bond (2000).  
6 See, for instance, Blundell and Bond (2000). 
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The moment restrictions (17)-(20) suggest (for instance) that absence of measurement errors 𝑙!"!!, 𝑘!"!!, 
𝑚!"!! and 𝑦!"!! (and earlier values) can be used as instrument for ∆𝑙!", ∆𝑘!", ∆𝑚!" and ∆𝑦!"!!, respectively, in 
equation 14. The parameters can be estimated through the Generalized Method of Moment (GMM) which 
implies minimizing a quadratic form built from the moment restrictions previously defined, see e.g. Arellano 
& Bond (1991). This is commonly known as the first-difference GMM estimator (FD-GMM).  

It provides a flexible framework to deal with endogenous, predetermined or strictly exogenous regressors 
(Arellano, 2003). For instance, if capital was not considered as endogenous but a predetermined variable 
(which is a common setup); another lag could be employed as instrument for ∆𝑘!"; involving the same 
moment restriction represented by (18) but with 𝑠 ≥ 1.  
However, FD-GMM has shown “poor finite sample properties (bias and imprecision) when the lagged levels 
of the series are weakly correlated with subsequent first difference” (Blundell & Bond, 2000). Weak 
instrument can arise in this framework when the value of autoregressive parameter (𝜌) increases to unity; 
and/or the variance of permanent effects 𝜂!  increases relative to the variance of the transitory shocks (𝜖!"). 
Since the time series of labor, capital, intermediate materials and output are generally considered as persistent, 
the weak instrument problem is likely to emerge.  
In that case, Blundell and Bond (2000) shows that an additional set of moment restrictions must be used to 
increase efficiency of estimates. Assuming 𝐸 ∆𝑙!"𝜂!∗ = 𝐸 ∆𝑘!"𝜂!∗ = 𝐸 ∆𝑚!"𝜂!∗ = 0; and that the initial 
condition satisfies 𝐸 ∆𝑦!!𝜂!∗ = 0; the following restrictions can be added to the original set:  
𝑬 𝚫𝒍𝒊𝒕!𝒔 𝜼𝒊∗ + 𝝐𝒊𝒕 = 𝟎                                                                                 (21)  
𝑬 𝚫𝒌𝒊𝒕!𝒔 𝜼𝒊∗ + 𝝐𝒊𝒕 = 𝟎                                                                                 (22) 
𝑬 𝚫𝒌𝒊𝒕!𝒔 𝜼𝒊∗ + 𝝐𝒊𝒕 = 𝟎                                                                                 (23)   
𝐸 Δ𝑦!"!! 𝜂!∗ + 𝜖!" = 0                                                                       (24)    
where 𝑠 = 1 if 𝜖!"~ 𝑀𝐴(0), and 𝑠 = 2 if 𝜖!"~ 𝑀𝐴(1). This is commonly called as System-GMM estimator 
(Sys-GMM). Further technical details omitted here can be found in Arellano & Bover (1995), Blundell & 
Bond (1998), Blundell & Bond (2000), Arellano (2003), Roodman (2006), among others.  
Sys-GMM led to improvements in efficiency of estimates becoming widely used in empirical studies of 
production functions. In addition, Van Biesebroeck (2007) found that in presence of large measurement errors 
and technological heterogeneity, Sys-GMM produced the most robust productivity level and growth estimates 
among a number of parametric estimators. However, some drawbacks still persist; for instance, it has not been 
completely clarified if Sys-GMM is a suitable framework to solve the weak instrument problem when the 
variance of firm-effects is larger than the variance of productivity shocks (Bun & Windmeijer, 2009).  
Having estimated (consistently) the unrestricted parameters 𝜋! (a vector of dimension 𝑆 × 1), the target is to 
obtain estimates of 𝜃! (structural parameters of dimension 𝑃 × 1). Blundell & Bond (2000) suggested the use 
of a minimum distance function to link both parameter sets. It must be recalled that 𝜋 is a vector of nonlinear 
combinations of 𝜌 and the contemporaneous coefficients 𝛽! ,𝛽! ,𝛽!. Therefore, 𝜃 is related to 𝜋 through 
function ℎ ⋅  with 𝑆 > 𝑃, in particular, 𝜋 = ℎ 𝜃 .  
The idea behind minimum distance estimation is to choose those values of 𝜃! making the distance between 𝜋 
and ℎ 𝜃  as small as possible; see e.g. Wooldridge (2002). The resulting estimator is derived from: 
𝒎𝒊𝒏𝜽∈𝜣  𝝅 − 𝒉 𝜽 !𝜴 𝝅 − 𝒉 𝜽                                                                                   (25) 
where 𝛺 is an optimal 𝑆×𝑆 weighting matrix. In this case, the expression 𝜋 − ℎ 𝜃  takes the form:  

𝜋 − ℎ 𝜃 = 𝜓 𝜃

𝜋! −𝛽!
−
𝜋!
𝜋!

−𝛽!

𝜋! −𝛽!
−
𝜋!
𝜋!

−𝛽!

𝜋! −𝛽!
−
𝜋!
𝜋!

−𝛽!
𝜋! −𝜌

 

where estimates of 𝜃 are obtained following:  

𝜽 = 𝜷
𝝆

= 𝐚𝐫𝐠𝐦𝐢𝐧𝑪𝝍(𝑪)′𝑽𝒂𝒓 𝝍 𝑪 !𝟏𝝍 𝑪                                                           (26) 
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Finally, 𝑉𝑎𝑟 𝜓 𝐶  is estimated using Delta Method. Further analytical details about minimum distance 
function can be found, for example, in Wooldridge (2002) and Cameron & Trevedi (2005).  

3.1. Data and some basic statistic analysis  

Data come from the National Office of Statistics and Information of Cuba; and we will use a sample of Cuban 
state-owned enterprises to illustrate the previous discussion. These firms are required to submit information 
from their accounting books (and other sources). In particular, data employed in this research were collected 
through three specific accounting registers: Modelo 5903, Modelo 5901 and Modelo 5073. Based on that 
information we built an unbalanced panel data sample of 607 state-owned manufacturing plants in period 
2007-2011 (2469 observations). The sample represents between 63 and 74 per cent of the population of state-
owned manufacturing firms in Cuba. Despite there are not gaps in enterprises time series data, the sample 
features some level of attrition. While 60% of firms never leaves the sample 10% is only present either one or 
two of the five years.  

Table 1 Variables: General Information 
Variable  Indicator Description Source 

Output (𝑦) Net Sales Gross sales minus taxes plus subsidies  Modelo 5903* 

Labor (𝑙) Average  
headcount 

It is the average of total headcount at the end of the year and total 
headcount at the beginning of the year Modelo 5903* 

Capital (𝑘) Tangible fixed 
 assets 

Long-term assets that has a physical form such as buildings, computer 
equipment, software, furniture, machinery and vehicles Modelo 5901* 

Intermediate 
Materials (𝑚) 

Materials 
 spending The monetary value of raw materials, energy, and fuel   Modelo 5903* 

Electric Energy 
Consumption (𝑒) 

Energy 
consumed  
from electric 
network 

It is the actual energy demand of firm that is measured in MWh Modelo 5073* 

Labor Productivity Productivity Ratio of gross value added to average headcount  Modelo 5903* 

Price deflator GDP Deflactor - http://www.one.cu 

Price deflator Manufacturing 
 Deflactor (2-dig) - http://www.one.cu 

Industry Sector NAE code - Modelo 5903* 

Ministry Ministry code - Modelo 5903* 

 
Firms are classified according to their industry of operation by Nomenclador de Actividad Económica (NAE), 
and by ministries. The sample contains information on firms at the end of the year, e.g. sales, materials 
spending, fixed tangible assets, average headcount, labor productivity, etc. All variables were expressed in 
US$ current currency through the official exchange rate7. They were deflated using either the 2-digit 
manufacturing deflator or the GDP deflator provided by the statistic office. Table 3 displays other details 
about the set of indicators employed.  

Graph 1 Linear Relation Output and Inputs 

																																																													
7 Cuba has a dual currency system that creates a number of issues when working with economic data. In particular, it is a significant 
source of measurement errors.  
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Notes: * http://www.one.cu/sien2016.htm 

The correlation between the log-value of output and the log-value of labor, capital and intermediate materials 
is linear (see graph 1) and strong. Their pairwise correlation coefficients are over 0.7. Electricity consumption 
only correlates strongly with tangible fixed asset (its pairwise correlation coefficient equals 0.82). Under 
certain assumptions this finding would allow using the electricity consumption as an instrument for tangible 
fixed assets usually measured with error.  
Table 2 reports the between and within variation of the sample. In general overall data variation is not 
sizeable. For all variables there is more variation across individuals (between variation) than over time (within 
variation). Therefore, we expect to obtain imprecise estimates of coefficients in the fixed-effect model. This 
might be potentially explaining why estimation of static models has yielded unsatisfactory results as it was 
discussed in the previous section.  

Table 2 Between and Within Sample Variation 
        
Variable  Mean Std. Dev. Min Max Observations 
              

Output overall 8.66 1.22 4.06 14.04 N =    2469 
  between  1.23 5.20 12.28 n =     607 
  within   0.26 6.65 10.41 T-bar = 4.06 

Average  overall 5.76 0.98 3.09 9.05 N =    2469 
headcount between  0.98 3.12 9.01 n =     607 
  within   0.16 4.29 6.90 T-bar = 4.06 

Tangible F. overall 8.58 1.27 4.35 12.07 N =    2469 
Assets between  1.24 5.13 12.03 n =     607 
  within   0.26 5.86 10.63 T-bar = 4.06 

Material  overall 7.90 1.50 2.38 12.08 N =    2469 
Spending between  1.49 3.42 11.89 n =     607 
  within   0.32 5.72 9.98 T-bar = 4.06 

Electricity overall 6.02 1.67 1.44 11.97 N =    2469 
Consumption between  1.63 2.15 11.93 n =     607 
  within   0.27 3.22 8.83 T-bar = 4.06 

Notes: All variables are in log-values 
In order to analyze the degree of persistency, table 3 provides 𝐴𝑅(1) estimates of all variables involved in the 
analysis using different estimators. OLS results suggest that both output and inputs are highly persistent with 
autoregressive parameters over 0.95. Within group estimator make parameters to drop dramatically to less 
than 0.45. Diff-GMM and within group estimators yield similar results which can be interpreted as evidence 
of weak-instrument presence (Blundell & Bond, 2000). The pattern of intermediate materials and (even more) 
electricity consumption seems to validate this hypothesis. Finally, although Sys-GMM yields results closer to 
OLS, a test of validity additional moment restrictions (incremental Sargan) rejects the hypothesis of 
compatible instruments.  
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Table 3 Level of Persistency in Variables 
  OLS Within Difference System Difference System 
  Level Group Gmm Gmm Gmm Gmm 

𝑦      t − 2 t − 2 t − 3 t − 3 

𝑦!"!! 0.987 0.275 0.200 0.910 1.303 0.873 

  (0.008) (0.040) (0.086) (0.036) (0.778) (0.041) 

𝑚!
∗  0.255 0.000 0.024 0.000 0.113 0.000 

𝑚!
∗  0.005 0.000 0.019 0.011 0.048 0.000 

𝑆𝑎𝑟𝑔𝑎𝑛∗  -  - 0.000 0.000  - 0.004 

𝐷. 𝑆𝑎𝑟𝑔𝑎𝑛∗ -  -  - 0.000  - 0.051 

𝑙              

𝑙!"!! 0.983 0.498 1.117 1.016 3.749 1.083 

  ( 0.004) (0.044) (0.438) (0.063) (1.848) (0.118) 

𝑚!
∗  0.017 0.004 0.068 0.000 0.130 0.000 

𝑚!
∗  0.815 0.000 0.418 0.424 0.317 0.369 

𝑆𝑎𝑟𝑔𝑎𝑛∗  -  - 0.000 0.000 0.449 0.000 

𝐷. 𝑆𝑎𝑟𝑔𝑎𝑛∗ -  - -  0.000  - 0.000 

𝑘             

𝑘!"!! 0.959 0.131 0.907 0.414 0.899 0.825 

  (0.007) (0.068) (0.180) (0.116) (0.244) (0.102) 

𝑚!
∗  0.001 0.000 0.004 0.002 0.019 0.004 

𝑚!
∗  0.389 0.000 0.295 0.121 0.322 0.283 

𝑆𝑎𝑟𝑔𝑎𝑛∗  -  - 0.682 0.044 0.332 0.334 

𝐷. 𝑆𝑎𝑟𝑔𝑎𝑛∗ -  -  - 0.005 -  0.305 

𝑚             

𝑚!"!! 0.988 0.246 0.195 0.797 1.768 0.910 

  (0.006) (0.039) ( 0.071) (0.048) (1.083) (0.045) 

𝑚!
∗  0.007 0.000 0.005 0.000 0.116 0.000 

𝑚!
∗  0.054 0.000 0.120 0.113 0.485 0.149 

𝑆𝑎𝑟𝑔𝑎𝑛∗  -  -  - 0.000 0.027 0.001 

𝐷. 𝑆𝑎𝑟𝑔𝑎𝑛∗ -  -  - 0.000  - 0.002 

𝑒             

𝑒!"!! 0.990 0.379 -0.113 0.982 -0.382 0.910 

  (0.004) (0.044) (0.209) (0.034) (.248) (0.042) 

𝑚!
∗  0.574 0.000 0.647 0.000 0.210 0.000 

𝑚!
∗  0.010 0.000 0.019 0.000 0.066 0.000 

𝑆𝑎𝑟𝑔𝑎𝑛∗  -  -  - 0.000 0.000 0.000 

𝐷. 𝑆𝑎𝑟𝑔𝑎𝑛∗ -  - -  0.582  - 0.000 

Notes: Clustered standard errors in parenthesis for OLS and WG estimates.* implies that p-values are reported. 
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3.2. Further statistical analysis: static model estimates  

As we commented in the introduction section, previous estimates of production functions in Cuba have 
produced questionable result. In general, very low elasticity of capital and strongly significant elasticity of 
labor and raw materials. In this section, we investigate whether these issues arise or not in data used in the 

current work. We start using some basic estimators in order to briefly illustrate and comment the main 
features of these data.  
Model estimates in table 4 correspond to a production function represented by equation 3 under different 
assumption on 𝜐!"∗ . For instance, in the OLS estimates, 𝜐!"∗  is absorbed by 𝜖!" and assumed to be uncorrelated 
with inputs; whereas in FE estimates 𝜐!"∗  is assumed to be constant through time and uncorrelated with past, 
present and future inputs realizations (strict exogeneity assumption). In reality they correspond to standard 
static panel data assumptions that are required to identify consistently the set of parameters involved, see e.g. 
Wooldridge (2002).  
Table 4 Static Production Function Estimates 

    Output (1) (2) (3) (4) (5) (6) (7) (8) (9) 

  OLS RE FE FD OLS RE FE FD FE (IV) 

    𝑘     
- 

 
-  

 
-  

 
- 

 
      -
0.023** 

 
 0.011 

 
0.029    0.039**    0.504** 

   - -  -          -      (0.009)      (0.013) (0.018) (0.017) (0.197) 

    𝑚     
0.636***     0.585***     

0.521*** 
    
0.487***     0.641***     

0.592*** 
    
0.531*** 

    
0.498*** 

    
0.528*** 

  (0.010) (0.019) (0.028) (0.033) (0.010) (0.019) (0.028) (0.033) (0.016) 

    𝑙     
0.315***     0.353***     

0.411*** 
    
0.375*** 

     
0.333*** 

    
0.361*** 

    
0.418***    0.374***      

0.109 
  (0.011) (0.021) (0.048) (0.069) (0.011) (0.021) (0.049) (0.071) (0.131) 

    𝑒  
-0.002 

  
  0.022** 

    
0.048*** 

    
0.061*** -  -  -  -  - 
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Notes: Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1. Hausman test uses FE and RE estimates where the p-
values are reported. CRS is the Wald test of constant returns to scale (p-values reported). 
  
Two measures of capital were considered, that is, tangible fixed assets and energy consumed from electric 
network. The latest is usually assumed as a proxy of capital use, particularly, when depreciation is not 
available. We consider four models in columns 1-8 in table 4: OLS, Random Effects, Fixed Effects and First 
Differences. Taking into consideration that the stock of capital in large firms is usually measured with error, 
we use electricity consumption as an instrument for tangible fixed assets (recall from previous section that its 
correlation coefficient equals 0.82). Column 9 report the estimate of Fixed-effect Instrumental Variable 
model.  
OLS estimates (columns 1 and 5) suggest that either tangible fixed assets or electricity consumption produce 
similar results. A negative (and significant) elasticity for capital arises when tangible fixed assets are used. In 
addition, the hypothesis of constant return to scale (CRS) is rejected in both cases at every level of 
significance. These results coincide with evidences found in international or domestic studies.  
The random effect model produces a positive and significant elasticity for capital coefficient when electricity 
consumption is employed (column 2), while a non-significant elasticity when tangible fixed assets are 
considered (column 6). More of the same happens when the Fixed-Effect model is estimated, though elasticity 
of capital doubles compared to random effect estimate. A possible explanation for this might be the fact that 
variation of electricity consumption is greater than variation of tangible fixed assets. A Hausman test confirms 
that individual-specific effects play a role which validates the use of the FE model rather than the Random 
Effect model. Furthermore, CRS hypothesis was clearly not rejected under this specification.  
Although fixed-effect model seems to work well here, there is still a drawback. Columns 4 and 8 report 
estimates of First Difference model which differ “substantially” from FE estimates. Wooldridge 2002 
suggests that when this difference cannot be attributed to random differences, one should suspect that the 
strict exogeneity assumption is failing to hold. Since consistency of parameter depend critically on this 
assumption, its violation would produce unreliable estimated coefficients. The violation can be due to either 
measurement errors in regressors or the existence of feedbacks from past productivity shocks to current inputs 
decisions (Soderbom, 2009).  
In order ro correct under the presence of measurement errors, ew introduce an IV estimation. Colum 9 
provides an estimate of a Fixed-Effect Instrumental Variable model where tangible fixed assets were 
instrumented using the electricity consumption. The capital coefficient rose noticeably from 0.039 to 0.504 
while the labor coefficient dropped to its lowest value. We will take this number as an upper-bounded 
measure since there is not any previous IV estimate in Cuban literature to compare it. In the next section we 
will move towards estimating the dynamic production function to appraise whether the questions raised here 
can be adequately answered.  

3.3. Dynamic production function estimate  

  (0.007) (0.011) (0.018) (0.021)         - -  -  -  - 

    𝐶𝑡𝑒     
1.763*** 

     
1.805*** 

    
1.851*** 

 
-0.011     1.791***     

1.752*** 
    
1.788*** 

 
0.007 

 
-0.456 

  (0.073) (0.134) (0.256) (0.024) (0.068) (0.127) (0.269) (0.024) (0.945) 

    Time D. Yes Yes Yes Yes Yes Yes Yes Yes Yes 

    Industry D. Yes Yes - Yes Yes Yes - Yes - 

    Ministry D. Yes Yes - Yes Yes Yes - Yes - 

    Obs. 2469 2469 2469 1862 2469 2469 2469 1862 2469 

    R-squared 0.939 0.937 0.907 0.526 0.939 0.937 0.907 0.524 . 

    # of Cod. 607 607 607 607 607 607 607 607 607 
    Hausman 
T. -  -  0.000 -  -  -  0.000 -  - 

    CRS test 0.000 0.012 0.640 0.199 0.000 0.016 0.590 0.142 0.057 
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Table 5 reports estimates of the restricted and unrestricted models (equations 10 and 13, respectively). The 
following four estimators will be considered as in Blundell & Bond (2000): OLS, WG, FD-GMM and Sys-
GMM; without imposing constant return to scale.  

Table 5 Dynamic Production Function Estimates 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Output OLS Within DIF DIF SYS SYS SYS SYS 

 Levels Groups GMM GMM GMM GMM GMM GMM 

 - - t-2 t-3 t-2 t-3 t-3 + elect. Mixed 

𝑙 0.397*** 0.403*** -0.209 0.672 0.164 0.607* 0.472* 0.811* 

 (0.033) (0.035) (0.232) (0.595) (0.149) (0.338) (0.254) (0.445) 
𝑙!"!! -0.299*** 0.050 0.313 0.362 0.077 - 0.258 - 0.215 - 0.392 

 (0.033) (0.035) (0.234) (0.497) (0.136) (0.300) (0.242) (0.388) 
𝑘 0.026* 0.007 0.018 - 0.264 0.108 0.190 0.137 0.289* 

 (0.014) (0.016) (0.148) (0.297) (0.079) (0.176) (0.137) (0.173) 

𝑘!"!! - 0.039*** - 0.038**  -0.236*** - 0.279 -0.128*** - 0.061 - 0.089 - 0.063 

 (0.014)      (0.017) (0.077) (0.181)     (0.041) (0.143) (0.115) (0.095) 

𝑚 0.520*** 0.500*** 0.407*** 0.286 0.567*** 0.492*** 0.482*** 0.460** 

 (0.013) (0.015) (0.143) (0.257) (0.075) (0.157) (0.128) (0.185) 

𝑚!"!! -0.310*** 0.038* 0.052 0.243 -0.148*** -0.151 -0.208 -0.111 

 (0.016) (0.020) (0.106) (0.536) (0.053) (0.181) (0.140) (0.232) 

𝑦!"!! 0.695*** 0.000 0.292*** -0.034 0.393*** 0.297 0.413*** 0.236 

 (0.016) (0.026) (0.082) (0.352) (0.052) (0.209) (0.141) (0.274) 

𝑚! 0.002 0.000 0.010 0.448 0.000 0.018 0.000 0.031 

𝑚! 0.212 0.000 0.012 0.088 0.838 0.321 0.265 0.318 

Sargan - - 0.347 0.930 0.000 0.551 0.155 0.984 

D.Sargan - - - - 0.000 0.596 0.261 0.962 

Time D. Yes Yes Yes Yes Yes Yes Yes Yes 

Ind. D. Yes Yes - - Yes Yes Yes Yes 

Min. D. Yes Yes  - Yes Yes Yes Yes 

𝑅! 0.97 0.98 - - - - - - 

𝛽!  0.363*** 0.403*** - 0.137 0.659 0.403*** 0.512*** 0.437*** 0.648*** 

 (0.023) (0.031) (0.228) (0.537) (0.076) (0.097) (0.043) (0.196) 

𝛽!  0.030** 0.007 0.143 - 0.264 0.127* 0.192 0.105 0.302* 

 (0.013) (0.016) (0.122) (0.245) (0.077) (0.144) (0.108) (0.162) 

𝛽!  0.559*** 0.500*** 0.421*** 0.298 0.605*** 0.474*** 0.455*** 0.441*** 

 (0.012) (0.015) (0.123) (0.214) (0.056) (0.100) (0.093) (0.107) 

𝜌 0.744*** 0.000*** 0.422*** - 0.067 0.426*** 0.338** 0.440*** 0.310*** 

 (0.014) (0.000) (0.064) (0.019) (0.048) (0.154) (0.115) (0.115) 

Comfac 0.000 1.000 0.084 0.998 0.009 0.991 0.961 0.979 

CRS test 0.061 0.004 0.018 0.640 0.354 0.479 0.752 0.299 

Obs. 1862 1862 1294 1294 1862 1862 1862 1862 
Notes: Standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1. Comfac is a minimum distance test of the non-linear common 
factor restrictions imposed in the restricted models (p-values reported). CRS is the Wald test of constant returns to scale (p-values 
reported). GMM results are based on one-step GMM estimator.  
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Column (1) and (2) report the OLS and within group estimates of the parameters, respectively. The pattern of 
the signs is the expected from AR (1) error component specification in the reduced form equation estimated 
by OLS. The coefficient on the lagged dependent variable was significantly lower in the FE specification than 
in the OLS one. This might be induced by the Nickell-bias that is grounded on the contemporaneous 
correlation between regressors and residuals resulting from the within transformation (Arellano, 2003).  
The hypothesis of non- autocorrelation of order 2 was satisfied in the OLS estimate; while both the common 
factor restriction and the CRS hypothesis were rejected. The capital coefficient estimated by WG was not 
statistically different from zero which contrasts with a low but significant OLS capital coefficient.  
Estimates using one-step FD-GMM are reported in columns (3) and (4) for lagged instruments dated 𝑡 − 2 
and 𝑡 − 3, respectively. We did not find any significant coefficient when instruments dated 𝑡 − 3 (and earlier) 
were employed. The sign of the elasticities are not the expected from the AR(1) model in both specifications. 
Two factors already introduced might be explaining these results. First, the presence of weak instruments due 
to highly persistent time series; and (second) measurement errors in inputs. Evidences of such a kind of 
problems in the data were provided in previous section.  
Columns (5) to (8) show Sys-GMM estimates. We used four different sets of instruments that combined 
lagged level regressors with lagged first-differenced ones. For instance, in column (6) lagged level 
instruments dated 𝑡 − 3 (and earlier) were combined with lagged first-differenced regressors dated 𝑡 − 2 (see 
section III). Furthermore, in column (7) we added the electricity consumption variable as an external 
instrument in order to account for measurement errors. The preferred estimate - column (8) - uses a different 
set of internal instruments. Instruments dated 𝑡 − 2 (and earlier) were used for the capital variable whereas 
𝑡 − 3 (and earlier) were used for the rest of regressors.  
Compared to the other estimators, Sys-GMM provides the greatest estimates of the restricted capital 
coefficient (yet not always statistically significant). The Sargan and the incremental Sargan tests validate the 
addition of lagged first-difference equation as instrument for the level equation in columns (6) to (8). This 
strategy was rejected when instruments dated t − 2 were employed (see column 5) which means (or proves) 
statistical evidence in favor of the presence of measurement errors (Blundell and Bond, 2000).  
Order 2 serial correlation in residuals was not found (see m! and m! tests) suggesting that the coefficients in 
the unrestricted model were consistently estimated. Finally, both the common factor restriction and the CRS 
hypothesis were not rejected in columns (6)-(8) which support the identification strategy.  
The use of the electricity consumption as an external instrument does not improve estimate of the restricted 
capital coefficient β! = 0.105 (0.108). This was an unexpected result since, as it was shown in the previous 
section, the IV strategy provided the highest estimates of this parameter. Nevertheless, once the set of lagged 
instruments for this particular regressor was expanded from t − 3  to t − 2 (and earlier), the restricted 
coefficient rose considerably to 0.302 (0.162). Since this last specification passes all validation criteria, we 
will assume this one as the best (and preferred) estimates. Notice that this elasticity is six times greater than 
those ones observed in the Cuban literature of production function which suggest that either simultaneity or 
measurement errors (or both) are present in data at hand. The problems with previous estimates rely on the 
fact that static panel data estimators are not robust enough to deal with this class of issues.          
 
4. FINAL REMARKS  
 
The availability of Cuban data at micro-level since 2010 has made possible to extend productivity analysis in 
several directions. Domestic literature seems to reflect common issues tackled by econometric theory at 
international level in last seven decades. Through the use of an unbalance panel data sample of 607 state-
owned enterprises of Cuban manufacturing industry in period 2007-2011 some statistical evidence was 
collected and summarized as follows:  

§ Production functions estimates need to be corrected by more sophisticated econometric techniques in a 
way that internalizes methodological issues that commonly arise in this process. Neither OLS nor FE 
seems to be adequate strategies to consistently estimate the parameters of production functions. They 
provide very low and (sometimes) no significant estimates of the capital coefficient as well as rejection 
of the constant return to scale hypothesis; which in turn produces unreliable TFP estimates. Using a 
wide range of static panel data estimators, the capital coefficient reached at most 0.039 (0.017) in the 
FD estimate.  

§ International evidence suggests that measurement errors might be substantial when estimating 
production functions. We approached this problem instrumenting the capital stock variable with 
electricity consumption in a fixed-effect IV estimate; and using the Sys-GMM estimator that has been 
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found to provide the most reliable estimates in presence of measurement errors (Van Biesebroeck; 
2007). We found a coefficient for capital equals to 0.504 (0.197) and 0.302 (0.162) in the IV and Sys-
GMM estimates, respectively.  

§ Blundell and Bond (2000) strategy was employed in order to robust previous results. The capital 
coefficient estimate changed from 0.030 in the OLS specification to 0.302 in the preferred Sys-GMM 
one. The additional use of lagged differences as instrument for the level equation was validated by 
both Sargan and incremental Sargan tests. The estimated model passed the second-order serial 
correlation test (m!). Therefore, consistency of parameters was validated. High persistency in both the 
dependent variable and regressors might be explaining why FD-GMM performs poorly when 
coefficients are estimated.  

The strategy followed in this paper produced a coefficient for the capital variable greater than 0.06 (a referent 
value in previous researches). Our estimates are more in concordance to economic theory and to general 
knowledge on Cuban economy. As we have mentioned already, results indicate that production functions 
estimates based on static panel data models will be likely biased, and thus, more advanced econometric 
modeling will be required. Nevertheless, as researches on these matters in Cuba are just at a very initial stage, 
we suggest taking these results with precaution. Rather than getting to the “true” value for the capital 
coefficient; this paper aimed to open a new field of research in our country. Notice that simultaneity is not the 
only methodological problem that affects production functions estimates, and therefore, future efforts will be 
required to correct for them.           
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